Chapter 13: Intermolecular Forces, Liquids, and Solids

Size: px
Start display at page:

Download "Chapter 13: Intermolecular Forces, Liquids, and Solids"

Transcription

1 Chapter 13: Intermolecular Forces, Liquids, and Solids The Kinetic-Molecular Theory of Matter Recall the kinetic-molecular theory of gases (Chapter 12). Kinetic-molecular theory applies to solids and liquids too: 1. Molecules are in constant motion in random directions. 2. Molecules move at different speeds, but the average speed is proportional to temperature. All molecules have the same average kinetic energy at a given temperature. In gases, the distances between molecules are much larger than the size of the molecules themselves. As such, most of the motion of gas molecules is (moving from one location to another). In solids, molecules are packed in a three-dimensional solid lattice. They cannot easily change location, so their kinetic energy is primarily due to motion. This motion is averaged about the molecule s location in the lattice. In liquids, molecules are much closer together than in gases, but they are still able to change locations (unlike in solids). As such, liquid molecules undergo significant amounts of translational, rotational and vibrational motion.

2 Intermolecular Forces The kinetic energy of molecules tends to keep them as separated and disorganized as possible, so there must be some opposing force(s) pulling them together particularly in solids and liquids. These attractions are intermolecular forces. Intermolecular forces are similar to, but weaker than, those involved in bonding. There are four kinds of intermolecular forces, all of which are based on. The strength of an intermolecular force is determined by the strength and permanence of the dipoles involved (and by the distance between the dipoles). Type of Intermolecular Force Approximate Strength (kj/mol) Ion-Dipole Dipole-Dipole (includes hydrogen bonding) Dipole-Induced Dipole Induced Dipole-Induced Dipole (aka London dispersion forces)

3 Hydrogen bonding is a special case of dipole-dipole attraction. This is due to the very large dipole moment that occurs when a hydrogen atom is bonded to a very small, very electronegative atom (i.e. F, or N). The large dipole moment results in a particularly strong dipole-dipole attraction. In hydrogen bonding, both the atom bonded to H and the atom attracted to H must be either F, or N. They do not, however, have to be the same element. e.g. Induced dipoles occur when two molecules approach closely enough that the electron cloud of one is repelled by the electron cloud of the other. The electrons move to the far end of the molecule, setting up a temporary dipole. These induced dipoles attract each other (and one induced dipole can induce another to form). Large atoms are most susceptible to forming induced dipoles. (most polarizable) Why? Intermolecular forces between neutral molecules are referred to as a group as van der Waals forces.

4 Properties of Liquids Liquids are much denser than gases. As in solids, there is virtually no free volume between molecules in a liquid. As such, they are virtually incompressible a property used to advantage in hydraulics. The molecules in a liquid are in constant motion translational, vibrational and rotational. As in gases, the motion of any one molecule is random, but the average speed is proportional to temperature. The statistical picture for the energy distribution in liquids is identical to that for ideal gases: Enthalpy of Vaporization When you leave wet dishes on a draining board overnight, they will usually be dry the next morning. The water has evaporated even though your kitchen was C below the boiling point of water! How is this possible? At any given temperature, some of the liquid molecules will have enough energy to escape the intermolecular forces holding the molecules together.

5 Heating the liquid increases the rate of vaporization by increasing the proportion of molecules having at least this much energy. Since heating increases the rate of vaporization, this is an process with a enthalpy. This is consistent with the observation that rapid vaporization cools any remaining liquid. The molecules with enough energy to evaporate do so, reducing the average kinetic energy of the remaining liquid molecules (thereby reducing the liquid s temperature). During slow evaporation, heat is steadily resupplied from the environment so we don t notice this loss. The enthalpy of vaporization is defined as the energy required to vaporize a liquid. Its opposite, the enthalpy of condensation, is of equal magnitude but opposite sign. e.g. H 2 (l) H 2 (g) H vap = 40.7 kj/mol H 2 (g) H 2 (l) H cond = 40.7 kj/mol Vapour Pressure Because there will always be at least a few molecules in a liquid with enough energy to evaporate, there will always be a layer of gas molecules immediately above a liquid. The pressure exerted by these gas molecules is referred to as vapour pressure. When a liquid is placed in a sealed container, it will eventually reach an equilibrium at which the rate of evaporation is the same as the rate of condensation. In this situation, an equilibrium vapour pressure (often shortened to vapour pressure ) can be measured. This is a physical property specific to a given liquid at a given temperature, and it increases exponentially with temperature.

6 When the vapour pressure of a liquid is equal to the atmospheric pressure, the liquid begins to boil. The pressure exerted by gas molecules is equal to the pressure of the atmosphere pushing down on the liquid s surface. As such, bubbles of gas can form within the liquid (not just at its surface), they rise, and we observe boiling. The temperature at which a liquid boils is referred to as its boiling point; however, this property is pressure-dependent. Reducing the pressure will decrease a liquid s observed boiling point while increasing pressure will increase the observed boiling point. To allow us to compare boiling points of different compounds, we therefore define the temperature at which the vapour pressure of a liquid is equal to as a liquid s normal boiling point. Liquids with a high vapour pressure/low boiling point are referred to as. e.g. Looking at the vapour pressure curves above, (a) What is the approximate vapour pressure of ethanol at room temperature (20 C)? (b) Are liquid ethanol and its vapour in equilibrium when the temperature is 60 C and the vapour pressure is 600 mmhg? If not, does liquid evaporate to form more vapour, or does vapour condense to form more liquid.

7 Plotting vapour pressure vs. temperature gives an exponential curve (see previous page). Plotting the natural logarithm of the vapour pressure versus the reciprocal of temperature gives a linear graph. The equation of the line is the Clausius-Clapeyron equation: H ln P = - o vap + C RT This equation is more useful in its comparative form (i.e. the equation for calculating the slope of the linear graph): P ln 1 H = - o vap P 2 R T 1 T 2 W here P 1 and P 2 are vapour pressures (in the same units as each other), H vap is the enthalpy of vaporization (in J/mol), R is the ideal gas constant (in J mol -1 K -1 ) and T 1 and T 2 are temperatures (in K). e.g. If diethyl ether has a vapour pressure of 534 mmhg at C and a vapour pressure of 57.0 mmhg at C, what is its enthalpy of vaporization?

8 Critical Temperature and Pressure As the temperature of a liquid is increased, its vapour pressure continues to increase, and it is necessary to have an increasingly high atmospheric pressure in order to maintain the liquid state. There comes a temperature at which no amount of pressure is able to compress gas to liquid; the energy of the molecules is just too high. This is the critical temperature. The point on a phase diagram at which the critical temperature and critical pressure meet is referred to as the critical point. At temperatures higher than the critical temperature, high pressures give dense gases called supercritical fluids. The molecules in supercritical fluids are packed together almost as tightly as in liquids but they have enough energy to overcome intermolecular forces and move freely. As such, they can make excellent solvents (especially supercritical C 2 which has the added advantage of being much more environmentally friendly than most organic solvents). When is it important to know a substance s critical point? e.g. Choosing a refrigerant. Refrigerators work by compressing a gas to liquid. As the liquid is released into areas of lower pressure, it evaporates, consuming energy and cooling the fridge. If a potential refrigerant has a very low critical temperature, this process will not work because it will be impossible to condense the gas to a liquid. Freon-12, a common refrigerant, has a critical temperature of ~112 C.

9 Surface Tension Molecules within a liquid are attracted to all of the molecules around them via intermolecular forces. Molecules on the surface of a liquid can only interact with the molecules immediately below them and beside them. As such, the surface molecules feel a net attraction toward the interior of the liquid and act as a skin for the liquid. The energy required to break through this surface skin is referred to as surface tension. H H H H H H H H H H H H H H smooth surface; lots of intermolecular attractions H H H H H H H H H H H H H H surface tension broken; intermolecular attractions interfered with Some insects take advantage of surface tension to literally walk on water! Surface tension is also the reason why liquids tend to bead spheres have the smallest surface area for a given volume. Capillary Action Capillary action is due to the same intermolecular forces as surface tension; however, the attractions are between molecules of a polar liquid (often water) and a polar solid (often glass). Glass consists of polar Si- bonds so, if a narrow glass tube is placed in water, the water molecules are attracted to the glass. ther water molecules are attracted to the initially stuck molecules, and are pulled H H Si H H H H Si H H H H Si H H H H simplified structure for glass (it's much more 3-dimensional!)

10 up by surface tension. This continues until the force of gravity pulling water molecules down is equal to the force of surface tension pulling water molecules up. Capillary action is responsible for the meniscus typically observed when using pipettes, burettes, etc.. Viscosity Viscosity is defined as the resistance of liquids to flow. Liquids with high viscosities tend to be thick and difficult to pour. This is because the strong intermolecular forces in viscous liquids cause the molecules to stick together. Viscous liquids tend to fall into one of two categories (or both): 1. large molecules 2. polar molecules Summary Exercises 1. butane methanol helium (CH 3 CH 2 CH 2 CH 3 ) (CH 3 H) (He) (a) Rank the pure substances above in order of increasing strength of intermolecular forces: (b) Which of these pure substances would you expect to be gases at 25 C and 1 atm?

11 2. The graph below shows vapour pressure curves for carbon disulfide (CS 2 ) and nitromethane (CH 3 N 2 ). (a) What type of intermolecular forces exist in the liquid phase of each compound? (b) What are the vapour pressures of CS 2 and CH 3 N 2 at 40 C? (c) What are the normal boiling points of CS 2 and CH 3 N 2? (d) At what temperature does CS 2 have a vapour pressure of 600 mmhg? (e) At what temperature does CH 3 N 2 have a vapour pressure of 60 mmhg?

12 Properties of Solids As in liquids, the molecules in solids are packed tightly together. Unlike in liquids, the molecules in solids do not experience translational motion only vibrational. Solid molecules are held tightly in place by strong intermolecular forces. There are two main categories of solids: Crystalline solids, in which the molecules are ordered, and Amorphous solids, in which the molecules are disordered. Crystalline Solids Crystalline solids are made up of repeating units built upon each other like bricks in a wall. An individual brick is called the. Mathematicians have determined that there are seven possible shapes for a unit cell (aka seven crystal systems). These include cubic unit cells and hexagonal unit cells: Crystalline solids can be analyzed by x-ray crystallography, in which an x-ray is passed through a crystal. The crystal acts as a diffraction grating (the x-rays can pass through gaps in the crystal structure but not through the atoms themselves), and analysis of the resulting diffraction pattern allows a chemist to determine the structure of the crystal.

13 There are four different kinds of crystalline solids, each distinguished by the type of chemical bonding involved: Ionic solids: positive and negative ions held together by electrostatic attractions Metallic solids: metal atoms held together by electrostatic attractions between nuclei and a sea of electrons Molecular solids: molecules held together by van der Waals attractions Network solids: covalently bonded networks of atoms For a more detailed look at each type of solid, see (and learn!) Table 13.6 in Kotz. Amorphous Solids The molecules in amorphous solids have no long-range order and can be thought of as frozen liquids. The most widely known amorphous solid is glass. Interestingly enough, crystallization results in the failure of glass. Melting Points and Enthalpies of Fusion Just like liquids, the physical properties of solids can be explained using intermolecular forces. Converting a solid to a liquid requires input of enough energy to overcome the intermolecular forces holding each atom/molecule in the solid in place. This process can be called either melting or fusion. Thus, melting points (or fusion points) are higher for solids with stronger intermolecular forces. In general, ionic solids and transition metals have the highest melting points; polar molecular solids have intermediate melting points; and nonpolar molecular solids have low melting points.

14 The enthalpy of fusion is defined as the energy required to liquefy a solid. Its opposite, the enthalpy of crystallization, is of equal magnitude but opposite sign. e.g. H 2 (s) H 2 (l) H fus = 6.02 kj/mol H 2 (l) H 2 (s) H cryst = 6.02 kj/mol Solids with high enthalpies of fusion have high melting points (and vice versa). Sublimation Some solids convert directly from the solid to the gas phase without passing through the liquid stage. This is called sublimation. The most familiar examples are probably carbon dioxide ( dry ice ) and iodine. The enthalpy of sublimation is defined as the energy required to sublime a solid. Phase Diagrams The equilibrium vapour pressure curves we looked at earlier this chapter can be extended to describe the complete range of states of matter. This is a phase diagram, and each state of matter is referred to as a. The phase diagram to the right is that for carbon dioxide (C 2 ). Note that the slope of the solid-liquid boundary line is positive, indicating that the liquid is less dense than the solid. Also, note the point where the three phases (gas, liquid and solid) meet. This is the.

15 Below the triple point, it is not possible for a substance to exist in the liquid phase. For C 2, this means that liquid C 2 cannot exist at pressures below 5 atm or temperatures below -57 C. According to its phase diagram, the critical temperature for C 2 is and the critical pressure is. The phase diagram to the right is that for water. Note the unusual negative slope of the solid-liquid boundary line, indicating that the solid is less dense than the liquid. This unusual property is due to the strongly hydrogen bonded structure of the solid phase of water. This relatively low density of ice (compared to liquid water) is what allows fish to survive in partially frozen lakes and rivers over the winter. If ice was more dense than water, lakes would freeze from the bottom up, and there would be no liquid water left for the fish. Because ice is less dense than water, lakes essentially freeze from the top down, so there is often a layer of liquid water left at the bottom.

16 Important Concepts from Chapter 13 kinetic-molecular theory of matter intermolecular forces (four categories, hydrogen bonding) properties of liquids o vapour pressure o boiling vs. evaporation o enthalpy of vaporization (Clausius-Clapeyron equation) o surface tension o capillary action o viscosity properties of solids o five different types of solids (see Table 13.6 in Kotz) o enthalpy of fusion o enthalpy of sublimation phase diagrams o predicting changes of state under different conditions o critical point (and supercritical fluids) o triple point

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature 1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy 30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude 1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount

Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface

More information

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79 Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389)

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages 385 389) 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains how temperature

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

Calorimetry: Heat of Vaporization

Calorimetry: Heat of Vaporization Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter.

Chapter Test A. States of Matter MULTIPLE CHOICE. a fixed amount of STAs2 a. a solid. b. a liquid. c. a gas. d. any type of matter. Assessment Chapter Test A States of Matter MULTIPLE CHOICE Write the letter of the correct answer in the space provided. 1. Boyle s law explains the relationship between volume and pressure for a fixed

More information

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras

Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Modern Construction Materials Prof. Ravindra Gettu Department of Civil Engineering Indian Institute of Technology, Madras Module - 2 Lecture - 2 Part 2 of 2 Review of Atomic Bonding II We will continue

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

Type of Chemical Bonds

Type of Chemical Bonds Type of Chemical Bonds Covalent bond Polar Covalent bond Ionic bond Hydrogen bond Metallic bond Van der Waals bonds. Covalent Bonds Covalent bond: bond in which one or more pairs of electrons are shared

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Unit 3: States of Matter Practice Exam

Unit 3: States of Matter Practice Exam Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

Intermolecular and Ionic Forces

Intermolecular and Ionic Forces Intermolecular and Ionic Forces Introduction: Molecules are attracted to each other in the liquid and solid states by intermolecular, or attractive, forces. These are the attractions that must be overcome

More information

Chapter 4 Practice Quiz

Chapter 4 Practice Quiz Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

The Properties of Water

The Properties of Water 1 Matter & Energy: Properties of Water, ph, Chemical Reactions EVPP 110 Lecture GMU Dr. Largen Fall 2003 2 The Properties of Water 3 Water - Its Properties and Its Role in the Fitness of Environment importance

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

Chapter 2. Atomic Structure and Interatomic Bonding

Chapter 2. Atomic Structure and Interatomic Bonding Chapter 2. Atomic Structure and Interatomic Bonding Interatomic Bonding Bonding forces and energies Primary interatomic bonds Secondary bonding Molecules Bonding Forces and Energies Considering the interaction

More information

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion

(1) e.g. H hydrogen that has lost 1 electron c. anion - negatively charged atoms that gain electrons 16-2. (1) e.g. HCO 3 bicarbonate anion GS106 Chemical Bonds and Chemistry of Water c:wou:gs106:sp2002:chem.wpd I. Introduction A. Hierarchy of chemical substances 1. atoms of elements - smallest particles of matter with unique physical and

More information

5 Answers and Solutions to Text Problems

5 Answers and Solutions to Text Problems Energy and States of Matter 5 Answers and Solutions to Text Problems 5.1 At the top of the hill, all of the energy of the car is in the form of potential energy. As it descends down the hill, potential

More information

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule?

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule? Chapter 10 Can You... 1. draw the Lewis structure for a given covalently bonded molecule? e.g. SF 6 and CH 3 Cl 2. identify and count the number of non-bonding and bonding domains within a given covalently

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

Chapter 5 Student Reading

Chapter 5 Student Reading Chapter 5 Student Reading THE POLARITY OF THE WATER MOLECULE Wonderful water Water is an amazing substance. We drink it, cook and wash with it, swim and play in it, and use it for lots of other purposes.

More information

4.5 Physical Properties: Solubility

4.5 Physical Properties: Solubility 4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. General Chemistry PHS 1015 Practice Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about pressure

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Chapter 19 Thermodynamics and Equilibrium Concept Check 19.1 You have a sample of 1.0 mg of solid iodine at room temperature. Later, you notice that the iodine has sublimed (passed into the vapor state).

More information

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing. CHAPTER EIGHT BNDING: GENERAL CNCEPT or Review 1. Electronegativity is the ability of an atom in a molecule to attract electrons to itself. Electronegativity is a bonding term. Electron affinity is the

More information

Use the Force! Noncovalent Molecular Forces

Use the Force! Noncovalent Molecular Forces Use the Force! Noncovalent Molecular Forces Not quite the type of Force we re talking about Before we talk about noncovalent molecular forces, let s talk very briefly about covalent bonds. The Illustrated

More information

Bonding in Elements and Compounds. Covalent

Bonding in Elements and Compounds. Covalent Bonding in Elements and Compounds Structure of solids, liquids and gases Types of bonding between atoms and molecules Ionic Covalent Metallic Many compounds between metals & nonmetals (salts), e.g. Na,

More information

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged. LS1a Fall 2014 Section Week #1 I. Valence Electrons and Bonding The number of valence (outer shell) electrons in an atom determines how many bonds it can form. Knowing the number of valence electrons present

More information

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

More information

Structure, Polarity & Physical Properties

Structure, Polarity & Physical Properties tructure, Polarity & Physical Properties upplemental packet handouts 92-96 I. Lewis structure, stability, and bond energies A. ydrogen, oxygen, and nitrogen are present in the atmosphere as diatomic molecular

More information

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

Chem 106 Thursday Feb. 3, 2011

Chem 106 Thursday Feb. 3, 2011 Chem 106 Thursday Feb. 3, 2011 Chapter 13: -The Chemistry of Solids -Phase Diagrams - (no Born-Haber cycle) 2/3/2011 1 Approx surface area (Å 2 ) 253 258 Which C 5 H 12 alkane do you think has the highest

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Thermodynamics. Chapter 13 Phase Diagrams. NC State University

Thermodynamics. Chapter 13 Phase Diagrams. NC State University Thermodynamics Chapter 13 Phase Diagrams NC State University Pressure (atm) Definition of a phase diagram A phase diagram is a representation of the states of matter, solid, liquid, or gas as a function

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard

Matter, Materials, Crystal Structure and Bonding. Chris J. Pickard Matter, Materials, Crystal Structure and Bonding Chris J. Pickard Why should a theorist care? Where the atoms are determines what they do Where the atoms can be determines what we can do Overview of Structure

More information

Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties.

Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. Name!!!! date Polarity and Properties Lab PURPOSE: To investigate polar and non-polar molecules and the affect of polarity on molecular properties. STATION 1: Oil and water do not mix. We all know that.

More information

Chapter 3: Water and Life

Chapter 3: Water and Life Name Period Chapter 3: Water and Life Concept 3.1 Polar covalent bonds in water result in hydrogen bonding 1. Study the water molecules at the right. On the central molecule, label oxygen (O) and hydrogen

More information

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons.

Chemical Bonds. Chemical Bonds. The Nature of Molecules. Energy and Metabolism < < Covalent bonds form when atoms share 2 or more valence electrons. The Nature of Molecules Chapter 2 Energy and Metabolism Chapter 6 Chemical Bonds Molecules are groups of atoms held together in a stable association. Compounds are molecules containing more than one type

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

P(T) critical point. liquid melting. solid. boiling. triple point sublimation. gas. Fig. 14.1 Typical Phase Diagram

P(T) critical point. liquid melting. solid. boiling. triple point sublimation. gas. Fig. 14.1 Typical Phase Diagram Chapter 14. Intermolecular Bonding 14.1. Phases Substances exist in three different phases (Gr. phasis - appearance), solid, liquid or gas. Substances exist in different phases depending on the temperature

More information

Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

More information

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension

A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives Have a working knowledge of the basic

More information

Chapter 2: The Chemical Context of Life

Chapter 2: The Chemical Context of Life Chapter 2: The Chemical Context of Life Name Period This chapter covers the basics that you may have learned in your chemistry class. Whether your teacher goes over this chapter, or assigns it for you

More information

Properties and Classifications of Matter

Properties and Classifications of Matter PS-3.1 Distinguish chemical properties of matter (including reactivity) from physical properties of matter (including boiling point, freezing/melting point, density [with density calculations], solubility,

More information

Energy and Matter CHAPTER OUTLINE CHAPTER GOALS

Energy and Matter CHAPTER OUTLINE CHAPTER GOALS 4 When sweat evaporates, it cools the skin by absorbing heat from the body. Energy and Matter CAPTER OUTLINE 4.1 Energy 4.2 The Three States of Matter 4.3 Intermolecular Forces 4.4 Boiling Point and Melting

More information

KINETIC THEORY AND THERMODYNAMICS

KINETIC THEORY AND THERMODYNAMICS KINETIC THEORY AND THERMODYNAMICS 1. Basic ideas Kinetic theory based on experiments, which proved that a) matter contains particles and quite a lot of space between them b) these particles always move

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

Chapter 13 Solution Dynamics. An Introduction to Chemistry by Mark Bishop

Chapter 13 Solution Dynamics. An Introduction to Chemistry by Mark Bishop Chapter 13 Solution Dynamics An Introduction to Chemistry by Mark Bishop Chapter Map Why Changes Happen Consider a system that can switch freely between two states, A and B. Probability helps us to predict

More information

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s

Electronegativity and Polarity MAIN Idea A chemical bond s character is related to each atom s Section 8.5 Objectives Describe how electronegativity is used to determine bond type. Compare and contrast polar and nonpolar covalent bonds and polar and nonpolar molecules. Generalize about the characteristics

More information

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chapter 4: Structure and Properties of Ionic and Covalent Compounds Chapter 4: Structure and Properties of Ionic and Covalent Compounds 4.1 Chemical Bonding o Chemical Bond - the force of attraction between any two atoms in a compound. o Interactions involving valence

More information

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure

Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Lecture 1: Physical Equilibria The Temperature Dependence of Vapor Pressure Our first foray into equilibria is to examine phenomena associated with two phases of matter achieving equilibrium in which the

More information

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21

Chem 338 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.13, 5.15, 5.17, 5.21 Chem 8 Homework Set #5 solutions October 10, 2001 From Atkins: 5.2, 5.9, 5.12, 5.1, 5.15, 5.17, 5.21 5.2) The density of rhombic sulfur is 2.070 g cm - and that of monoclinic sulfur is 1.957 g cm -. Can

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

Alkanes. Chapter 1.1

Alkanes. Chapter 1.1 Alkanes Chapter 1.1 Organic Chemistry The study of carbon-containing compounds and their properties What s so special about carbon? Carbon has 4 bonding electrons. Thus, it can form 4 strong covalent bonds

More information

THE KINETIC THEORY OF GASES

THE KINETIC THEORY OF GASES Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

More information

ATOMS AND BONDS. Bonds

ATOMS AND BONDS. Bonds ATOMS AND BONDS Atoms of elements are the simplest units of organization in the natural world. Atoms consist of protons (positive charge), neutrons (neutral charge) and electrons (negative charge). The

More information

#61 Notes Unit 8: Solids/Liquids Ch. Solids/Liquids ** Type of Solid Type of Bonding Properties Examples (compound) (Interparticle Force)

#61 Notes Unit 8: Solids/Liquids Ch. Solids/Liquids ** Type of Solid Type of Bonding Properties Examples (compound) (Interparticle Force) #61 Notes Unit 8: Solids/Liquids Ch. Solids/Liquids ** Type of Solid Type of Bonding Properties Examples (compound) (Interparticle Force) Ionic Ionic -hard NaCl, CaF 2 -high melting pts. Molecular Covalent:

More information

Heterogeneous Homogenous. Mixtures; Solutions. Phases of matter: Solid. Phases of Matter: Liquid. Phases of Matter: Gas. Solid, Liquid, Gas

Heterogeneous Homogenous. Mixtures; Solutions. Phases of matter: Solid. Phases of Matter: Liquid. Phases of Matter: Gas. Solid, Liquid, Gas Phases of matter: Solid Heterogeneous Homogenous Mixtures Solutions Phases of Matter: Liquid Atoms and molecules are more spaced out and now can move. The material can be slightly compressed into a smaller

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

Activity Two. Getting to Know the Water Molecule

Activity Two. Getting to Know the Water Molecule Activity Overview: Activity Two Getting to Know the Water Molecule Key concepts: Water molecules are small and highly polar. Their polar nature gives water its unusual, macroscopic properties. On a microscopic

More information

CHEMISTRY BONDING REVIEW

CHEMISTRY BONDING REVIEW Answer the following questions. CHEMISTRY BONDING REVIEW 1. What are the three kinds of bonds which can form between atoms? The three types of Bonds are Covalent, Ionic and Metallic. Name Date Block 2.

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION

CHAPTER 14 THE CLAUSIUS-CLAPEYRON EQUATION CHAPTER 4 THE CAUIU-CAPEYRON EQUATION Before starting this chapter, it would probably be a good idea to re-read ections 9. and 9.3 of Chapter 9. The Clausius-Clapeyron equation relates the latent heat

More information

So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas:

So T decreases. 1.- Does the temperature increase or decrease? For 1 mole of the vdw N2 gas: 1.- One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume V0=1liter. The gas goes through the free expansion process (Q = 0, W = 0), in which the pressure drops down to the atmospheric

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information