KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "KINETIC THEORY OF MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature"

Transcription

1 1 KINETIC TERY F MATTER - molecules in matter are always in motion - speed of molecules is proportional to the temperature TE STATES F MATTER 1. Gas a) ideal gas - molecules move freely - molecules have no interactions with each other - no attraction or repulsion - like ping-pong balls b) real gas - molecules move freely - molecules have small attractions for each other - like sticky ping-pong balls - attractions decrease pressure of gas - molecules have a volume - inclusion of the molecular volume increases the pressure of gas (more crowding) 2. Liquid - molecules move but movement is heavily influenced by other molecules - molecules must move through a crowd of molecule - ideal gas can never condense to be a liquid. 3. Solid - molecules (or ions) vibrate about fixed position in crystal lattice - motion is not great enough to overcome attractions - molecules (or ions) stay in a specific arrangement INTERMLECULAR FRCES verriding Principles 1. pposite charges attract. 2. The greater the charge, the greater the attraction. - These principles are a restatement of Coulomb s Law.

2 2 CARGE DISTRIBUTINS F MATTER 1. Ion 2. Dipole - A polar molecule has a dipole. - The value of a dipole depends on a) polarity of bonds b) molecular geometry C N 3. Induced Dipole - A molecule can have its electron cloud polarized by neighboring charge. - Consider F 2. F F - Fluorine molecule has no dipole. - Consider F 2 next to sodium ion, Na +. F F Na + F F δ - δ + - Negative electron cloud adjusts to move closer to positive ion. - Fluorine molecule now has a dipole! - Sodium ion induces dipole in fluorine. - Thus fluorine may have an induced dipole. Some atoms in molecules have electron clouds that adjust easier than others. Na + F F Na + I I - Sodium ion induces larger dipole in iodine molecule than in fluorine.

3 3 The ability of an atom or molecule to adjust its electron cloud in response to an outside charge is called its polarizability. The less tightly bound to the nucleus the electrons are, the more polarizable they are. - As a periodic trend, polarizability increases as row increases. Each electron in an atom, molecule or ion contributes to the overall polarizability. - Thus, the more electrons a molecule has, the greater the strength of its induced dipole. Example: Arrange the following atoms in order of increasing polarizability: Ar, e, Kr, Ne and Xe. Answer: e, Ne, Ar, Kr, Xe Xe very polarizable e barely polarizable TYPES F INTERMLECULAR FRCES 1. Ion Dipole Example: salt water strongest type of intermolecular force - as the charge increases, the strength of the force increases Ca forces are stronger than Na forces

4 4 2. Dipole Dipole Example: Formaldehyde δ + δ - C C dipole dipole forces C Molecules with greater dipole moments have greater attractions to each other. Intermolecular forces (such dipole-dipole forces) can occur between different molecules. δ - δ + δ + C C N C 3. ydrogen bonding - A hydrogen bond is a very strong dipole dipole bond. - Molecules with N,, F covalently bonded to can form hydrogen bonds. - N,, F atoms have high electronegativity - Electrons in sigma bond are greatly polarized. δ - δδ - δδ + - ydrogen is bare naked. - A hydrogen bond is formed when polarized is attracted to nonbonding pair of electrons.

5 5 Example: 2 hydrogen bond - ydrogen bond is much stronger than dipole dipole bond. - ydrogen bonding gives water many important and distinctive properties. - ydrogen bonding holds together DNA helix and proteins. 4. Induction forces (Dipole Induced Dipole) Example: Cl in I 2. δ + δ - I I Cl I I I I I I - Dipole can induced by other dipoles. - Induction forces are weaker than dipole dipole forces. 5. Dispersion forces (Induced dipole induced dipole) - also known as London (dispersion) forces Charge distribution of molecules fluctuates over time. - i. e., charge distribution is unequal in nonpolar molecules at times - i. e., nonpolar molecules become polar for a short time, though average dipole is zero.

6 6 Spontaneous fluctuation of electron cloud. Consider a single bromine molecule. δ - δ + - dipole appears, then disappears, then appears reversed, then disappears, etc Fluctuating dipole induces dipole in another molecule so that they fluctuate together. Consider two bromine molecules δ + δ - δ + δ - δ + δ - Strength of dispersion forces depends on strength of induced dipole. - Molecules with greater polarizability have greater dispersion forces. Illustration: stronger bond Cl Cl Cl Cl weaker bond Bond between bromine molecules is stronger than bond between chlorine molecules. - degree of contact with other molecules is also important

7 7 Aside: abbreviated carbon chain structure C C C C Example: Pentane, C 5 12 has stronger dispersion forces than butane, C 4 10 butane pentane Bonding between butane molecules is weaker than bonding between pentane molecules. 2-methylbutane pentane Bonding between 2-methylbutane molecules is weaker than bonding between pentane molecules. Boiling Point Butane -0.5 ºC 2-methylbutane 27.8 ºC Pentane 36.1 ºC Increasing Intermolecular Forces

8 8 Summary of Intermolecular Forces Molecule A Molecule B ion ionic bonding ion - dipole ion dipole hydrogen bonding dipole - dipole dipole induction induced dipole dis persion induced dipole Principles of Intermolecular Force Strength 1. pposite charges attract. 2. The greater the charge, the greater attraction. 3. Intermolecular forces are additive. 4. Nonpolar molecules have only dispersion forces. 5. Polar molecules have dipole-dipole, induction forces and dispersion forces (and possibly hydrogen bonding). 6. Induced dipoles are often stronger than permanent dipoles. - Dispersion forces can be a significant reason why polar molecules are attracted to each other. Example: Fluoromethane, C 3 F (18 e - ) has stronger total forces between molecules than the force between fluorine gas molecules, F 2 (18 e - ). Example: Iodine, I 2 (nonpolar, 106 e-) has stronger forces in its molecules than does hydrogen sulfide (polar, 18 e-). Why? - Because the induced dipole of iodine is much greater than induced dipole and permanent dipole of hydrogen sulfide since iodine has so many more electrons.

9 9 INTERMLECULAR FRCES AND PASE TRANSITINS Solid Gas condensation evaporation Liquid Phase changes occur when intermolecular bonds are affected by an increase or decrease in kinetic energy. Temperature during a phase transition is always constant. - All energy input goes into phase transition, not temperature increase. eating Curve of Water Temperature (C) liquid water is heated Time (sec) water is boiling steam is getting hotter PRPERTIES F LIQUIDS Viscosity - resistance to flow - thickness of a fluid - corn syrup has a higher viscosity than water - viscosity is dependent on dynamic interaction between liquid molecules - intermolecular forces and geometry of molecule are important. Surface Tension - The ability of a liquid to form a film on its surface that can resist puncture. - Water and g are liquids with high surface tension, dish soap has low surface tension. - Bugs walk on water because water has high surface tension. - Meniscus forms in graduated cylinder because of surface tension.

10 10 PASE DIAGRAMS - indicates phase of substances at different temperatures and pressures - indicates under what conditions phase changes occur Example: C 2 critical point (31.1 C, 73 atm) s l g triple point (-56.4 C, 5.11 atm) Temperature - Lines indicate phase boundaries where both phases exist at the same time. - At the triple point, all three phases exist at the same time. - Each substance has only one triple point and it is unique to that substance. - The critical point is where distinction between gas and liquid is lost. - Substance is called a supercritical fluid. - Note how the phases diagram illustrates how the boiling, freezing and sublimation points change with pressure. - Slope of the phase boundary between liquid and solid is a consequence of the solid having a higher density than the liquid. - The boundary in most substances has a positive slope. Clausius Clapeyron Equation The line between the liquid and gas phase is described by the Clausius Clapeyron equation. P 2 vap 1 1 ln Δ P = 1 R T 1 T 2 - ln is the natural logarithm (more in 1190) - With the heat of vaporization, the boiling point of a substance can be predicted.

11 11 Example: 2 critical point (374 C, 224 atm) s l g triple point ( C, atm) Temperature - Note triple point is much different than C 2. - Note negative slope of solid-liquid boundary - Indicates solid water has lower density than liquid water. - Thus ice floats! Estimating the relative values of boiling points and freezing points Boiling point of substance is temperature where vapor pressure of liquid equals atmospheric pressure. The boiling point and freezing point of substances depends on 1. Intermolecular forces. - The stronger the forces between molecules, the harder it is to separate them - Therefore the stronger the forces, the higher the boiling points and melting points of substances. 2. Kinetic energy of molecules - The greater the mass of the molecules, the greater the boiling and freezing points. - The higher the temperature, the faster the molecules move and the more easily the molecules can break away from each other.

12 12 Increasing boiling points and melting points imply increasing heats of vaporization and fusion. Example: rder the following according to increasing boiling point: 2, Cl 2, F 2, I 2. Recall: Dispersion forces increase as the total polarizability increases. Polarizability increases as row of element increases and the number of electrons increases. Therefore answer is: F 2, Cl 2, 2, I 2 Example: rder the following according to decreasing boiling point. μ Acetaldehyde C 3 C 2.7 D Acetonitrile C 3 CN 3.9 D Methyl Ether C 3 C D Methyl Chloride C 3 Cl 1.9 D μ - strength of dipole D Debye unit The strength of the intermolecular force is proportional to the strength of the dipole. As the value of the dipole increases, the strength of the intermolecular force increases. Therefore answer is: C 3 CN, C 3 C, C 3 Cl, C 3 C 3

Ch. 11: Liquids and Intermolecular Forces

Ch. 11: Liquids and Intermolecular Forces Ch. 11: Liquids and Intermolecular Forces Learning goals and key skills: Identify the intermolecular attractive interactions (dispersion, dipole-dipole, hydrogen bonding, ion-dipole) that exist between

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude 1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?

More information

Chapter 13 - LIQUIDS AND SOLIDS

Chapter 13 - LIQUIDS AND SOLIDS Chapter 13 - LIQUIDS AND SOLIDS Problems to try at end of chapter: Answers in Appendix I: 1,3,5,7b,9b,15,17,23,25,29,31,33,45,49,51,53,61 13.1 Properties of Liquids 1. Liquids take the shape of their container,

More information

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy

VAPORIZATION IN MORE DETAIL. Energy needed to escape into gas phase GAS LIQUID. Kinetic energy. Average kinetic energy 30 VAPORIZATION IN MORE DETAIL GAS Energy needed to escape into gas phase LIQUID Kinetic energy Average kinetic energy - For a molecule to move from the liquid phase to the gas phase, it must acquire enough

More information

Chapter 11. Intermolecular Forces Pearson Education, Inc.

Chapter 11. Intermolecular Forces Pearson Education, Inc. Chapter 11 Intermolecular Forces 2012 Pearson Education, Inc. States of Matter Dependent on 2 things: Closeness Motion States of Matter Liquid & solid: atoms/molecules/ ions perpetually touching. condensed

More information

Covalent Bonding and Intermolecular Forces

Covalent Bonding and Intermolecular Forces Intermolecular forces are electromagnetic forces that hold like molecules together. Strong intermolecular forces result in a high melting point and a solid state at room temperature. Molecules that are

More information

Chapter 14 Lecture Outline

Chapter 14 Lecture Outline A. Properties of liquids Chapter 14 Lecture Outline The intermolecular forces in liquids are stronger than those in gases, so although the molecules of a liquid are free to move around, they remain connected

More information

H 2O gas: molecules are very far apart

H 2O gas: molecules are very far apart Non-Covalent Molecular Forces 2/27/06 3/1/06 How does this reaction occur: H 2 O (liquid) H 2 O (gas)? Add energy H 2O gas: molecules are very far apart H 2O liquid: bonding between molecules Use heat

More information

2C Intermolecular forces, structure and properties:

2C Intermolecular forces, structure and properties: Electronegativity and polarity Polar and non-polar bonds: 1) Non-Polar bonds: 2C Intermolecular forces, structure and properties: A covalent bond shares an electron pair: In a hydrogen molecule, the electrons

More information

Properties of Ionic and Covalent Compounds. Intermolecular Forces

Properties of Ionic and Covalent Compounds. Intermolecular Forces Properties of Ionic and Covalent Compounds Intermolecular Forces Physical Properties & Bond Types Physical properties of substances are affected by the attractive forces between particles Greater attraction

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

Bonding Practice Problems

Bonding Practice Problems NAME 1. When compared to H 2 S, H 2 O has a higher 8. Given the Lewis electron-dot diagram: boiling point because H 2 O contains stronger metallic bonds covalent bonds ionic bonds hydrogen bonds 2. Which

More information

CHAPTER 11: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 12/02/08

CHAPTER 11: ANSWERS TO ASSIGNED PROBLEMS Hauser- General Chemistry I revised 12/02/08 CAPTER 11: ANSWERS TO ASSIGNED PROBLEMS auser- General Chemistry I revised 12/02/08 11.15 Describe the intermolecular forces that must be overcome to convert each of the following from a liquid or solid

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 13 Liquids and Solids by Christopher Hamaker 1 Chapter 13 Properties of Liquids Unlike gases, liquids do

More information

Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams

Problem Set VIII Liquids, Solids, Intermolecular Forces and Phase Diagrams Chem 121 Problem set VIII LUTI - 1 Problem et VIII Liquids, olids, Intermolecular orces and Phase Diagrams 1a) this is a point on the vapour pressure curve 1b) gas 1c) gas to liquid Water C 2 2a) solid

More information

Chapter 26. Intermolecular forces Introducing intermolecular forces Van der Waals forces Hydrogen bonding

Chapter 26. Intermolecular forces Introducing intermolecular forces Van der Waals forces Hydrogen bonding Chapter 26 Intermolecular forces 26.1 Introducing intermolecular forces 26.2 Van der Waals forces 26.3 Hydrogen bonding 26.4 Comparing the strengths of van der Waals forces, hydrogen bonding and covalent

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

Bonding. Metallic Ionic Covalent. (Elements) (Compounds) (Elements and Compounds)

Bonding. Metallic Ionic Covalent. (Elements) (Compounds) (Elements and Compounds) CfE Higher Chemistry Unit One Chemical Changes and Structure Chapter Four Bonding in Compounds Types Of Bonding In Compounds Bonding Metallic Ionic Covalent (Elements) (Compounds) (Elements and Compounds)

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

CHAPTER 6 Chemical Bonding

CHAPTER 6 Chemical Bonding CHAPTER 6 Chemical Bonding SECTION 1 Introduction to Chemical Bonding OBJECTIVES 1. Define Chemical bond. 2. Explain why most atoms form chemical bonds. 3. Describe ionic and covalent bonding.. 4. Explain

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Intermolecular forces- forces of attraction and repulsion between molecules that hold molecules, ions, and atoms together. Intramolecular - forces of chemical bonds within a molecule

More information

Problem # 2 Determine the kinds of intermolecular forces present in each element or compound:

Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: Chapter 11 Homework solutions Problem # 2 Determine the kinds of intermolecular forces present in each element or compound: A. Kr B. NCl 3 C. SiH 4 D. HF SOLUTION: Kr is a single atom, hence it can have

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79 Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1 Text: Petrucci, Harwood, Herring 8 th Edition Suggest text problems Review questions: 1, 5!11, 13!17, 19!23 Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57,

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

AP CHEMISTRY 2009 SCORING GUIDELINES

AP CHEMISTRY 2009 SCORING GUIDELINES AP CHEMISTRY 2009 SCORING GUIDELINES Question 6 (8 points) Answer the following questions related to sulfur and one of its compounds. (a) Consider the two chemical species S and S 2. (i) Write the electron

More information

Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13

Chem. 1A Final Exam Review Problems From ch. 11, 12 & 13 Chem. A Final Exam Review Problems From ch., 2 & 3 f Multiple Choice Identify the choice that best completes the statement or answers the question.. Place the following cations in order from lowest to

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

Chapter 13 The Chemistry of Solids

Chapter 13 The Chemistry of Solids Chapter 13 The Chemistry of Solids Jeffrey Mack California State University, Sacramento Metallic & Ionic Solids Crystal Lattices Regular 3-D arrangements of equivalent LATTICE POINTS in space. Lattice

More information

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM

comparing ionic and covalent bonding.notebook October 16, 2014 Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM Bond strength IMF strength Oct 6 10:43 AM Oct 14 10:06 PM 1 Oct 14 10:07 PM Oct 14 10:07 PM 2 Oct 14 10:10 PM Oct 14 10:11 PM 3 comparing ionic and covalent bonding.notebook October 16, 2014 Hardness Ionic

More information

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Structure and Bonding Lesmahagow High School CfE Higher Chemistry Chemical Changes & Structure Structure and Bonding Page 1 of 26 No. Learning Outcome Understanding? 1 2 The bonding types of the first twenty elements; metallic

More information

Drawing Lewis Structures

Drawing Lewis Structures Drawing Lewis Structures 1. Add up all of the valence electrons for the atoms involved in bonding 2. Write the symbols for the elements and show connectivity with single bonds (2 electrons shared). a.

More information

Name: Intermolecular Forces Practice Exam Date:

Name: Intermolecular Forces Practice Exam Date: Name: Intermolecular Forces Practice Exam Date: 1. At STP, fluorine is a gas and bromine is a liquid because, compared to fluorine, bromine has 1) stronger covalent bonds 2) stronger intermolecular forces

More information

Intermolecular and Ionic Forces

Intermolecular and Ionic Forces Intermolecular and Ionic Forces Introduction: Molecules are attracted to each other in the liquid and solid states by intermolecular, or attractive, forces. These are the attractions that must be overcome

More information

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell

Assignment 9 Solutions. Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. Number of e in Valence Shell Assignment 9 Solutions Chapter 8, #8.32, 36, 38, 42, 54, 56, 72, 100, 102, Chapter 10, #10.24, 40, 55, 63. 8.32. Collect and Organize Of B 3+, I, Ca 2+, and Pb 2+ we are to identify which have a complete

More information

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) BONDING MIDTERM REVIEW 7546-1 - Page 1 1) Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s) 2) The bond between hydrogen and oxygen in

More information

Bonding Web Practice. Trupia

Bonding Web Practice. Trupia 1. If the electronegativity difference between the elements in compound NaX is 2.1, what is element X? bromine fluorine chlorine oxygen 2. Which bond has the greatest degree of ionic character? H Cl Cl

More information

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS]

States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] OpenStax-CNX module: m38210 1 States of Matter and the Kinetic Molecular Theory - Gr10 [CAPS] Free High School Science Texts Project This work is produced by OpenStax-CNX and licensed under the Creative

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

Topic 4. Chemical bonding and structure

Topic 4. Chemical bonding and structure Topic 4. Chemical bonding and structure There are three types of strong bonds: Ionic Covalent Metallic Some substances contain both covalent and ionic bonding or an intermediate. 4.1 Ionic bonding Ionic

More information

When it comes to Chemical Bonding, I can ANSWERS

When it comes to Chemical Bonding, I can ANSWERS When it comes to Chemical Bonding, I can ANSWERS 1. The 3 types of chemical bonds are IONIC, COVALENT, and METALLIC bonds. 2. When atoms have 8 valence electrons they are most stable. (exception 2 for

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

1/7/2013. Chapter 12. Chemistry: Atoms First Julia Burdge & Jason Overby. Intermolecular Forces and the Physical properties of Liquids and Solids

1/7/2013. Chapter 12. Chemistry: Atoms First Julia Burdge & Jason Overby. Intermolecular Forces and the Physical properties of Liquids and Solids /7/203 Chemistry: Atoms First Julia Burdge & Jason Overby Chapter 2 Intermolecular Forces and the Physical Properties of Liquids and Solids Kent L. McCorkle Cosumnes River College Sacramento, CA Copyright

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

The Gas, Liquid, and Solid Phase

The Gas, Liquid, and Solid Phase The Gas, Liquid, and Solid Phase When are interparticle forces important? Ron Robertson Kinetic Theory A. Principles Matter is composed of particles in constant, random, motion Particles collide elastically

More information

Introduction to Organic Molecules And Functional Groups

Introduction to Organic Molecules And Functional Groups Introduction to Organic Molecules And Functional Groups 1 Functional Groups A functional group is an atom or a group of atoms with characteristic chemical and physical properties. It is the reactive part

More information

5.04 Polarity of Molecules

5.04 Polarity of Molecules 5.04 Polarity of Molecules Predicting Molecular Polarity Dr. Fred mega Garces Chemistry 100 Miramar College 1 5.04 ond Polarity VSEPR Table: Revisited Valence Shell Electron-Pair Repulsion Theory (VSEPR)

More information

Worked solutions to student book questions Chapter 7 Covalent molecules, networks and layers

Worked solutions to student book questions Chapter 7 Covalent molecules, networks and layers E1. a Give the electronic configuration for an atom of beryllium. b How many electrons are in the outer shell of an atom of beryllium in the molecule BeH 2? AE1. a 1s 2 2s 2 b 4 E2. The noble gases helium

More information

Chapter 10 - Liquids and Solids

Chapter 10 - Liquids and Solids Chapter 10 - Liquids and Solids 10.1 Intermolecular Forces A. Dipole-Dipole Forces 1. Attraction between molecules with dipole moments a. Maximizes (+) ----- ( - ) interactions b. Minimizes (+) ----- (

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided. Name Date lass APTER 6 REVIEW hemical Bonding SETIN 1 SRT ANSWER Answer the following questions in the space provided. 1. a A chemical bond between atoms results from the attraction between the valence

More information

Test Bank - Chapter 5 Multiple Choice

Test Bank - Chapter 5 Multiple Choice Test Bank - Chapter 5 The questions in the test bank cover the concepts from the lessons in Chapter 5. Select questions from any of the categories that match the content you covered with students. The

More information

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon

phys4.17 Page 1 - under normal conditions (pressure, temperature) graphite is the stable phase of crystalline carbon Covalent Crystals - covalent bonding by shared electrons in common orbitals (as in molecules) - covalent bonds lead to the strongest bound crystals, e.g. diamond in the tetrahedral structure determined

More information

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s

CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s CHEMISTRY NOTES: Structures, Shapes, Polarity and IMF s DRAWING LEWIS STRUCTURES: RULES 1) Draw the skeleton structure for the molecule. The central atom will generally be the least electronegative element

More information

Packet 4: Bonding. Play song: (One of Mrs. Stampfel s favorite songs)

Packet 4: Bonding. Play song:  (One of Mrs. Stampfel s favorite songs) Most atoms are not Packet 4: Bonding Atoms will, or share electrons in order to achieve a stable. Octet means that the atom has in its level. If an atom achieves a stable octet it will have the same electron

More information

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges. Name: 1) Which molecule is nonpolar and has a symmetrical shape? A) NH3 B) H2O C) HCl D) CH4 7222-1 - Page 1 2) When ammonium chloride crystals are dissolved in water, the temperature of the water decreases.

More information

Structure, Polarity & Physical Properties

Structure, Polarity & Physical Properties tructure, Polarity & Physical Properties upplemental packet handouts 92-96 I. Lewis structure, stability, and bond energies A. ydrogen, oxygen, and nitrogen are present in the atmosphere as diatomic molecular

More information

CHAPTER NOTES CHAPTER 16. Covalent Bonding

CHAPTER NOTES CHAPTER 16. Covalent Bonding CHAPTER NOTES CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : NOTES: 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

(a) Given that the spacing between polymer chains in PP and PVC is similar, the beads that sink are made of which polymer? Explain.

(a) Given that the spacing between polymer chains in PP and PVC is similar, the beads that sink are made of which polymer? Explain. A student places a mixture of plastic beads consisting of polypropylene (PP) and polyvinyl chloride (PVC) in a 1.0 L beaker containing distilled water. After stirring the contents of the beaker vigorously,

More information

Get Your Forces Right!

Get Your Forces Right! First, what is a covalent bond? Get Your Forces Right! Covalent Bond Definition: The sharing of a pair of electrons through orbital overlap. Some examples: Methane, CH4 Cyclohexane, C6H12 Covalent bonds

More information

100 Practice Questions for Chem 1C Midterm 1 - Joseph

100 Practice Questions for Chem 1C Midterm 1 - Joseph 100 Practice Questions for hem 1 Midterm 1 - Joseph 1. Which of the following statements is incorrect? A) Ionic bonding results from the transfer of electrons from one atom to another. B) Dipole moments

More information

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Page 1 Solutions Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions.

More information

Chapter 11 Intermolecular Forces, Liquids, and Solids

Chapter 11 Intermolecular Forces, Liquids, and Solids Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 11, Liquids, and Solids States of Matter The fundamental difference between states of

More information

The breaking of bonds and the forming of bonds occur during chemical reactions.

The breaking of bonds and the forming of bonds occur during chemical reactions. Chemical Bonding The breaking of bonds and the forming of bonds occur during chemical reactions. Aspirin The formula for a molecule of aspirin is C 9 H 8 O 4 Is it an ionic or covalent (molecular) compound?

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s): Sometimes when atoms of two different elements form a bond by sharing an

More information

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1

Solutions. Occur in all phases. Ways of Measuring. Ways of Measuring. Energy of Making Solutions. 1. Break apart Solvent. Page 1 s Occur in all phases The solvent does the dissolving. The solute is dissolved. There are examples of all types of solvents dissolving all types of solvent. We will focus on aqueous solutions. Ways of

More information

Periodic Table Study Guide

Periodic Table Study Guide Chemistry Periodic Table Name: Period: 1 2 3 4 5 6 7 8 Periodic Table Study Guide Directions: Please use this packet as practice and review. DO NOT try to answer these questions during presentations, take

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

Test 8: Review Questions

Test 8: Review Questions Name: Thursday, February 14, 2008 Test 8: Review Questions 1. Based on bond type, which compound has the highest melting point? 1. CH OH 3. CaCl 3 2 2. C H 4. CCl 6 14 4 2. Which compound contains ionic

More information

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n) Chemistry I ATOMIC BONDING PRACTICE QUIZ Mr. Scott Select the best answer. 1) A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is

More information

Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium. An Introduction to Chemistry by Mark Bishop

Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium. An Introduction to Chemistry by Mark Bishop Chapter 14 Liquids: Condensation, Evaporation, and Dynamic Equilibrium An Introduction to Chemistry by Mark Bishop Chapter Map Condensation (Gas to Liquid) Evaporation Particle Escape For a particle to

More information

UW Department of Chemistry Lab Lectures Online

UW Department of Chemistry Lab Lectures Online Lab 5: Periodic Trends Part I: (Prelab) A Computer Study and Introduction to ChemDraw Part II: Acid-Base Properties of Period 3 and Group 5A Elemental Oxides Part III: Oxidizing Ability of the Elemental

More information

Energy and Matter CHAPTER OUTLINE CHAPTER GOALS

Energy and Matter CHAPTER OUTLINE CHAPTER GOALS 4 When sweat evaporates, it cools the skin by absorbing heat from the body. Energy and Matter CAPTER OUTLINE 4.1 Energy 4.2 The Three States of Matter 4.3 Intermolecular Forces 4.4 Boiling Point and Melting

More information

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms

Chapter 11. Chemical Bonds: The Formation of Compounds from Atoms Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms 1 11.1 Periodic Trends in atomic properties 11.1 Periodic Trends in atomic properties design of periodic table is based on observing properties

More information

Lecture 2 ( ) Chapters 2 and 3

Lecture 2 ( ) Chapters 2 and 3 Lecture 2 (9-12-16) Chapters 2 and 3 Goals: Review Periodic Table and the atom, types of bonding for carbon (hybridization), and Lewis structure Learn how to draw bond-line structures Problems: (for all

More information

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to

Kinetic Molecular Theory (con t) Kinetic Molecular Theory Gas Liquid Solid 1. Slightly 2. High 3. Does not expand to Kinetic Energy and (Kelvin) Temperature Temperature is a Kinetic Energy and (Kelvin) Temperature(2) The Kelvin temperature scale is called the Absolute Zero - Zero degrees on the 1. Highly 2. Low 3. Fills

More information

Chemical Bonding. Why Do Atoms Stick Together? Valence Electrons and Chemical Bonds

Chemical Bonding. Why Do Atoms Stick Together? Valence Electrons and Chemical Bonds Chemical Bonding Why Do Atoms Stick Together? Valence Electrons and Chemical Bonds Valence electrons are the electrons in the outermost occupied shell of an atom ydrogen: 1s 1 elium: 1s 2 Carbon: 1s 2

More information

7. 2. KOH (you need an acid or a base, this is a base) 8. 1. 76. All gold atoms have 79 protons and electrons, this is a +3 cation.

7. 2. KOH (you need an acid or a base, this is a base) 8. 1. 76. All gold atoms have 79 protons and electrons, this is a +3 cation. IB/SL Chemistry Name ANSWERS Test; Past Chemistry Regents Exams Most Frequently Missed Questions 1. 1. A HIGH PROBABLITY OF FINDING AN ELECTRON 2. 3. +8 (every atom of oxygen in the universe) 3. 2. LOW

More information

CHEMISTRY 113 EXAM 4(A)

CHEMISTRY 113 EXAM 4(A) Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

More information

Assessment Schedule 2012 Chemistry: Describe properties of particles and thermochemical principles (90780) Evidence Statement

Assessment Schedule 2012 Chemistry: Describe properties of particles and thermochemical principles (90780) Evidence Statement NCEA Level 3 Chemistry (90780) 2012 page 1 of 5 Assessment Schedule 2012 Chemistry: Describe properties of particles and thermochemical principles (90780) Evidence Statement Question Evidence Achievement

More information

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces onour Chemistry Unit 3: Quantum Theory, Periodicity and Chemical Bonding Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular orces 10.1: Molecular Geometry Molecular Structure: - the three-dimensional

More information

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP Today: Ionic Bonding vs. Covalent Bonding Strengths of Covalent Bonds: Bond Energy Diagrams Bond Polarities: Nonpolar Covalent vs. Polar Covalent vs. Ionic Electronegativity Differences Dipole Moments

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table

8/19/2011. Periodic Trends and Lewis Dot Structures. Review PERIODIC Table Periodic Trends and Lewis Dot Structures Chapter 11 Review PERIODIC Table Recall, Mendeleev and Meyer organized the ordering the periodic table based on a combination of three components: 1. Atomic Number

More information

The particulate nature of matter

The particulate nature of matter The particulate nature of matter Solids, liquids and gases The kinetic theory of matter Explaining the states of matter Changes of state An unusual state of matter An unusual change of state Heating and

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

Learn Chemistry. Starter for Ten 3. Bonding. Registered Charity Number

Learn Chemistry. Starter for Ten 3. Bonding.  Registered Charity Number Learn Chemistry Starter for Ten 3. Bonding Developed by Dr Kristy Turner, RSC School Teacher Fellow 2011-2012 at the University of Manchester, and Dr Catherine Smith, RSC School Teacher Fellow 2011-2012

More information

Calorimetry: Heat of Vaporization

Calorimetry: Heat of Vaporization Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular

More information

Covalent Bonds. A group of atoms held together by covalent bonds is called a molecule.

Covalent Bonds. A group of atoms held together by covalent bonds is called a molecule. Covalent Bonds The bond formed when atoms share electrons is called a covalent bond. (Unlike ionic bonds, which involve the complete transfer of electrons). A group of atoms held together by covalent bonds

More information

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) NCEA Level 2 Chemistry (91164) 2015 page 1 of 7 Assessment Schedule 2015 Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164) Evidence Statement Q Evidence

More information

Unit 8: Drawing Molecules

Unit 8: Drawing Molecules Unit 8: Drawing Molecules bjectives Topic 1: Lewis Dot Diagrams & Ionic Bonding 1. Draw a Lewis dot diagram of any representative element. 2. Draw a Lewis dot diagram of any ionic compound. A Lewis structure

More information

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o

The elements of the second row fulfill the octet rule by sharing eight electrons, thus acquiring the electronic configuration of neon, the noble gas o 2. VALENT BNDING, TET RULE, PLARITY, AND BASI TYPES F FRMULAS LEARNING BJETIVES To introduce the basic principles of covalent bonding, different types of molecular representations, bond polarity and its

More information