FUEL CELL: Background and Application to Automotive Vehicles

Size: px
Start display at page:

Download "FUEL CELL: Background and Application to Automotive Vehicles"

Transcription

1 TECHNICAL UNIVERSITY OF RADOM Technical University of Radom Andrzej Kowalewicz FUEL CELL: Background and Application to Automotive Vehicles Ecology and Safety as a Driving Force in the Development of Vehicles

2 1. Introduction 2. Theoretical Background 2.1. Van t Hoff equilibrium box 2.2. How does FC act 3. Application of Fuell Cell to Automotive Vehicles 3.1. Fuel cell: Present status 3.2. Hydrogen FC 3.3. Methanol FC 3.4. Gasoline FC 4. Recent FC Vehicles 5. Forecast 6. Conclusions

3 Introduction Nicolaus Carnot Robert Bunsen William Grove 1830 Jacobus van t Hoff Francis Bacon first fuel cell 6 kw

4 Theoretical Background Fig. 1. Van t Hoff equilibrium box

5 Theoretical Background Fig. 2. Equilibrium of reaction a A+ b B m M + n N

6 Theoretical Background Fig. 3. Hydrogen FC

7 Theoretical Background Hydrogen FC

8 Theoretical Background Theoretical Efficiency of Fuel Cell 1 st Law of Thermodynamics: H = G + Q where: H - chemical energy of fuel (enthalpy of fuel) G - Gibbs free energy (electric energy) Q - thermal energy (heat) theoretical efficiency: th = 1- Q/H

9 Theoretical Background

10 Voltage Theoretical Background U Voltageof idling Part load Area of work du/di ~Ri Rated last Area of max current Current intensity Short circuiting Current voltage characteristics of single H 2 O 2 FC i

11 Theoretical Background Voltage at single FC Hydrogen FC works at temperature 90ºC Voltage of single FC - maximum 1,23 V - rated voltage 0,6 0,8 V

12 Theoretical Background Type PEMFC DMFC SOFC Electrolyte Poly-perfluoro sulfinic acid Poly-perfluoro sulfinic acid Zirconium & yttrium oxides Operating temp ( C) Principal applications Transport Transport Transport, power generation AFC Potassium hydroxide Space, transport MCFC Lithium and potassium carbonates PAFC Phosphoric acid Key: SPFC solid polymer fuel cell; SOFC solid oxide fuel cell; AFC alkaline fuel cell; PEMFC proton exchange membrane; MCFC molten carbonate fuel cell; DMFC direct methanol fuel cell; PAFC phosphoric acid fuel cell Power generation Power generation

13 Theoretical Background Comparison of power source efficiency

14 Theoretical Background Present Status of FC Energy density: 10 kg/kw, 1,0 2,0 kw/dm 3 Emission of CO 2 from FC (gasoline) is twice less than from IC engine Fuel consumption (gasoline) is twice less at the same distance of way Price of FC is Price of IC engine is US$ 300/kW US$ 50/kW

15 Application of FC to Automotive Vehicles Type of hydrogen storage Liquefied hydrogen Compressed hydrogen Methanol Gasoline Metal hydrides Sodium borohydride, NaBH 4 Features. Advantages/Shortcomings Hydrogen cooled to 253ºC. Contained in cryogenic tanks. High cost of cooling process and cost of tank. Problem: Cooling equipment on-board vehicle? Hydrogen compressed to 69 MPa. Dangerous? Distribution demands new infrastructure. Requires on-board reformation at 260ºC. Methanol FC is 30% more efficient than IC engine. Requires on-board reformation at 600ºC. Less efficiency than methanol FC. Good infrastructure. Can store 1,5-2,5% wt hydrogen. Requires infrastructure. Nontoxic, nonexplosive, nonflammable the most benign fuel for FC. Dry powder, water-based solution stored in an aqueous solution containing 3% wt NaOH to inhibit the evolution of hydrogen. Requires infrastructure.

16 Application of FC to Automotive Vehicles Companies producing FC Ballard (XCELLSIS) Global Alternative Propulsion Center (GAPC)

17 Application of FC to Automotive Vehicles Companies, which apply FC to automotive vehicles DaimlerChrysler Liquid hydrogen FC (NECAR 4) Compressed Hydrogen FC (NECAR 4a) Methanol FC (NECAR 5 and Jeep Comander 2 SUW) Gasoline FC Sodium borohydride as a source of hydrogen to FC (NATRIUM minivan) Renault VW GME Honda Ford Ford Liquid hydrogen FC Liquid hydrogen FC (Bora) Methanol FC (Opel Zafira) Methanol FC (Research vehicle) Gaseous Hydrogen FC (Ford Focus) Methanol FC (Ford Mondeo)

18 Application of FC to Automotive Vehicles Overview of fuel cell demonstration cars developed by Daimler Chrysler, based on different onboard fuel storage concepts

19 Application of FC to Automotive Vehicles The FC energy source could by hydrogen, methanol or gasoline

20 Application of FC to Automotive Vehicles Hydrogen FC Direct application of hydrogen to FC Anode Reaction 2H 2 4H + + 4e - Cathode Reaction 4H + + O 2 + 4e - 2H 2 O

21 Application of FC to Automotive Vehicles Methanol FC Reforming of methanol CH 3 OH 2H 2 + CO dissociation CH 3 OH + H 2 O 3H 2 + CO 2 steam reforming Autothermal reforming: combination of total oxidation and steam-reforming model of autothermal reforming of methanol

22 Application of FC to Automotive Vehicles Methanol FC Combustion 2 CH 3 OH + O 2 2CO 2 + 4H 2 O exothermic reaction Steam reforming CH 3 OH + H 2 O 3H 2 + CO 2 endothermic reaction Catalyst: CuO/ZnO/Al 2 O 3 Net reaction enthalpy change = 0

23 Application of FC to Automotive Vehicles GM s example of function principle of methanol powered FC system

24 Application of FC to Automotive Vehicles Opel Zafira powered by FC 1 battery, 2 electric motor, 3 transreformer, 4 inlet of air to FC, 5 FC, 6 vaporizer - mixer, 7 compressor, 8 cooling system, 9 reformer

25 Application of FC to Automotive Vehicles General scheme of automotive Ford Motor Co. methanol FC 1 methanol tank, 2 reformer, 3 FC, 4 transreformer, 5 electric motor DC, 6 air compressor

26 Application of FC to Automotive Vehicles Gasoline FC Liquid Gasoline Vapourizer Partial Oxidation Water-gas shift Preferential Oxidation PROX FC

27 Application of FC to Automotive Vehicles Gasoline FC

28 Application of FC to Automotive Vehicles Chrysler Co. FC than runs on gasoline

29 Application of FC to Automotive Vehicles Sodium borohydride FC catalyst NaBH 4 2H2O 4H2 NaBO 2 heat stoichiometric reaction generation of hydrogen

30 Application of FC to Automotive Vehicles HOD System

31 Application of FC to Automotive Vehicles DaimlerChrysler Natrium minivan with on-board Hydrogen-On-Demand (HOD) System

32 Application of FC to Automotive Vehicles What should be improved? In previous years companies were still working on proof-ofconcept of FC, they need now build a vehicle! Now main problems being solved are: quick start-up (presently 20 sec) of vehicle manufacturability crash safety fuel (hydrogen: on board storage and fuel infrastructure are being key obstacles; synthetic gasoline, methanol?) electric drive/drivertain need very efficient heat exchanges (cooling) cost of FC remains a key challenge

33 Application of FC to Automotive Vehicles FC as Auxiliary Power Unit APU for electronic systems (BMW Delphi) Fuel consumption of ICE for electronic systems = 1,5 dm 3 /100 km Fuel consumption of gasoline fuelled FC = 0,7 dm 3 /100 km

34 Recent FC Vehicles NECAR 5 Daimler Chrysler, 2004 FC: Compressed hydrogen Hydrogen stotage: Two hydrogen tanks, 350,0 bar Ballard FC stack Electric motor: 65 kw, 210 Nm Battery: NiMH, 1,4 kwh capacity NECAR 5 range: 150 km Acceleration: km/h in 16s Also FC for Mercedes A - Class

35 Recent FC Vehicles NATRIUM Chrysler s Minivan FC: Compressed hydrogen Range: 500 km Speed: 130 km/h

36 Recent FC Vehicles Hyunday s FC Vehicle TUSCON CAR FC: hydrogen, operaters at temp. < 0 C Battery: Lithium ion polymer Hydrogen storage: compressed H dm 3 Electric motor: 80 kw, 260 Nm Range of the vehicle: 300 km Speed: 155 km/h

37 Recent FC Vehicles AUDI A2 Hydrogen FC, PEM Hydrogen storage: liquid H 2, 1,8 kg Electric motor: synchronous, 66 kw/110 kw for 30s, 425 Nm Battery: NiMH Range of the vehicle: 220 km Acceleration: km in 10s Speed: 175 km/h

38 Recent FC Vehicles Toyota FCHV-4 (demonstrator vehicle) FC: Hydrogen 400 V Hydrogen tanks: 4 tanks, 350 bar Electric motor: 80 kw, 260 Nm Battery: NiMH Vehical speed: 155 km/h Range: 300 km

39 Recent FC Vehicles Inteligent Energy ENV, Fuel Cell Motorbike FC: Hydrogen, 1 kw Hydrogen storage: Composite cylinder, 2,5 kwh Electric motor: 6 kw, 48 V, DC Batteries: lead acid Range: 160 km Acceleration: 0 80 km in 12,1 s

40 Recent FC Vehicles FC Diesel ICE or Spark Ignition ICE FC Diesel ICE or NG Fuelled Dual Fuel Engine

41 Recent FC Vehicles F600 Hygenius, Mercedes Benz Hydrogen FC, 4 stacks, 100 cells Hydrogen reservoir: 4 kg H 2 at 700 bar Electric motor: 60 kw/80 kw, 250/350 Nm (Synchronous AC) Battery: Lithium ion, V ICE: Diesel, 2,9 dm 3 /100 km Range of the vehicle: 400 km Speed: 170 km/h

42 Forcast Options of fuel Technology will be developed Demonstration prototypes Gasoline Methanol Emission Fuel Economy Preliminary options are made Cost, Weight Hydrogen Are Technology accesible Infrastructure and technology must be developed Infrastructure of fuels

43 Number of sold cars Forcast Phase 1 Testphase of existing FCV Phase 2 Niche Technology: Developmint of reformers technique and infrastructure Phase 3 Development of the FCV market and technology Phase 4 Further Development of FCV market technology and infrastructure % theoretic Market share 15 Mio Under 0,5 % theor. Market share % theoretic Market share % theoretic Market share 3 Mio ~ 25 % World sale of cars Years

44 Conclusions Fuel-cell converts potential chemical energy of the fuel into electrical energy without need for transfer it into heat in low temperature process. Theoretical efficiency of fuel-cell is very high and not limited by efficiency of Carnot cycle. Due to low temperature of electrochemical reactions and hydrogen as a fuel, FC is practically zero emission power.

45 Conclusions Emission of greenhouse gas (CO 2 ) of hydrogen FC is much more lower for methanol or gasoline fuel-cell then for conventional IC engine. At present the most advanced are research vehicles powered with hydrogen FC. First into the market gasoline FCV will be introduced due to existing fuel market.

46

47 TECHNICAL UNIVERSITY OF RADOM THANK YOU Ecology and Safety as a Driving Force in the Development of Vehicles

Fuel Cell as a Green Energy Generator in Aerial Industry

Fuel Cell as a Green Energy Generator in Aerial Industry Civil Aviation Technology College Fuel Cell as a Green Energy Generator in Aerial Industry Presented by: Mehdi Saghafi 16 April, 2012 Table of Content Introduction Principle & Performance of Fuel Cell

More information

Fuel Cells and Their Applications

Fuel Cells and Their Applications Karl Kordesch, Giinter Simader Fuel Cells and Their Applications VCH Weinheim New York Basel Cambridge Tokyo Contents 1. Introduction 1 1.1. Fuel Cell Technology: a Dream, Challenge or a Necessity? 1 1.2.

More information

Balance of Fuel Cell Power Plant (BOP)

Balance of Fuel Cell Power Plant (BOP) Balance of Fuel Cell Power Plant (BOP) Docent Jinliang Yuan December, 2008 Department of Energy Sciences Lund Institute of Technology (LTH), Sweden Balance of Fuel Cell Power Plant In addition to stack,

More information

Vincenzo Esposito. Università di Roma Tor Vergata

Vincenzo Esposito. Università di Roma Tor Vergata Vincenzo Esposito Università di Roma Tor Vergata What is a fuel cell? It is an electrochemical device with a high energetic conversion yield. It convert indirectly the chemical energy of a fuel into electric

More information

Fuel cells for long distance emobility: Content

Fuel cells for long distance emobility: Content Zentrum für BrennstoffzellenTechnik GmbH Fuel cells for long distance emobility Development status and powertrain concepts Dr.-Ing. Jörg Karstedt, Coordinator Emobility Hydrogen & Fuel Cells Energy Summit

More information

Technology Solar-Hydrogen Energy System. h-tec. www.h-tec.com

Technology Solar-Hydrogen Energy System. h-tec. www.h-tec.com Technology Solar-Hydrogen Energy System 01 2003 www..com Solar cells, wind power plants and water power plants transform solar energy into electrical energy. 02 2003 www..com Different ways to store hydrogen

More information

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting 24.12.2006 Prof. E. Peled School of Chemistry Tel Aviv University, Israel

Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting 24.12.2006 Prof. E. Peled School of Chemistry Tel Aviv University, Israel Fuel Cells for Renewable Energy and for Transportation IFCBC Meeting 24.12.2006 Prof. E. Peled School of Chemistry Tel Aviv University, Israel TAU PU for laptops 1 Outline The problem: dependence on oil

More information

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems

Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct

More information

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe

ENERGY CARRIERS AND CONVERSION SYSTEMS Vol. I - Alkaline Water Electrolysis - Isao Abe ALKALINE WATER ELECTROLYSIS Isao Abe Office Tera, Chiba, Japan Keywords: Water electrolysis, alkaline, hydrogen, electrode, diaphragm, high pressure high temperature electrolyser, cell, electrocatalyst

More information

FUEL CELL BASICS. 1. Back to the origins: from the gas battery to the fuel cell

FUEL CELL BASICS. 1. Back to the origins: from the gas battery to the fuel cell 1. Origins and principle FUEL CELL BASICS 1. Back to the origins: from the gas battery to the fuel cell The seminal work of William Grove on fuel cells in 1839 is well known nowadays but at the time of

More information

hybrid fuel cell bus

hybrid fuel cell bus hybrid fuel cell bus PURE EMOTION PURE capacity The full passenger capacity of a standard diesel bus seats 34 standees 70 (7 passengers per sqm) total 104 Thanks to the three axles of the Van Hool A330

More information

Energy efficiency and fuel consumption of fuel cells powered test railway vehicle

Energy efficiency and fuel consumption of fuel cells powered test railway vehicle Energy efficiency and fuel consumption of fuel cells powered test railway vehicle K.Ogawa, T.Yamamoto, T.Yoneyama Railway Technical Research Institute, TOKYO, JAPAN 1. Abstract For the purpose of an environmental

More information

As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms.

As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms. Topic 6: Forms of Potential Energy As you learned in the previous activity, energy is either potential energy or kinetic energy. Each can take many forms. Forms of potential energy include Stored Mechanical

More information

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I

Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Control of High Efficiency PEM Fuel Cells for Long Life, Low Power Applications Part I Jekanthan Thangavelautham Postdoctoral Associate Field and Space Robotics Laboratory Motivation Conventional Power

More information

moehwald Bosch Group

moehwald Bosch Group moehwald Bosch Group Division Testing Technology for Fuel Cells Moehwald GmbH Michelinstraße 21 Postfach 14 56 66424 Homburg, Germany Tel.: +49 (0) 68 41 / 707-0 Fax: +49 (0) 68 41 / 707-183 www.moehwald.de

More information

Practical Examples of Galvanic Cells

Practical Examples of Galvanic Cells 56 Practical Examples of Galvanic Cells There are many practical examples of galvanic cells in use in our everyday lives. We are familiar with batteries of all types. One of the most common is the lead-acid

More information

Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant. M. Henke, C. Willich, M. Steilen, J. Kallo, K. A. Friedrich

Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant. M. Henke, C. Willich, M. Steilen, J. Kallo, K. A. Friedrich www.dlr.de Chart 1 > SOFC XIII > Moritz Henke > October 7, 2013 Solid Oxide Fuel Cell Gas Turbine Hybrid Power Plant M. Henke, C. Willich, M. Steilen, J. Kallo, K. A. Friedrich www.dlr.de Chart 2 > SOFC

More information

Module 5: Combustion Technology. Lecture 33: Combustion air calculation

Module 5: Combustion Technology. Lecture 33: Combustion air calculation 1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The

More information

FUEL CELLS FOR BUILDING APPLICATIONS

FUEL CELLS FOR BUILDING APPLICATIONS FUEL CELLS FOR BUILDING APPLICATIONS This publication was prepared under ASHRAE Research Project 1058-RP in cooperation with TC 9.5, Cogeneration Systems. About the Author Michael W. Ellis, Ph.D., P.E.,

More information

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC)

Development of large-scale H 2 storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Development of large-scale storage and transportation technology with Liquid Organic Hydrogen Carrier (LOHC) Yoshimi Okada 1, Mitsunori Shimura 2 Principal researcher, Technology Development Unit, Chiyoda

More information

4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean?

4. Using the data from Handout 5, what is the standard enthalpy of formation of BaO (s)? What does this mean? HOMEWORK 3A 1. In each of the following pairs, tell which has the higher entropy. (a) One mole of liquid water or one mole of water vapor (b) One mole of dry ice or one mole of carbon dioxide at 1 atm

More information

With Focus on Hydrogen and Fuel Cell Electric Vehicles

With Focus on Hydrogen and Fuel Cell Electric Vehicles GM s Electrification Strategy With Focus on Hydrogen and Fuel Cell Electric Vehicles International Hydrogen Fuel Cell Technology and Vehicle Development Forum Hosted by MOST and IPHE George P. Hansen Director,

More information

ATTACHMENT 4A. Life-Cycle Analysis of Automobile Technologies

ATTACHMENT 4A. Life-Cycle Analysis of Automobile Technologies ATTACHMENT 4A Life-Cycle Analysis of Automobile Technologies Assessments of new automobile technologies that have the potential to function with higher fuel economies and lower emissions of greenhouse

More information

news from FUEL CELLS 2000 Fuel Cell Technology Update April 5, 2000

news from FUEL CELLS 2000 Fuel Cell Technology Update April 5, 2000 news from FUEL CELLS 2000 Fuel Cell Technology Update April 5, 2000 To: Reporters, editors and investors following business, energy, automotive and technology news. Let us know if you would prefer to receive

More information

FUEL CELL FUNDAMENTALS

FUEL CELL FUNDAMENTALS FUEL CELL FUNDAMENTALS RYAN P. O'HAYRE Department of Metallurgical and Materials Engineering Colorado School of Mines [PhD, Materials Science and Engineering, Stanford University] SUK-WON CHA School of

More information

Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context. Preliminary Results for Hydrogen

Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context. Preliminary Results for Hydrogen Well-to-Wheels analysis of future fuels and associated automotive powertrains in the European context A joint initiative of /JRC/CONCAWE ry Results for Hydrogen Summary of Material Presented to the EC

More information

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels

Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels 1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation

More information

Half the cost Half the carbon

Half the cost Half the carbon Half the cost Half the carbon the world s most efficient micro-chp What is BlueGEN? The most efficient small-scale electricity generator BlueGEN uses natural gas from the grid to generate electricity within

More information

Corporate Presentation SEPTEMBER MAY 2014

Corporate Presentation SEPTEMBER MAY 2014 Corporate Presentation SEPTEMBER MAY 2014 Fuel Cell Marketplace Widespread adoption of fuel cells is limited by need for high purity hydrogen ohigh purity = high cost olimited by hydrogen distribution,

More information

Zero Emission Engine. An Economic and Environmental Benefit

Zero Emission Engine. An Economic and Environmental Benefit Zero Emission Engine An Economic and Environmental Benefit Saskia Scherfling Registration number: 731805 Department: VIII Course of studies: Process and Environmental Engineering September 2007 Table of

More information

For: [ ] Action [ ] Decision [ X] Information. Subject: Recommendation Report Powering the Electric Car of the Future

For: [ ] Action [ ] Decision [ X] Information. Subject: Recommendation Report Powering the Electric Car of the Future Eicholtz Consulting Services Betsy Frick Carbon Motor Company 726 Automotive Dr. Detroit, MI 45312 For: [ ] Action [ ] Decision [ X] Information Subject: Recommendation Report Powering the Electric Car

More information

Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies

Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies BUILDING A COST EFFECTIVE INFRASTRUCTURE WITH GREEN HYDROGEN Dan Madden, PE, CEO Tim Lowe, PhD, VP Sales Hybrid Energy Technologies a division of Energy Technologies, Inc. 233 Park Avenue East Mansfield,

More information

Cella Energy Safe, low cost hydrogen storage. Chris Hobbs

Cella Energy Safe, low cost hydrogen storage. Chris Hobbs Cella Energy Safe, low cost hydrogen storage Chris Hobbs Cella Material Solid State Hydrogen Storage Plastic like pellet formedmaterial 1 litre H 2 per gram Low toxicity can be handled Heated above 120⁰C

More information

HYDROGEN: FUEL OF THE FUTURE

HYDROGEN: FUEL OF THE FUTURE ppm HYDROGEN: FUEL OF THE FUTURE Rachel Chamousis Abstract Hydrogen is an energy carrier that can transform our fossil-fuel dependent economy into a hydrogen economy, which can provide an emissions-free

More information

OVERVIEW. Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink. Key Features:

OVERVIEW. Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink. Key Features: A COMPANY WITH ENERGY Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink OVERVIEW Thermolib Expands the MATLAB /Simulink Suite with tools to design, model and simulate complex thermodynamic

More information

Analysis of fuel cell

Analysis of fuel cell Analysis of fuel cell commuter rail vehicles Stuart Hillmansen*1 1, D Meegahawatte1, C Roberts, P Jennings2, A McGordon2; 1University of Birmingham, United Kingdom, 2University of Warwick, United Kingdom

More information

Alternative Drivetrains Volkswagen Group s Solutions for Sustainable Mobility

Alternative Drivetrains Volkswagen Group s Solutions for Sustainable Mobility Alternative Drivetrains Volkswagen Group s Solutions for Sustainable Mobility Prof. Dr. Wolfgang Steiger Group External Relations Future Technologies 2013-10-02 E-mobil BW Technologietag Stuttgart, Germany

More information

Concepts in Syngas Manufacture

Concepts in Syngas Manufacture CATALYTIC SCIENCE SERIES VOL. 10 Series Editor: Graham J. Hutchings Concepts in Syngas Manufacture Jens Rostrup-Nielsen Lars J. Christiansen Haldor Topsoe A/S, Denmark Imperial College Press Contents Preface

More information

CNG & Hydrogen Tank Safety, R&D, and Testing

CNG & Hydrogen Tank Safety, R&D, and Testing > Powertech Labs Inc. CNG & Hydrogen Tank Safety, R&D, and Testing 012.10.2009 Presented by Joe Wong, P.Eng. PRESENTATION OBJECTIVES Present experience from CNG in-service tank performance. The process

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

Stephen Bennington CELLA ENERGY

Stephen Bennington CELLA ENERGY Stephen Bennington CELLA ENERGY The Cella Material Cella s Material Characteristics: Hydrogen stored in a form of plastic pellets 10 kg of material per 100km (zero emission vehicle) Heated pellets above

More information

Bachelor thesis. Bachelor in Industrial Technology Engineering

Bachelor thesis. Bachelor in Industrial Technology Engineering Bachelor thesis Hydrogen Fuel Cell Vehicles performed with the purpose of obtaining the academic degree of Bachelor in Industrial Technology Engineering under the guidance of ao. Univ. Prof. Dipl. Ing.

More information

Stationary Fuel Cell Power Systems with Direct FuelCell Technology Tackle Growing Distributed Baseload Power Challenge

Stationary Fuel Cell Power Systems with Direct FuelCell Technology Tackle Growing Distributed Baseload Power Challenge Stationary Fuel Cell Power Systems with Direct FuelCell Technology Tackle Growing Distributed Baseload Power Challenge Anthony Leo, Vice President of OEM and Application Engineering, FuelCell Energy, Inc.

More information

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink

COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat

More information

Brennstoffzellen-Systeme von der Forschung zur Kommerzialisierung: Integration Simulation Testen

Brennstoffzellen-Systeme von der Forschung zur Kommerzialisierung: Integration Simulation Testen Brennstoffzellen-Systeme von der Forschung zur Kommerzialisierung: Integration Simulation Testen IEA Workshop Brennstoffzellen: Markteinführung, Markthemmnisse und F&E-Schwerpunkte 27. Februar 2014, Graz

More information

TOWARDS HYDROGEN ENERGY ECONOMY IN INDIA

TOWARDS HYDROGEN ENERGY ECONOMY IN INDIA TOWARDS HYDROGEN ENERGY ECONOMY IN INDIA by Dr. S.K. Chopra Senior Advisor Ministry of Non-Conventional Energy Sources, Govt. of India UNU Conference on Hydrogen Fuel Cells and Alternatives in the Transport

More information

RENAULT S EV STRATEGY

RENAULT S EV STRATEGY RENAULT S EV STRATEGY Th Koskas 15th May 2009 AGENDA 1. Why EV today 2. The Market 3. Renault s strategy AGENDA 1. Why EV today 2. The Market 3. Renault s strategy ➊ CO2 efficiency 100 CO2 Emission (%)

More information

Prospects and Challenges for Fuel Cell Applications Paul Lebutsch

Prospects and Challenges for Fuel Cell Applications Paul Lebutsch Prospects and Challenges for Fuel Cell Applications Paul Lebutsch Presented at the Roads2HyCom Research & Technology Workshop on 5-6 March 2009 in Brussels, Belgium ECN-L--09-172 December 2009 Prospects

More information

Future directions in natural gas injection: Is CNG an alternative to gasoline or Diesel for passenger cars?

Future directions in natural gas injection: Is CNG an alternative to gasoline or Diesel for passenger cars? Future directions in natural gas injection: Is CNG an alternative to gasoline or Diesel for passenger cars? Jean-Francois Preuhs, Guy Hoffmann, Joachim Kiefer, Camille Feyder Bascharage, 6. November 2014

More information

Determination of the enthalpy of combustion using a bomb calorimeter TEC

Determination of the enthalpy of combustion using a bomb calorimeter TEC Determination of the enthalpy of TEC Related concepts First law of thermodynamics, Hess s law of constant heat summation, enthalpy of combustion, enthalpy of formation, heat capacity. Principle The bomb

More information

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat.

Dr. István ZÁDOR PhD: Rita MARKOVITS-SOMOGYI: Dr. Ádám TÖRÖK PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat. Dr. István ZÁDOR PhD: PhD, MSc in Transportation Engineering, KOGÁT Ltd. istvan.zador@kogat.hu Rita MARKOVITS-SOMOGYI: MSc in Transport Engineering, Budapest University of Technology and Economics Department

More information

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.

IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily. The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole

More information

Inside the Nickel Metal Hydride Battery

Inside the Nickel Metal Hydride Battery Inside the Nickel Metal Hydride Battery John J.C. Kopera Cobasys 5 June 004 Inside the NiMH Battery Introduction The Nickel Metal Hydride (NiMH) battery has become pervasive in today s technology climate,

More information

09-10-2012: ecomobiel, Rotterdam. Huub Dubbelman, Manager Corporate Communications, Mercedes-Benz Nederland BV

09-10-2012: ecomobiel, Rotterdam. Huub Dubbelman, Manager Corporate Communications, Mercedes-Benz Nederland BV Waterstof, Is hydrogen de betere the olie fuel of the future? 09-10-2012: ecomobiel, Rotterdam Huub Dubbelman, Manager Corporate Communications, Mercedes-Benz Nederland BV NWBA H2 & Fuel Is waterstof Cell

More information

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine.

EXPERIMENT NO. 3. Aim: To study the construction and working of 4- stroke petrol / diesel engine. EXPERIMENT NO. 3 Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion of fuel and converts part of this energy

More information

Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum

Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum Correlation of Nelson Chemistry Alberta 20 30 to the Alberta Chemistry 20 30 Curriculum Unit 5 Organic Chemistry General Outcomes Students will: 1. explore organic compounds as a common form of matter

More information

HYDROGEN ECONOMY: PERSPECTIVE FROM MALAYSIA. Prof. Wan Ramli Wan Daud

HYDROGEN ECONOMY: PERSPECTIVE FROM MALAYSIA. Prof. Wan Ramli Wan Daud HYDROGEN ECONOMY: PERSPECTIVE FROM MALAYSIA Prof. Wan Ramli Wan Daud National Fuel Cell Research Program Malaysia Presented at International Seminar on the Hydrogen Economy for Sustainable Development

More information

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Lecture 35: Atmosphere in Furnaces

Lecture 35: Atmosphere in Furnaces Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors

More information

Chapter 7: Chemical Energy

Chapter 7: Chemical Energy Chapter 7: Chemical Energy Goals of Period 7 Section 7.1: To describe atoms, chemical elements and compounds Section 7.2: To discuss the electromagnetic force and physical changes Section 7.3: To illustrate

More information

Paper 1 (7405/1): Inorganic and Physical Chemistry Mark scheme

Paper 1 (7405/1): Inorganic and Physical Chemistry Mark scheme AQA Qualifications A-level Chemistry Paper (7405/): Inorganic and Physical Chemistry Mark scheme 7405 Specimen paper Version 0.5 MARK SCHEME A-level Chemistry Specimen paper 0. This question is marked

More information

Automotive Lithium-ion Batteries

Automotive Lithium-ion Batteries Automotive Lithium-ion Batteries 330 Automotive Lithium-ion Batteries Akihiko Maruyama Ryuji Kono Yutaka Sato Takenori Ishizu Mitsuru Koseki Yasushi Muranaka, Dr. Eng. OVERVIEW: A new of high-power lithium-ion

More information

High temperature electrolysis (SOEC) for the production of renewable fuels

High temperature electrolysis (SOEC) for the production of renewable fuels IRES 2012 High temperature electrolysis (SOEC) for the production of renewable fuels Björn Erik Mai sunfire GmbH (Manager Business Development) Seite 1 Content 1. Company facts 2. Technology 3. Power-to-Gas

More information

5 kw Alkaline fuel cells target commercialization

5 kw Alkaline fuel cells target commercialization 5 kw Alkaline fuel cells target commercialization R. Privette, N. English, H. Wang, D. Wong ECD S. Eick, W. Haris, U.S. Army TARDEC T. Lowe, Energy Technologies, Inc Energy Conversion Devices (ECD) 2983

More information

Danmark satser på konvertering og lagring

Danmark satser på konvertering og lagring Danmark satser på konvertering og lagring Søren Linderoth Institutdirektør, professor Institut for Energikonvertering og lagring DTU Energikonvertering From 20 % to 50 % Wind power 4500 4000 3500 3000

More information

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S

Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S Briefly on Topsoe Fuel Cell Development, marketing and sales of SOFC technology Founded in 2004 Subsidiary of Haldor Topsøe A/S (wholly owned)

More information

48V eco-hybrid Systems

48V eco-hybrid Systems 48V eco-hybrid Systems Jean-Luc MATE Vice President Continental Engineering Services France President Automotech cluster www.continental-corporation.com Division Naming European Conference on Nanoelectronics

More information

Equilibria Involving Acids & Bases

Equilibria Involving Acids & Bases Week 9 Equilibria Involving Acids & Bases Acidic and basic solutions Self-ionisation of water Through reaction with itself: The concentration of water in aqueous solutions is virtually constant at about

More information

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS

FUNDAMENTALS OF ENGINEERING THERMODYNAMICS FUNDAMENTALS OF ENGINEERING THERMODYNAMICS System: Quantity of matter (constant mass) or region in space (constant volume) chosen for study. Closed system: Can exchange energy but not mass; mass is constant

More information

Environmental Issues of United States

Environmental Issues of United States Environmental Issues of United States During the Industrial Revolution, climate and environment have started changing mainly due to agricultural and industrial practices. Through population growth, fossil

More information

How To Powertrain A Car With A Hybrid Powertrain

How To Powertrain A Car With A Hybrid Powertrain ELECTRIFICATION OF VEHICLE DRIVE TRAIN THE DIVERSITY OF ENGINEERING CHALLENGES A3PS Conference, Vienna Dr. Frank Beste AVL List GmbH 1 Motivation for Powertrain Electrification Global Megatrends: Urbanization

More information

70 Mpa Hydrogen Refuelling Stations

70 Mpa Hydrogen Refuelling Stations 70 Mpa Hydrogen Refuelling Stations Ph.d. Student: Erasmus Rothuizen DTU/MEK Section of Thermal Energy Systems In cooperation with H2Logic Supervisor: Masoud Rokni email: edro@mek.dtu.dk Agenda Hydrogen

More information

From solid fuels to substitute natural gas (SNG) using TREMP

From solid fuels to substitute natural gas (SNG) using TREMP From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process Introduction Natural gas is a clean, environmentally friendly energy source and is expected

More information

stoichiometry = the numerical relationships between chemical amounts in a reaction.

stoichiometry = the numerical relationships between chemical amounts in a reaction. 1 REACTIONS AND YIELD ANSWERS stoichiometry = the numerical relationships between chemical amounts in a reaction. 2C 8 H 18 (l) + 25O 2 16CO 2 (g) + 18H 2 O(g) From the equation, 16 moles of CO 2 (a greenhouse

More information

Efficiency and Open Circuit Voltage

Efficiency and Open Circuit Voltage 2 Efficiency and Open Circuit Voltage In this chapter we consider the efficiency of fuel cells how it is defined and calculated, and what the limits are. The energy considerations give us information about

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

Benvenuti in SOFCpower!

Benvenuti in SOFCpower! Open Day SOFCpower Incontro AEIT-TAA - Mezzolombardo, 16 Marzo 2013- Benvenuti in SOFCpower! sommario celle a combustibile SOFCpower: l azienda e i suoi prodotti Mezzolombardo - 16 Marzo 2013 Open Day

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Page 1 of 10 pages

More information

Fuel Cell solutions for maritime and harbour applications Proton Motor Fuel Cell GmbH. Sebastian Dirk Venice, 14th of June

Fuel Cell solutions for maritime and harbour applications Proton Motor Fuel Cell GmbH. Sebastian Dirk Venice, 14th of June Fuel Cell solutions for maritime and harbour applications Proton Motor Fuel Cell GmbH Sebastian Dirk Venice, 14th of June The Company Proton Motor Proton Motor Fuel Cell GmbH is a leading manufacturer

More information

Emergency Response Guide

Emergency Response Guide Emergency Response Guide Honda Fuel Cell Vehicle Prepared for Fire Service, Law Enforcement, Emergency Medical, and Professional Towing Personnel by American Honda Motor Co., Inc. Contents Key Components...2

More information

Alternative drivmidler

Alternative drivmidler Alternative drivmidler Hvilke muligheder er der for lastvogne og busser? Præsenteret af Steffen Müller The Volvo Group Volvo Trucks Renault Trucks Mack Trucks UD Trucks Buses Construction Equipment Volvo

More information

Simulation of small-scale hydrogen production

Simulation of small-scale hydrogen production Simulation of small-scale hydrogen production Tony Persson Department of Chemical Engineering, Lund University, P. O. Box 14, SE-1 00 Lund, Sweden Since the oil prices and the environmental awareness have

More information

A Cost Comparison of Fuel-Cell and Battery Electric Vehicles

A Cost Comparison of Fuel-Cell and Battery Electric Vehicles A Cost Comparison of Fuel-Cell and Battery Electric Vehicles Abstract Stephen Eaves *, James Eaves Eaves Devices, Charlestown, RI, Arizona State University-East, Mesa, AZ This paper compares the manufacturing

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

Testing of particulate emissions from positive ignition vehicles with direct fuel injection system. Technical Report 2013-09-26

Testing of particulate emissions from positive ignition vehicles with direct fuel injection system. Technical Report 2013-09-26 Testing of particulate emissions from positive ignition vehicles with direct fuel injection system -09-26 by Felix Köhler Institut für Fahrzeugtechnik und Mobilität Antrieb/Emissionen PKW/Kraftrad On behalf

More information

4 theoretical problems 2 practical problems

4 theoretical problems 2 practical problems 1 st 4 theoretical problems 2 practical problems FIRST INTERNATIONAL CHEMISTRY OLYMPIAD PRAGUE 1968 CZECHOSLOVAKIA THEORETICAL PROBLEMS PROBLEM 1 A mixture of hydrogen and chlorine kept in a closed flask

More information

NASDAQ:BLDP TSX:BLD. Smarter Solutions for a Clean Energy Future

NASDAQ:BLDP TSX:BLD. Smarter Solutions for a Clean Energy Future NASDAQ:BLDP TSX:BLD Smarter Solutions for a Clean Energy Future Fuel Cell Engineering Services Smarter Solutions for a Clean Energy Future Corporate Background Ballard Power Systems, Inc. is a recognized

More information

HYBRID TURBOEXPANDER AND FUEL CELL SYSTEM FOR POWER RECOVERY AT NATURAL GAS PRESSURE REDUCTION STATIONS

HYBRID TURBOEXPANDER AND FUEL CELL SYSTEM FOR POWER RECOVERY AT NATURAL GAS PRESSURE REDUCTION STATIONS HYBRID TURBOEXPANDER AND FUEL CELL SYSTEM FOR POWER RECOVERY AT NATURAL GAS PRESSURE REDUCTION STATIONS by Clifford Robert Howard A thesis submitted to the Department of Mechanical and Materials Engineering

More information

Hybrid shunter locomotive

Hybrid shunter locomotive Hybrid shunter locomotive 1 Hervé GIRARD, Presenting Author, 2 Jolt Oostra, Coauthor, 3 Joerg Neubauer, Coauthor Alstom Transport, Paris, France 1 ; Alstom Transport, Ridderkerk, Netherlands 2 ; Alstom

More information

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING

VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING VALIDATION, MODELING, AND SCALE-UP OF CHEMICAL LOOPING COMBUSTION WITH OXYGEN UNCOUPLING A research program funded by the University of Wyoming School of Energy Resources Executive Summary Principal Investigator:

More information

Commerzbank AG Sustainability Conference

Commerzbank AG Sustainability Conference Commerzbank AG Sustainability Conference Dr. Christian Mohrdieck Director Drive Development Fuel Cell System Group Research & Mercedes-Benz Cars Development Frankfurt, 30 May 2012 1 Titel der Präsentation

More information

Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2015. Executive Summary

Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2015. Executive Summary Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2015 Executive Summary EPA-420-S-15-001 December 2015 Executive Summary IntroductIon This report is the

More information

Industrial Applications for Micropower: A Market Assessment

Industrial Applications for Micropower: A Market Assessment FINAL DRAFT Industrial Applications for Micropower: A Market Assessment Prepared for: Office of Industrial Technologies U.S. Department of Energy Washington, DC and Oak Ridge National Laboratory Oak Ridge,

More information

DYNAMICS AND EFFICIENCY: THE ALL NEW BMW i8 PLUG-IN-HYBRID.

DYNAMICS AND EFFICIENCY: THE ALL NEW BMW i8 PLUG-IN-HYBRID. Wien, 20.November 2014 DYNAMICS AND EFFICIENCY: THE ALL NEW BMW i8 PLUG-IN-HYBRID. CHRISTIAN LANDERL. IN A CHANGING WORLD, E-MOBILITY IS AN INTERESTING APPROACH. Environment Emissions and climate change

More information

INVESTING IN FUTURE TRANSPORT CITY HALL, 16 AUGUST 2012

INVESTING IN FUTURE TRANSPORT CITY HALL, 16 AUGUST 2012 INVESTING IN FUTURE TRANSPORT CITY HALL, 16 AUGUST 2012 INVESTING IN FUTURE TRANSPORT CITY HALL, 16 AUGUST 2012 Contents Why Hydrogen Vehicles? Hydrogen: The Perfect Fuel Hydrogen Infrastructure Roll Out

More information

Chapter Three: STOICHIOMETRY

Chapter Three: STOICHIOMETRY p70 Chapter Three: STOICHIOMETRY Contents p76 Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions. p70 3-1 Counting by Weighing 3-2 Atomic Masses p78 Mass Mass

More information

PEM Fuel Cells Make a Powerful Case for Small Business Backup

PEM Fuel Cells Make a Powerful Case for Small Business Backup White Paper PEM Fuel Cells Make a Powerful Case for Small Business Backup Jack Basi & Neil Farquharson Contents PEM Fuel Cells Make a Powerful 3 Backup Power: Big Challenge for Small Retail Locations 4

More information