Example 1: What is the total distance traveled? What is the total displacement?

Size: px
Start display at page:

Download "Example 1: What is the total distance traveled? What is the total displacement?"

Transcription

1 7.1 Integrl s Net Chnge Clculus 7.1 INTEGRAL AS NET CHANGE Distnce versus Displcement We hve lredy seen how the position of n oject cn e found y finding the integrl of the velocity function. The chnge in position is displcement. To see the difference etween distnce nd displcement, consider the following sying: "Two steps forwrd nd one step ck" Exmple 1: Wht is the totl distnce trveled? Wht is the totl displcement? To find displcement, we only need to find ò vt () dt. In order to find your new loction, we sy tht your new position = initil position + displcement. To find totl distnce we use ò vt () dtor find when the oject is moving in the negtive direction, rek the integrl into pieces nd sutrct the vlue of the integrl for the re under the curve. Exmple : Suppose the velocity of prticle moving long the x xis is given y vt () = 6t - 18t+ 1 when 0 t. ) When is the prticle moving to the right? When is it moving left? When is it stopped? ) Find the prticle's displcement for the time intervl. c) Find the prticle's totl distnce trveled y setting up ONE integrl nd using your clcultor. d) Find the prticle's totl distnce trveled without using solute vlue. 7-1

2 7.1 Integrl s Net Chnge Clculus Consumption over Time Velocity is not the only rte in which you cn integrte to get totl. In fct if you were given function tht gve the numer of tickets per hour tht the police wrote ech dy, nd you wnted to find the totl numer of tickets in 4-hour period, you could integrte. Exmple 3: The tide removes snd from Sndy Point Bech t rte modeled y the function R given y æ4pt ö Rt () = + 5sin ç çè 5 ø. A pumping sttion dds snd to the ech t rte modeled y the function S, given y 15t S() t = t Both R (t) nd S (t) hve units of cuic yrds per hour nd t is mesured in hours for 0 < t < 6. At time t = 0, the ech contins 500 cuic yrds of snd. ) How much snd will the tide remove from the ech during this 6-hour period? Indicte units of mesure. ) Write n expression for Y (t), the totl numer of cuic yrds of snd on the ech t time t. c) Find the rte t which the totl mount of snd on the ech is chnging t time t = 4. d) For 0 < t < 6, t wht time t is the mount of snd on the ech minimum? Wht is the minimum vlue? Justify your nswers. 7 -

3 7. Ares in the Plne Clculus 7. AREAS IN THE PLANE Let s Review the concept of re s it reltes to clculus! Recll the re under curve cn e pproximted through the use of Riemnn sums: We cn rek the re into rectngles. Consider the one rectngle drwn. It s height is given y the function vlue of the curve t the right endpoint nd the width is given s D x. The re under the curve then is pproximtely the sum of the res of ALL the rectngles just like this one. Are n å» f ( c ) Dx k= 1 k k f ( c ) D x As the numer of rectngles, n, increses, the pproximted re gets closer to the ctul re, so we sy Are under the curve = lim f ( ck) D xk = f ( x) n k = 1 We cn pply this sme concept to the re etween curves. Consider the two functions f nd g elow. n å ò Exmple 1: Drw rectngulr strip. Wht is the height nd width of your rectngle? Would the height nd width of the rectngle strip e different if you drew it in different plce? g f Exmple : The re etween the curves is pproximtely the sum of ll of these rectngles. We cn write this s Exmple 3: How cn we get closer to the ACTUAL re etween the curves? Exmple 4: If we let the numer of rectngles pproch infinity, then we hve 7-3

4 7. Ares in the Plne Clculus Are of Region Between Two Curves If f nd g re continuous on [, ] nd g ( x) f ( x) for ll x in [, ], then the re of the region ounded y the grphs of f nd g nd the verticl lines x = nd x = is ò ( ) ( ) ù A = é êë f x -g x úû Exmple 5: Find the re of the region ounded y the grphs of y= x +, y=- x, x = 0, nd x = 1. Step 1: Drw picture nd shde the desired region. Step : Drw n ritrry rectngulr strip. Step 3: Using the re of the rectngulr strip s guide, set up nd solve n integrl to find the re etween the curves. Exmple 6: Find the re of the region ounded y the grphs of x = 3- y nd x= y

5 7.3 Volumes Clculus 7.3 VOLUMES Just like in the lst section where we found the re of one ritrry rectngulr strip nd used n integrl to dd up the res of n infinite numer of infinitely thin rectngles, we re going to pply the sme concept to finding volume. The key Find the volume of ONE ritrry "slice", nd use n integrl to dd up the volumes of n infinite numer of infinitely thing "slices". We will first pply this concept to the volume of solid with known cross section, then we will find the volumes of solids formed y revolving region out horizontl or verticl line. We will discuss three different methods of finding volumes of solids of revolution, ut first Dy 1: Volumes of Solids with Known Cross Sections First Question Wht is cross section? Imgine lof of red. Now imgine the shpe of slice through the lof of red. This shpe would e cross section. Techniclly cross section of three dimensionl figure is the intersection of plne nd tht figure. It would e like cutting n oject nd then looking t the fce of where you just cut. The cross sections we will e deling re lmost entirely perpendiculr to the x xis. Here's the sic ide You will e given region defined y numer of functions. We will grph tht region on n x nd y xis. Then we will ly they region flt nd uild upon tht region solid which hs the sme cross section no mtter where you slice it. To see some nimted views of this go to Second question How do we find the volume of this solid tht hs een creted to hve similrly shped cross section, even though ech cross section my hve different size? We get to use clculus, of course! But first, we need to know how to find the Volume of prism. Even though every shpe my e different, we cn find the volume of prism y finding the re of the se times the "height". The "height" of our prisms will e the thickness of the slices. Once you know the volume of one slice, you just use n integrl to dd the volumes of ll the slices to get the volume of the solid. Exmple 1: Find the volume of the following squre "slice". Since most of the "slices" we will e deling with will hve thickness of, we will use tht sme thickness here. x Exmple : Find the volume of the following semicirculr "slice". x You will lso need to e le to find the volume of equilterl tringle cross sections, isosceles right tringle cross sections, nd others. Rememer, wht you relly need is formul for the re of the se, which is just the cross sectionl shpe. 7-5

6 7.3 Volumes Clculus Exmple 3: The se of solid is the region in the first qudrnt enclosed y the prol y= 4x, the line x = 1, nd the x xis. Ech plne section of the solid perpendiculr to the x xis is squre. The volume of the solid is A) B) C) D) E) 4p 3 16p Exmple 4: The se of solid is region in the first qudrnt ounded y the x-xis, the y-xis, nd the line x+ y= 8. If the cross sections of the solid perpendiculr to the x xis re semicircles, wht is the volume of the solid? A) B) C) D) E) Exmple 5: The se of solid is the region in the first qudrnt enclosed y the grph of y= - x nd the coordinte xes. If every cross section of the solid perpendiculr to the y-xis is squre, the volume of the solid is given y ò A) p ( - y) dy ò B) ( - y) dy 0 C) pò ( - ) 0 0 x D) ò ( - ) 0 x E) ò ( - ) 0 x 7-6

7 7.3 Volumes Clculus Dy : Volumes of Solids of Revolution: The Disc Method In finding the re of region, we drew n ritrry representtive rectngle. Keeping with the sme ide, if we revolve rectngle round line, it forms cylinder, s shown elow. The key to using the disc method will e twofold: 1) The rectngulr strip must e connected to the xis of revolution (no mtter where you drw it), nd ) the rectngulr strip must e perpendiculr to the xis of revolution. Exmple 6: Wht is the volume of the cylinder shown if the height of the rectngle is considered R nd the width of the rectngle is? Just like we did in finding the re, s we increse the numer of rectngles to infinity, the width of ech rectngle ecomes infinitely smll nd we denote this (if it is verticl strip) or dy (if it is horizontl strip). We then use n integrl to sum the volume of every one of these infinitely thin cylinders. This concept leds to the following: The Disc Method To find the volume of solid of revolution with the disc method, use one of the following; HORIZONTAL AXIS OF REVOLUTION VERTICAL AXIS OF REVOLUTION V = p ér( x) ù ò ë û V = p ér( y) ù ò ë û dy where R (x) nd R (y) re the "heights" of your representtive rectngulr strips. Exmple 7: Drw n pproprite rectngulr strip nd find the volume of the solid formed y revolving the region out the x xis. y = 4 - x 7-7

8 7.3 Volumes Clculus Exmple 8: Find the volume of the solid formed y revolving the region out the y xis. (Drw representtive rectngulr strip) y = 16 - x Exmple 9: Find the volume of the solid generted y revolving the region ounded y the grphs of the equtions xy = 6, y =, y = 6, nd x = 6 out the indicted lines. Sketch the region formed, nd drw representtive rectngulr strip for ech solid. ) the line x = 6. ) the line y =

9 7.3 Volumes Clculus Dy 3: Volumes of Solids of Revolution: The Wsher Method For the disc method, the re we revolved hd to e connected to the re of rottion nd the representtive rectngle hd to e perpendiculr to the xis of revolution. For the wsher method, the representtive rectngle will still e perpendiculr to the xis of revolution, ut no longer ttched to the xis of revolution. Exmple 10: Sketch the figure formed y rotting the rectngle round the given line. Do you see why it's clled the wsher method? 5 3 Exmple 11: Wht is the volume of the figure formed ove? We will cll the outer rdius R, nd we will cll the inner rdius r. The height of the cylinder formed is just the width of the strip. Just like efore, if we hve nd infinitely thin strip, this distnce will e denoted (if it is verticl strip) nd dy (if it is horizontl strip). The volume of the solid formed y revolving region round the xis using the wsher method is given y p é - ù ò êr r ú ë û Exmple 1: Set up nd integrl, ut do not solve to find the volume of the solid generted y revolving the region ounded y the grphs of the equtions out the indicted lines. y= x ; y= 0; x= ) the y xis ) the x xis c) the line y = 8 d) the line x = 7-9

10 7.3 Volumes Clculus Dy 4: Volumes of Solids of Revolution: The Shell Method We hve now used two different methods to find the volume of solid formed y revolving region out line. As with the disc nd wsher methods we will egin our discussion of the shell method y considering rectngle hving width w nd length h. The mjor difference etween the shell method nd the previous methods is tht the rectngle will e prllel to the xis of revolution. w h p : Let p e the distnce etween the xis of revolution nd the CENTER of the rectngulr strip. Finding the volume is done similrly to the wsher method. Exmple 14: If p is defined s ove to e the distnce etween the xis of revolution nd the center of the rectngulr strip, then wht is the rdius of the outer cylinder? Exmple 15: Wht is the volume of the outer cylinder? Exmple 16: Wht is the rdius of the inner cylinder? The volume of the inner cylinder? Exmple 17: Wht is the volume of the shell? If we were to rotte the figure elow round the line given, we could estimte the volume of the solid formed y finding the volume of the solid formed y rotting ech rectngulr strip nd dding these volumes together. If we were to consider infinitely mny strips, then ech strip would e so incredily thin tht the verge rdius, p, would e the distnce etween the xis of revolution nd the strip. The height of the shell formed y ech strip is just the length of the strip, h, nd the thickness of ech strip is given y dy (if the strip is horizontl) or (if the strip is verticl). : If the strip is dy, then oth p nd h must e written s functions of y If the strip is, then oth p nd h must e written s functions of x dy h (y) p (y) h (x) p (x) 7-10

11 7.3 Volumes Clculus The Shell Method Horizontl Axis of Revolution Verticl Axis of Revolution V = pò p( y) h( y) dy V = pò p( x) h( x) 1 Exmple: Let R e the region ounded y the grphs of y =, y = 0, x = 1, nd x = 4. In the lst exmple, we x were le to use oth the disc nd shell methods to rrive t the sme nswer. Explin why the volume formed y revolving R round the y xis is est found using the shell method insted of the disc nd wsher methods. Set up nd evlute the integrl tht gives the volume formed y revolving R round the y xis. \ 3 Exmple: Find the volume of the solid formed y revolving the region ounded y the grphs of y= x + x+ 1, y = 1, nd x = 1 out the line x =. Explin why it is necessry to use the shell method in this prolem. 7-11

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator

1. Find the zeros Find roots. Set function = 0, factor or use quadratic equation if quadratic, graph to find zeros on calculator AP Clculus Finl Review Sheet When you see the words. This is wht you think of doing. Find the zeros Find roots. Set function =, fctor or use qudrtic eqution if qudrtic, grph to find zeros on clcultor.

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes of revolution, prt ii Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem ) nd the ccumultion process is to determine so-clled volumes of

More information

Section 5-4 Trigonometric Functions

Section 5-4 Trigonometric Functions 5- Trigonometric Functions Section 5- Trigonometric Functions Definition of the Trigonometric Functions Clcultor Evlution of Trigonometric Functions Definition of the Trigonometric Functions Alternte Form

More information

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding

Example A rectangular box without lid is to be made from a square cardboard of sides 18 cm by cutting equal squares from each corner and then folding 1 Exmple A rectngulr box without lid is to be mde from squre crdbord of sides 18 cm by cutting equl squres from ech corner nd then folding up the sides. 1 Exmple A rectngulr box without lid is to be mde

More information

AREA OF A SURFACE OF REVOLUTION

AREA OF A SURFACE OF REVOLUTION AREA OF A SURFACE OF REVOLUTION h cut r πr h A surfce of revolution is formed when curve is rotted bout line. Such surfce is the lterl boundr of solid of revolution of the tpe discussed in Sections 7.

More information

Review Problems for the Final of Math 121, Fall 2014

Review Problems for the Final of Math 121, Fall 2014 Review Problems for the Finl of Mth, Fll The following is collection of vrious types of smple problems covering sections.,.5, nd.7 6.6 of the text which constitute only prt of the common Mth Finl. Since

More information

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one.

5.2. LINE INTEGRALS 265. Let us quickly review the kind of integrals we have studied so far before we introduce a new one. 5.2. LINE INTEGRALS 265 5.2 Line Integrls 5.2.1 Introduction Let us quickly review the kind of integrls we hve studied so fr before we introduce new one. 1. Definite integrl. Given continuous rel-vlued

More information

Applications to Physics and Engineering

Applications to Physics and Engineering Section 7.5 Applictions to Physics nd Engineering Applictions to Physics nd Engineering Work The term work is used in everydy lnguge to men the totl mount of effort required to perform tsk. In physics

More information

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions.

Use Geometry Expressions to create a more complex locus of points. Find evidence for equivalence using Geometry Expressions. Lerning Objectives Loci nd Conics Lesson 3: The Ellipse Level: Preclculus Time required: 120 minutes In this lesson, students will generlize their knowledge of the circle to the ellipse. The prmetric nd

More information

Operations with Polynomials

Operations with Polynomials 38 Chpter P Prerequisites P.4 Opertions with Polynomils Wht you should lern: Write polynomils in stndrd form nd identify the leding coefficients nd degrees of polynomils Add nd subtrct polynomils Multiply

More information

Review guide for the final exam in Math 233

Review guide for the final exam in Math 233 Review guide for the finl exm in Mth 33 1 Bsic mteril. This review includes the reminder of the mteril for mth 33. The finl exm will be cumultive exm with mny of the problems coming from the mteril covered

More information

Integration by Substitution

Integration by Substitution Integrtion by Substitution Dr. Philippe B. Lvl Kennesw Stte University August, 8 Abstrct This hndout contins mteril on very importnt integrtion method clled integrtion by substitution. Substitution is

More information

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1.

Math 314, Homework Assignment 1. 1. Prove that two nonvertical lines are perpendicular if and only if the product of their slopes is 1. Mth 4, Homework Assignment. Prove tht two nonverticl lines re perpendiculr if nd only if the product of their slopes is. Proof. Let l nd l e nonverticl lines in R of slopes m nd m, respectively. Suppose

More information

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1

PROBLEMS 13 - APPLICATIONS OF DERIVATIVES Page 1 PROBLEMS - APPLICATIONS OF DERIVATIVES Pge ( ) Wter seeps out of conicl filter t the constnt rte of 5 cc / sec. When the height of wter level in the cone is 5 cm, find the rte t which the height decreses.

More information

6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus

6.5 - Areas of Surfaces of Revolution and the Theorems of Pappus Lecture_06_05.n 1 6.5 - Ares of Surfces of Revolution n the Theorems of Pppus Introuction Suppose we rotte some curve out line to otin surfce, we cn use efinite integrl to clculte the re of the surfce.

More information

APPLICATION OF INTEGRALS

APPLICATION OF INTEGRALS APPLICATION OF INTEGRALS 59 Chpter 8 APPLICATION OF INTEGRALS One should study Mthemtics ecuse it is only through Mthemtics tht nture cn e conceived in hrmonious form. BIRKHOFF 8. Introduction In geometry,

More information

Pure C4. Revision Notes

Pure C4. Revision Notes Pure C4 Revision Notes Mrch 0 Contents Core 4 Alger Prtil frctions Coordinte Geometry 5 Prmetric equtions 5 Conversion from prmetric to Crtesin form 6 Are under curve given prmetriclly 7 Sequences nd

More information

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn

P.3 Polynomials and Factoring. P.3 an 1. Polynomial STUDY TIP. Example 1 Writing Polynomials in Standard Form. What you should learn 33337_0P03.qp 2/27/06 24 9:3 AM Chpter P Pge 24 Prerequisites P.3 Polynomils nd Fctoring Wht you should lern Polynomils An lgeric epression is collection of vriles nd rel numers. The most common type of

More information

Volumes by Cylindrical Shells: the Shell Method

Volumes by Cylindrical Shells: the Shell Method olumes Clinril Shells: the Shell Metho Another metho of fin the volumes of solis of revolution is the shell metho. It n usull fin volumes tht re otherwise iffiult to evlute using the Dis / Wsher metho.

More information

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324

A.7.1 Trigonometric interpretation of dot product... 324. A.7.2 Geometric interpretation of dot product... 324 A P P E N D I X A Vectors CONTENTS A.1 Scling vector................................................ 321 A.2 Unit or Direction vectors...................................... 321 A.3 Vector ddition.................................................

More information

Unit 6: Exponents and Radicals

Unit 6: Exponents and Radicals Eponents nd Rdicls -: The Rel Numer Sstem Unit : Eponents nd Rdicls Pure Mth 0 Notes Nturl Numers (N): - counting numers. {,,,,, } Whole Numers (W): - counting numers with 0. {0,,,,,, } Integers (I): -

More information

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006

Radius of the Earth - Radii Used in Geodesy James R. Clynch February 2006 dius of the Erth - dii Used in Geodesy Jmes. Clynch Februry 006 I. Erth dii Uses There is only one rdius of sphere. The erth is pproximtely sphere nd therefore, for some cses, this pproximtion is dequte.

More information

Reasoning to Solve Equations and Inequalities

Reasoning to Solve Equations and Inequalities Lesson4 Resoning to Solve Equtions nd Inequlities In erlier work in this unit, you modeled situtions with severl vriles nd equtions. For exmple, suppose you were given usiness plns for concert showing

More information

CUBIC-FOOT VOLUME OF A LOG

CUBIC-FOOT VOLUME OF A LOG CUBIC-FOOT VOLUME OF A LOG Wys to clculte cuic foot volume ) xylometer: tu of wter sumerge tree or log in wter nd find volume of wter displced. ) grphic: exmple: log length = 4 feet, ech section feet in

More information

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom

Bayesian Updating with Continuous Priors Class 13, 18.05, Spring 2014 Jeremy Orloff and Jonathan Bloom Byesin Updting with Continuous Priors Clss 3, 8.05, Spring 04 Jeremy Orloff nd Jonthn Bloom Lerning Gols. Understnd prmeterized fmily of distriutions s representing continuous rnge of hypotheses for the

More information

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style

15.6. The mean value and the root-mean-square value of a function. Introduction. Prerequisites. Learning Outcomes. Learning Style The men vlue nd the root-men-squre vlue of function 5.6 Introduction Currents nd voltges often vry with time nd engineers my wish to know the verge vlue of such current or voltge over some prticulr time

More information

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2

. At first sight a! b seems an unwieldy formula but use of the following mnemonic will possibly help. a 1 a 2 a 3 a 1 a 2 7 CHAPTER THREE. Cross Product Given two vectors = (,, nd = (,, in R, the cross product of nd written! is defined to e: " = (!,!,! Note! clled cross is VECTOR (unlike which is sclr. Exmple (,, " (4,5,6

More information

EQUATIONS OF LINES AND PLANES

EQUATIONS OF LINES AND PLANES EQUATIONS OF LINES AND PLANES MATH 195, SECTION 59 (VIPUL NAIK) Corresponding mteril in the ook: Section 12.5. Wht students should definitely get: Prmetric eqution of line given in point-direction nd twopoint

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Nme Chpter Eponentil nd Logrithmic Functions Section. Eponentil Functions nd Their Grphs Objective: In this lesson ou lerned how to recognize, evlute, nd grph eponentil functions. Importnt Vocbulr Define

More information

Integration. 148 Chapter 7 Integration

Integration. 148 Chapter 7 Integration 48 Chpter 7 Integrtion 7 Integrtion t ech, by supposing tht during ech tenth of second the object is going t constnt speed Since the object initilly hs speed, we gin suppose it mintins this speed, but

More information

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY

PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY MAT 0630 INTERNET RESOURCES, REVIEW OF CONCEPTS AND COMMON MISTAKES PROF. BOYAN KOSTADINOV NEW YORK CITY COLLEGE OF TECHNOLOGY, CUNY Contents 1. ACT Compss Prctice Tests 1 2. Common Mistkes 2 3. Distributive

More information

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I

Exam 1 Study Guide. Differentiation and Anti-differentiation Rules from Calculus I Exm Stuy Guie Mth 2020 - Clculus II, Winter 204 The following is list of importnt concepts from ech section tht will be teste on exm. This is not complete list of the mteril tht you shoul know for the

More information

The Definite Integral

The Definite Integral Chpter 4 The Definite Integrl 4. Determining distnce trveled from velocity Motivting Questions In this section, we strive to understnd the ides generted by the following importnt questions: If we know

More information

Math 135 Circles and Completing the Square Examples

Math 135 Circles and Completing the Square Examples Mth 135 Circles nd Completing the Squre Exmples A perfect squre is number such tht = b 2 for some rel number b. Some exmples of perfect squres re 4 = 2 2, 16 = 4 2, 169 = 13 2. We wish to hve method for

More information

Section 7-4 Translation of Axes

Section 7-4 Translation of Axes 62 7 ADDITIONAL TOPICS IN ANALYTIC GEOMETRY Section 7-4 Trnsltion of Aes Trnsltion of Aes Stndrd Equtions of Trnslted Conics Grphing Equtions of the Form A 2 C 2 D E F 0 Finding Equtions of Conics In the

More information

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful

Pentominoes. Pentominoes. Bruce Baguley Cascade Math Systems, LLC. The pentominoes are a simple-looking set of objects through which some powerful Pentominoes Bruce Bguley Cscde Mth Systems, LLC Astrct. Pentominoes nd their reltives the polyominoes, polycues, nd polyhypercues will e used to explore nd pply vrious importnt mthemticl concepts. In this

More information

10.6 Applications of Quadratic Equations

10.6 Applications of Quadratic Equations 10.6 Applictions of Qudrtic Equtions In this section we wnt to look t the pplictions tht qudrtic equtions nd functions hve in the rel world. There re severl stndrd types: problems where the formul is given,

More information

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix.

addition, there are double entries for the symbols used to signify different parameters. These parameters are explained in this appendix. APPENDIX A: The ellipse August 15, 1997 Becuse of its importnce in both pproximting the erth s shpe nd describing stellite orbits, n informl discussion of the ellipse is presented in this ppendix. The

More information

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100

Mathematics. Vectors. hsn.uk.net. Higher. Contents. Vectors 128 HSN23100 hsn.uk.net Higher Mthemtics UNIT 3 OUTCOME 1 Vectors Contents Vectors 18 1 Vectors nd Sclrs 18 Components 18 3 Mgnitude 130 4 Equl Vectors 131 5 Addition nd Subtrction of Vectors 13 6 Multipliction by

More information

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( )

Polynomial Functions. Polynomial functions in one variable can be written in expanded form as ( ) Polynomil Functions Polynomil functions in one vrible cn be written in expnded form s n n 1 n 2 2 f x = x + x + x + + x + x+ n n 1 n 2 2 1 0 Exmples of polynomils in expnded form re nd 3 8 7 4 = 5 4 +

More information

Vector differentiation. Chapters 6, 7

Vector differentiation. Chapters 6, 7 Chpter 2 Vectors Courtesy NASA/JPL-Cltech Summry (see exmples in Hw 1, 2, 3) Circ 1900 A.D., J. Willird Gis invented useful comintion of mgnitude nd direction clled vectors nd their higher-dimensionl counterprts

More information

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS

RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS RIGHT TRIANGLES AND THE PYTHAGOREAN TRIPLETS Known for over 500 yers is the fct tht the sum of the squres of the legs of right tringle equls the squre of the hypotenuse. Tht is +b c. A simple proof is

More information

Graphs on Logarithmic and Semilogarithmic Paper

Graphs on Logarithmic and Semilogarithmic Paper 0CH_PHClter_TMSETE_ 3//00 :3 PM Pge Grphs on Logrithmic nd Semilogrithmic Pper OBJECTIVES When ou hve completed this chpter, ou should be ble to: Mke grphs on logrithmic nd semilogrithmic pper. Grph empiricl

More information

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes

9.3. The Scalar Product. Introduction. Prerequisites. Learning Outcomes The Sclr Product 9.3 Introduction There re two kinds of multipliction involving vectors. The first is known s the sclr product or dot product. This is so-clled becuse when the sclr product of two vectors

More information

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values)

www.mathsbox.org.uk e.g. f(x) = x domain x 0 (cannot find the square root of negative values) www.mthsbo.org.uk CORE SUMMARY NOTES Functions A function is rule which genertes ectl ONE OUTPUT for EVERY INPUT. To be defined full the function hs RULE tells ou how to clculte the output from the input

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur Module Anlysis of Stticlly Indeterminte Structures by the Mtrix Force Method Version CE IIT, Khrgpur esson 9 The Force Method of Anlysis: Bems (Continued) Version CE IIT, Khrgpur Instructionl Objectives

More information

Geometry 7-1 Geometric Mean and the Pythagorean Theorem

Geometry 7-1 Geometric Mean and the Pythagorean Theorem Geometry 7-1 Geometric Men nd the Pythgoren Theorem. Geometric Men 1. Def: The geometric men etween two positive numers nd is the positive numer x where: = x. x Ex 1: Find the geometric men etween the

More information

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right.

Multiplication and Division - Left to Right. Addition and Subtraction - Left to Right. Order of Opertions r of Opertions Alger P lese Prenthesis - Do ll grouped opertions first. E cuse Eponents - Second M D er Multipliction nd Division - Left to Right. A unt S hniqu Addition nd Sutrction

More information

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES

LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES LINEAR TRANSFORMATIONS AND THEIR REPRESENTING MATRICES DAVID WEBB CONTENTS Liner trnsformtions 2 The representing mtrix of liner trnsformtion 3 3 An ppliction: reflections in the plne 6 4 The lgebr of

More information

Lecture 5. Inner Product

Lecture 5. Inner Product Lecture 5 Inner Product Let us strt with the following problem. Given point P R nd line L R, how cn we find the point on the line closest to P? Answer: Drw line segment from P meeting the line in right

More information

Week 11 - Inductance

Week 11 - Inductance Week - Inductnce November 6, 202 Exercise.: Discussion Questions ) A trnsformer consists bsiclly of two coils in close proximity but not in electricl contct. A current in one coil mgneticlly induces n

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

4.11 Inner Product Spaces

4.11 Inner Product Spaces 314 CHAPTER 4 Vector Spces 9. A mtrix of the form 0 0 b c 0 d 0 0 e 0 f g 0 h 0 cnnot be invertible. 10. A mtrix of the form bc d e f ghi such tht e bd = 0 cnnot be invertible. 4.11 Inner Product Spces

More information

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001

CS99S Laboratory 2 Preparation Copyright W. J. Dally 2001 October 1, 2001 CS99S Lortory 2 Preprtion Copyright W. J. Dlly 2 Octoer, 2 Ojectives:. Understnd the principle of sttic CMOS gte circuits 2. Build simple logic gtes from MOS trnsistors 3. Evlute these gtes to oserve logic

More information

Or more simply put, when adding or subtracting quantities, their uncertainties add.

Or more simply put, when adding or subtracting quantities, their uncertainties add. Propgtion of Uncertint through Mthemticl Opertions Since the untit of interest in n eperiment is rrel otined mesuring tht untit directl, we must understnd how error propgtes when mthemticl opertions re

More information

9 CONTINUOUS DISTRIBUTIONS

9 CONTINUOUS DISTRIBUTIONS 9 CONTINUOUS DISTIBUTIONS A rndom vrible whose vlue my fll nywhere in rnge of vlues is continuous rndom vrible nd will be ssocited with some continuous distribution. Continuous distributions re to discrete

More information

COMPONENTS: COMBINED LOADING

COMPONENTS: COMBINED LOADING LECTURE COMPONENTS: COMBINED LOADING Third Edition A. J. Clrk School of Engineering Deprtment of Civil nd Environmentl Engineering 24 Chpter 8.4 by Dr. Ibrhim A. Asskkf SPRING 2003 ENES 220 Mechnics of

More information

Answer, Key Homework 10 David McIntyre 1

Answer, Key Homework 10 David McIntyre 1 Answer, Key Homework 10 Dvid McIntyre 1 This print-out should hve 22 questions, check tht it is complete. Multiple-choice questions my continue on the next column or pge: find ll choices efore mking your

More information

Factoring Polynomials

Factoring Polynomials Fctoring Polynomils Some definitions (not necessrily ll for secondry school mthemtics): A polynomil is the sum of one or more terms, in which ech term consists of product of constnt nd one or more vribles

More information

5.6 POSITIVE INTEGRAL EXPONENTS

5.6 POSITIVE INTEGRAL EXPONENTS 54 (5 ) Chpter 5 Polynoils nd Eponents 5.6 POSITIVE INTEGRAL EXPONENTS In this section The product rule for positive integrl eponents ws presented in Section 5., nd the quotient rule ws presented in Section

More information

Vectors 2. 1. Recap of vectors

Vectors 2. 1. Recap of vectors Vectors 2. Recp of vectors Vectors re directed line segments - they cn be represented in component form or by direction nd mgnitude. We cn use trigonometry nd Pythgors theorem to switch between the forms

More information

Algebra Review. How well do you remember your algebra?

Algebra Review. How well do you remember your algebra? Algebr Review How well do you remember your lgebr? 1 The Order of Opertions Wht do we men when we write + 4? If we multiply we get 6 nd dding 4 gives 10. But, if we dd + 4 = 7 first, then multiply by then

More information

Warm-up for Differential Calculus

Warm-up for Differential Calculus Summer Assignment Wrm-up for Differentil Clculus Who should complete this pcket? Students who hve completed Functions or Honors Functions nd will be tking Differentil Clculus in the fll of 015. Due Dte:

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Helicopter Theme and Variations

Helicopter Theme and Variations Helicopter Theme nd Vritions Or, Some Experimentl Designs Employing Pper Helicopters Some possible explntory vribles re: Who drops the helicopter The length of the rotor bldes The height from which the

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2010

AAPT UNITED STATES PHYSICS TEAM AIP 2010 2010 F = m Exm 1 AAPT UNITED STATES PHYSICS TEAM AIP 2010 Enti non multiplicnd sunt preter necessittem 2010 F = m Contest 25 QUESTIONS - 75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD

More information

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow.

, and the number of electrons is -19. e e 1.60 10 C. The negatively charged electrons move in the direction opposite to the conventional current flow. Prolem 1. f current of 80.0 ma exists in metl wire, how mny electrons flow pst given cross section of the wire in 10.0 min? Sketch the directions of the current nd the electrons motion. Solution: The chrge

More information

Physics 43 Homework Set 9 Chapter 40 Key

Physics 43 Homework Set 9 Chapter 40 Key Physics 43 Homework Set 9 Chpter 4 Key. The wve function for n electron tht is confined to x nm is. Find the normliztion constnt. b. Wht is the probbility of finding the electron in. nm-wide region t x

More information

Chapter. Contents: A Constructing decimal numbers

Chapter. Contents: A Constructing decimal numbers Chpter 9 Deimls Contents: A Construting deiml numers B Representing deiml numers C Deiml urreny D Using numer line E Ordering deimls F Rounding deiml numers G Converting deimls to frtions H Converting

More information

0.1 Basic Set Theory and Interval Notation

0.1 Basic Set Theory and Interval Notation 0.1 Bsic Set Theory nd Intervl Nottion 3 0.1 Bsic Set Theory nd Intervl Nottion 0.1.1 Some Bsic Set Theory Notions Like ll good Mth ooks, we egin with definition. Definition 0.1. A set is well-defined

More information

2 DIODE CLIPPING and CLAMPING CIRCUITS

2 DIODE CLIPPING and CLAMPING CIRCUITS 2 DIODE CLIPPING nd CLAMPING CIRCUITS 2.1 Ojectives Understnding the operting principle of diode clipping circuit Understnding the operting principle of clmping circuit Understnding the wveform chnge of

More information

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a.

Vectors. The magnitude of a vector is its length, which can be determined by Pythagoras Theorem. The magnitude of a is written as a. Vectors mesurement which onl descries the mgnitude (i.e. size) of the oject is clled sclr quntit, e.g. Glsgow is 11 miles from irdrie. vector is quntit with mgnitude nd direction, e.g. Glsgow is 11 miles

More information

Regular Sets and Expressions

Regular Sets and Expressions Regulr Sets nd Expressions Finite utomt re importnt in science, mthemtics, nd engineering. Engineers like them ecuse they re super models for circuits (And, since the dvent of VLSI systems sometimes finite

More information

Basic Analysis of Autarky and Free Trade Models

Basic Analysis of Autarky and Free Trade Models Bsic Anlysis of Autrky nd Free Trde Models AUTARKY Autrky condition in prticulr commodity mrket refers to sitution in which country does not engge in ny trde in tht commodity with other countries. Consequently

More information

Brillouin Zones. Physics 3P41 Chris Wiebe

Brillouin Zones. Physics 3P41 Chris Wiebe Brillouin Zones Physics 3P41 Chris Wiebe Direct spce to reciprocl spce * = 2 i j πδ ij Rel (direct) spce Reciprocl spce Note: The rel spce nd reciprocl spce vectors re not necessrily in the sme direction

More information

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered:

Appendix D: Completing the Square and the Quadratic Formula. In Appendix A, two special cases of expanding brackets were considered: Appendi D: Completing the Squre nd the Qudrtic Formul Fctoring qudrtic epressions such s: + 6 + 8 ws one of the topics introduced in Appendi C. Fctoring qudrtic epressions is useful skill tht cn help you

More information

10 AREA AND VOLUME 1. Before you start. Objectives

10 AREA AND VOLUME 1. Before you start. Objectives 10 AREA AND VOLUME 1 The Tower of Pis is circulr bell tower. Construction begn in the 1170s, nd the tower strted lening lmost immeditely becuse of poor foundtion nd loose soil. It is 56.7 metres tll, with

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Lecture 3 Gussin Probbility Distribution Introduction l Gussin probbility distribution is perhps the most used distribution in ll of science. u lso clled bell shped curve or norml distribution l Unlike

More information

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration

2005-06 Second Term MAT2060B 1. Supplementary Notes 3 Interchange of Differentiation and Integration Source: http://www.mth.cuhk.edu.hk/~mt26/mt26b/notes/notes3.pdf 25-6 Second Term MAT26B 1 Supplementry Notes 3 Interchnge of Differentition nd Integrtion The theme of this course is bout vrious limiting

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section 2.1 Derivtives nd Rtes of Cnge 2010 Kiryl Tsiscnk Derivtives nd Rtes of Cnge Te Tngent Problem EXAMPLE: Grp te prbol y = x 2 nd te tngent line t te point P(1,1). Solution: We ve: DEFINITION: Te

More information

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics

Vectors and dyadics. Chapter 2. Summary. 2.1 Examples of scalars, vectors, and dyadics Chpter 2 Vectors nd dydics Summry Circ 1900 A.D., J. Willird Gis proposed the ide of vectors nd their higher-dimensionl counterprts dydics, tridics, ndpolydics. Vectors descrie three-dimensionl spce nd

More information

The remaining two sides of the right triangle are called the legs of the right triangle.

The remaining two sides of the right triangle are called the legs of the right triangle. 10 MODULE 6. RADICAL EXPRESSIONS 6 Pythgoren Theorem The Pythgoren Theorem An ngle tht mesures 90 degrees is lled right ngle. If one of the ngles of tringle is right ngle, then the tringle is lled right

More information

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers.

Example 27.1 Draw a Venn diagram to show the relationship between counting numbers, whole numbers, integers, and rational numbers. 2 Rtionl Numbers Integers such s 5 were importnt when solving the eqution x+5 = 0. In similr wy, frctions re importnt for solving equtions like 2x = 1. Wht bout equtions like 2x + 1 = 0? Equtions of this

More information

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1)

Volumes as integrals of cross-sections (Sect. 6.1) Volumes as integrals of cross-sections (Sect. 6.1) Volumes s integrls of cross-sections (ect. 6.1) Te volume of simple regions in spce Volumes integrting cross-sections: Te generl cse. Certin regions wit oles. Volumes s integrls of cross-sections (ect.

More information

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent!

MA 15800 Lesson 16 Notes Summer 2016 Properties of Logarithms. Remember: A logarithm is an exponent! It behaves like an exponent! MA 5800 Lesson 6 otes Summer 06 Rememer: A logrithm is n eponent! It ehves like n eponent! In the lst lesson, we discussed four properties of logrithms. ) log 0 ) log ) log log 4) This lesson covers more

More information

Introduction. Teacher s lesson notes The notes and examples are useful for new teachers and can form the basis of lesson plans.

Introduction. Teacher s lesson notes The notes and examples are useful for new teachers and can form the basis of lesson plans. Introduction Introduction The Key Stge 3 Mthemtics series covers the new Ntionl Curriculum for Mthemtics (SCAA: The Ntionl Curriculum Orders, DFE, Jnury 1995, 0 11 270894 3). Detiled curriculum references

More information

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes.

LECTURE #05. Learning Objective. To describe the geometry in and around a unit cell in terms of directions and planes. LECTURE #05 Chpter 3: Lttice Positions, Directions nd Plnes Lerning Objective To describe the geometr in nd round unit cell in terms of directions nd plnes. 1 Relevnt Reding for this Lecture... Pges 64-83.

More information

Econ 4721 Money and Banking Problem Set 2 Answer Key

Econ 4721 Money and Banking Problem Set 2 Answer Key Econ 472 Money nd Bnking Problem Set 2 Answer Key Problem (35 points) Consider n overlpping genertions model in which consumers live for two periods. The number of people born in ech genertion grows in

More information

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1

B Conic Sections. B.1 Conic Sections. Introduction to Conic Sections. Appendix B.1 Conic Sections B1 Appendi B. Conic Sections B B Conic Sections B. Conic Sections Recognize the four bsic conics: circles, prbols, ellipses, nd hperbols. Recognize, grph, nd write equtions of prbols (verte t origin). Recognize,

More information

SECTION 7-2 Law of Cosines

SECTION 7-2 Law of Cosines 516 7 Additionl Topis in Trigonometry h d sin s () tn h h d 50. Surveying. The lyout in the figure t right is used to determine n inessile height h when seline d in plne perpendiulr to h n e estlished

More information

6 Energy Methods And The Energy of Waves MATH 22C

6 Energy Methods And The Energy of Waves MATH 22C 6 Energy Methods And The Energy of Wves MATH 22C. Conservtion of Energy We discuss the principle of conservtion of energy for ODE s, derive the energy ssocited with the hrmonic oscilltor, nd then use this

More information

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS

PHY 222 Lab 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS PHY 222 Lb 8 MOTION OF ELECTRONS IN ELECTRIC AND MAGNETIC FIELDS Nme: Prtners: INTRODUCTION Before coming to lb, plese red this pcket nd do the prelb on pge 13 of this hndout. From previous experiments,

More information

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review

Harvard College. Math 21a: Multivariable Calculus Formula and Theorem Review Hrvrd College Mth 21: Multivrible Clculus Formul nd Theorem Review Tommy McWillim, 13 tmcwillim@college.hrvrd.edu December 15, 2009 1 Contents Tble of Contents 4 9 Vectors nd the Geometry of Spce 5 9.1

More information

Experiment 6: Friction

Experiment 6: Friction Experiment 6: Friction In previous lbs we studied Newton s lws in n idel setting, tht is, one where friction nd ir resistnce were ignored. However, from our everydy experience with motion, we know tht

More information

1.2 The Integers and Rational Numbers

1.2 The Integers and Rational Numbers .2. THE INTEGERS AND RATIONAL NUMBERS.2 The Integers n Rtionl Numers The elements of the set of integers: consist of three types of numers: Z {..., 5, 4, 3, 2,, 0,, 2, 3, 4, 5,...} I. The (positive) nturl

More information

NQF Level: 2 US No: 7480

NQF Level: 2 US No: 7480 NQF Level: 2 US No: 7480 Assessment Guide Primry Agriculture Rtionl nd irrtionl numers nd numer systems Assessor:.......................................... Workplce / Compny:.................................

More information

CHAPTER 9: Moments of Inertia

CHAPTER 9: Moments of Inertia HPTER 9: Moments of nerti! Moment of nerti of res! Second Moment, or Moment of nerti, of n re! Prllel-is Theorem! Rdius of Grtion of n re! Determintion of the Moment of nerti of n re ntegrtion! Moments

More information

M I N I S T R Y O F E D U C A T I O N

M I N I S T R Y O F E D U C A T I O N M I N I S T R Y O F E D U C A T I O N Repulic of Ghn TEACHING SYLLABUS FOR SENIOR HIGH SCHOOL ELECTIVE MATHEMATICS Enquiries nd comments on this syllus should e ddressed to: The Director Curriculum Reserch

More information

Binary Representation of Numbers Autar Kaw

Binary Representation of Numbers Autar Kaw Binry Representtion of Numbers Autr Kw After reding this chpter, you should be ble to: 1. convert bse- rel number to its binry representtion,. convert binry number to n equivlent bse- number. In everydy

More information