Lecture 25: W 10/19 Lecture 26: F 10/21 Lecture 27: M 10/24. Reading:

Size: px
Start display at page:

Download "Lecture 25: W 10/19 Lecture 26: F 10/21 Lecture 27: M 10/24. Reading:"

Transcription

1 Lecture 25: W 10/19 Lecture 26: F 10/21 Lecture 27: M 10/24 Reading: Week 9: Lectures BLB Ch , 5.5, Homework: BLB 18: 9, 11, 15, 29, 69; Supp 18: 1 3; BLB 11:33, 37, 39, 31, 43, 47, 50; Supp 11:5-13 Reminder: Angel Quiz 8 due on Thur 10/20 ALEKS Objective 9 due on Tue 10/25 Jensen Office Hour: 501 Chemistry Building Tuesdays & Thursdays, 10:30 11:30 am TA office hours, evening tutor sessions, guided study group info posted on Angel -> Help Available Exam 3: Monday Nov 7 6:30 7:45 pm Real gases deviate from ideal behavior The 5 key postulates of KMT! Straight-line motion in random directions! Molecules are small & have no volume compared to the total volume! No intermolecular forces! Elastic collisions! Mean kinetic energy! " T (in K) For a non-ideal gas (real gas) this is not true for two types of conditions: high P low T Reasons: Molecules (or atoms) have a finite size molecules occupy space Molecules have attractive forces these forces become stronger when they are close together Jensen Chem 110 Chap 10 Page: 2

2 Real Gases Pressure For 1 mol of any ideal gas: PV/(RT) = 1 For 1 mol of different gases at same T & different P: Real Gases Temperature For 1 mol of any ideal gas: PV/(RT) = 1 For 1 mol of N 2 gas at different T & different P Low P PV/(RT) ~ 1 High P: PV/(RT) < 1 Very high P PV/(RT) > 1 At low P, the ideal-gas equation is valid: PV/(RT) = 1 In general, deviation from ideal behavior increases as P increases: At high P, attractive forces between molecules lead to the appearance of a smaller n PV/(RT) < 1 Example: CO 2 at 200 atm At very high P, finite molecular volume leads to repulsion and the appearance of a larger n PV/(RT) > 1 Example: CO 2 at 800 atm Jensen Chem 110 Chap 10 Page: 3 At low T, molecules stick together: PV/(RT)! 1 As temperature increases, molecules move faster, the behavior of real gases becomes more ideal. Jensen Chem 110 Chap 10 Page: 4

3 Summary High P PV/RT < 1 Very high P PV/RT > 1 Low P PV/RT! 1 As T #, real gas behavior becomes more ideal Correcting the Ideal Gas Law Attractive forces lead to the appearance of a smaller n Finite molecular volume leads to repulsion and the appearance of a larger n Attractive forces and finite molecular volume have minimal impact At high T, Kinetic energy overcomes attractive forces Example: Under which conditions is Ar(g) most likely to approach ideal behavior? A. B. C. D. E. 10 atm and 100 C 1.0 atm and -200 C 0.10 atm and 100 C 20.0 atm and 100 C 0.10 atm and 200 C Jensen Chem 110 Chap 10 For any gas, we can measure P, V, T At higher P, measured P is too small due to attractive forces between molecules The amount of missing P is proportional to 1. size of attractive forces (a): 2. frequency of collisions: (n2/v2) To compensate, use: P+ At higher P, measured V is too large due to finite molecular volume or excluded volume per mole (b) Actual volume: Vactual = Vmeasured Vexcluded To compensate, use: Page: 5 Jensen V nb Chem 110 Chap 10 Page: 6

4 Real Gases: the van der Waals Equation The Equation of state for IDEAL gases: PV = nrt The Equation of state for REAL gases: correction for intermolecular forces between gas molecules NOTE: a & b are specific for the particular gas we are talking about (BLB Table 10.3). a (L 2 -atm/mol 2 ) b (L/mol) He Xe H Cl CH CCl correction for excluded volume (size) of gas molecules Outline: Chapter 18: Atmospheric Chemistry Composition of Atmosphere Regions of Atmosphere Photochemical reactions in the upper atmosphere $ Chemistry in upper atmosphere protects us from UV radiation Photoionization Photodissociation(natural ozone cycle) $ Human activity has impact on the chemistry of the upper atmosphere Ozone depletion by CFCs Photochemical reactions in the lower atmosphere $ Water Vapor, CO 2 and the Climate $ Sulfur Compounds and Acid Rain $ Nitrogen Oxides and photochemical Smog Jensen Chem 110 Chap 10 Page: 7

5 Composition of the Atmosphere Composition of Dry Air Near Sea Level Component Content (mole fraction) Molar Mass Nitrogen Oxygen Xenon Mole fraction: x i = Express mole fraction in parts per million (ppm): 1 ppm = x i! 10 6 moles of i total moles Partial Pressures of Components Example: The mole fraction of NO on a smoggy day is measured at 20 ppm. If the barometric pressure is 732 torr, what is the partial pressure of NO in the atmosphere? A torr B torr C torr D torr E torr Example: Neon x Ne = , what is the mole fraction of Ne in ppm? Jensen Chem 110 Chap 18 Page: 2 Jensen Chem 110 Chap 18 Page: 3

6 Regions of the Atmosphere Based on temperature profile 1. Troposphere: T % as altitude # 2. Stratosphere: T # as altitude # 3. Mesosphere: T % as altitude # Pressure Profile Pressure at any altitude depends on the weight of gas above it. Pressure decreases exponentially with altitude. At high altitude, pressure is low... How does low pressure affect density? How does low pressure affect molecular collisions? 4. Thermosphere: T # as altitude # How does low collision frequency affect the frequency of chemical reactions? Jensen Chem 110 Chap 18 Page: 4 Jensen Chem 110 Chap 18 Page: 5

7 Important Chemistry in the Atmosphere Photochemical Reactions: reactions that involve the absorption or emission of a photon. Example: What is the maximum wavelength of a photon needed to photoionize O 2 in the upper atmosphere? Photoexcitation: electronic excitation NO 2 + h& ' NO 2 * (* = excited state) Photodissociation: bond broken by absorption of a photon (light) O 2 + h& ' O + O Requires energy " the bond energy O 2 + h& ' O e A nm B. 165 nm C. 274 nm D nm E nm IE = 1205 kj/mol Photoionization: removal of a valence e from a molecule by absorption of a photon N 2 + h& ' N e Requires energy " the ionization potential Jensen Chem 110 Chap 18 Page: 6 Jensen Chem 110 Chap 18 Page: 7

8 Importance of Atmospheric Ozone (O 3 ) The Natural Ozone Cycle Formation of O 3 O 2 (g) + h& ' 2 O (g) O (g) + O 2 (g) 'O 3 (g) Destruction of O 3 O 3 (g) + O (g) '2 O 2 (g) Protection of Earth#s surface from UV-radiation: EDG =, MG =, bond angle = 117, bond length = 1.28Å Light blue gas Pungent odor (smell near electrical discharges) (H f = 142kJ/mol (reactive less stable than O 2 ) Atmospheric Concentration: In the troposphere: O 3 is an irritant (smog) in the stratosphere: O 3 is essential; peak concentration at~25 km; [O 3 ] ~ 10 ppm The (small) amount of O 3 in the stratosphere reflects the delicate balance between creation and destruction of O 3. O 3 (g) + h& ' O (g) + O 2 (g) Ozone Depletion Chlorofluorocarbons (CFCs), CFCl 3, CF 2 Cl 2, CF 3 Cl, destroy ozone cycle CF 2 Cl 2 + h& ' CF 2 Cl + Cl () < 240 nm) 2Cl + 2O 3 ' 2ClO + 2O 2 2ClO + h& ' 2Cl + O 2 NET: 2 O 3 + h& ' 3 O 2 Cl atom acts as a catalyst to destroy O 3 1 Cl atom can destroy > 100,000 O 3 molecules!?!! Jensen Chem 110 Chap 18 Page: 8 Jensen Chem 110 Chap 18 Page: 9

9 The Greenhouse Effect Energy coming to Earth is mostly solar $ Some is reflected by atmosphere (~30%) $ Some UV is absorbed by atmosphere $ Most hits Earth#s surface, where it is absorbed and causes warming Energy radiated by Earth#s surface is mainly infrared (IR) heat The atmosphere is transparent to UV and Visible light, but NOT to IR The H 2 O, CO 2, CH 4 and O 3 in atmosphere absorbs IR light Sulfur Compounds and Acid Rain Natural rain: ph ~ 6 (slightly acidic due to dissolved CO 2 ) Acid rain: ph of 4 to 4.5 (more acidic due to dissolved pollutants like H 2 SO 4, HNO 3 ) Sources: bacterial decay of organic matter volcanic gases and forest fires fossil fuels combustion and industrial processes Example: Coal burning (contaminated by sulfur): S 8 (s) + 8 O 2 (g) ' 8 SO 2 (g) SO 2 reacts in the atmosphere: 2 SO 2 (g) + O 2 (g) ' 2SO 3 (g) SO 3 (g) + H 2 O (g) ' H 2 SO 4 sulfuric acid dissolves in water and falls to earth as acid rain affects ph of soil and water corrodes metals (Fe) dissolves stone (marble, limestone) Thermal regulation by these gases (mostly CO 2 and H 2 O) in the atmosphere leads to the Greenhouse Effect CaCO 3 (s) + H 2 SO 4 (aq) ' CaSO 4 (aq) + CO 2 (g) + H 2 O(!) Jensen Chem 110 Chap 18 Page: 10 Jensen Chem 110 Chap 18 Page: 11

10 Acid Rain Natural rain: ph ~ 6 slightly acidic due to dissolved CO 2 Acid rain: ph of 4 to 4.5 more acidic due to dissolved pollutants like H 2 SO 4, HNO 3 Photochemical smog primary h& secondary pollutants pollutants NO, NO 2, CO O 3 hydrocarbons In auto engine: N 2 +O 2 ' 2NO In air: 1. 2NO + O 2 ' 2NO 2 NO 2 + h& ' 2NO + O (H =181 kj ) = *400 nm O + O 2 + M ' O 3 + M (M=another molecule) 2. NO 2 + H 2 O' HNO 3 (burns eyes) Ozone: good in the stratosphere, but not in the troposphere Diminishes respiratory capabilities Reacts with NO to form NO 2 and O 2 Photodissociates to form reactive oxygen radicals, which react with hydrocarbons, etc. Jensen Chem 110 Chap 18 Page: 12 Jensen Chem 110 Chap 18 Page: 13

11 Kinetic Molecular Description of Matter Gas: Kinetic energy >> intermolecular forces Liquid: Kinetic energy + intermolecular forces Solid: Kinetic energy << intermolecular forces Kinetic Energy " T: Functional group Structure Affects Function Structure MW g/mol BP C hydrocarbon aldehyde Heating: T #, KE # : Cooling: T %, KE % : solid ' liquid ' gas gas ' liquid ' solid ketone amine alcohol carboxylic acid Jensen Chem 110 Chap 11 Page: 1 Jensen Chem 110 Chap 11 Page: 2

12 Viscosity and Surface Tension Viscosity: resistance to flow; higher viscosity: slower flowing Vapor Pressure Vapor pressure (v.p.): pressure exerted by a vapor in equilibrium with its liquid or solid phase; $ stronger IM forces, more to flow $ IM forces increases, viscosity Surface tension: energy needed to increase surface area; $ Intermolecular interactions are favorable (heat is required to break them) $ Surface molecules have fewer interactions. $ IM forces increases, surface tension Example: Which of the following has the highest viscosity? A. B. C. Dynamic equilibrium: no NET change, but change is occurring on molecular level forward rate = backward rate evaporation = condensation Jensen Chem 110 Chap 11 Page: 3 Jensen Chem 110 Chap 11 Page: 4

13 Vapor Pressure and Temperature Vapor Pressure and Boiling Point $ At higher temperature, more molecules have energies sufficient to escape the liquid, so the vapor pressure is higher $ For different liquids, as IM forces increases, vapor pressure (at a given T) decreases Example: Which of the following has the highest vapor pressure? A. B. C. Boiling point (BP): T at which v. p. = P ext As P ext increases, BP Normal boiling point: T at which v. p. = Example: Why does it take longer to hard boil eggs at higher altitudes than at lower altitudes? Jensen Chem 110 Chap 11 Page: 5 Jensen Chem 110 Chap 11 Page: 6

14 Phase Diagrams Comparison of H2O and CO2 Phase Diagrams Plot of pressure vs. temperature of the system showing the boundaries between the phases. Differences: 1) Triple Point: Be able to identify the following; 2) Direction of the solid-liquid coexistence line: $ normal melting point CO2 slants to the as P increases: MP as P# $ normal boiling point $ critical point H2O slants to the as P increases: MP as P# $ triple point Example: Using the phase diagram for water, how many phases are encountered if the water sample is heated from -10ºC to 100 ºC? The pressure is kept at 780 torr through the heating process. $ coexistence curves Jensen Chem 110 Chap 11 Page: 7 Jensen Chem 110 Chap 11 Page: 8

15 Phase Changes Heating Curve and Calorimetry Two types of changes take place as heat is added: Endothermic Process: Requires energy to disrupt intermolecular forces. Melting (fusion) Vaporization Sublimation Exothermic Process: Energy is released when intermolecular interactions are formed Freezing Condensation Deposition 1. Heating within a single phase (in blue): q = m C p (T (p, constant pressure) T #, average KE #, total energy #,molecular separation #, molecular attractions %, molecular order %. 2. phase transition (in red): changes from one physical state to another q = n (H x (x = fusion, vaporization) T is constant, average kinetic energy is constant, but total energy #, separation between molecules #, molecular attractions %, molecular order %. Jensen Chem 110 Chap 11 Page: 9 Jensen Chem 110 Chap 11 Page: 10

16 Heating within a Single Phase: q = C m (T C = heat capacity (J/g-K or J/mol-K) m = amount of substance (g or mol) (T = T final - T initial Example: The specific heat of toluene (C 7 H 8 ) is 1.13 J/g-K. How many Joules of heat are needed to raise the temperature of 0.5 mole of toluene from 0 C to 25 C? Note: (T (in K) = (T (in C) Heat Capacity (C): Amount of heat required to raise an object#s temperature by 1K (or 1 C). Usually C is given for a specified amount of pure substance Example: liquid H 2 O specific heat, C = J/g-K molar heat capacity, C m = 75.2 J/mol-K $ Specific heat is different for each phase $ Specific heat is different per gram than per mole Jensen Chem 110 Chap 11 Page: 11 Jensen Chem 110 Chap 11 Page: 12

17 Practice Example: What is the specific heat of gold, if raising the temperature of 985 g of Au from 30 C to 45 C requires kj of energy? A J/g-K B J/g-K C J/g-K D J/g-K E J/g-K Heating during a Phase Transition: q = m (H x (x = fusion, vaporization) (H = heat (kj/g or kj/mol) given off (-) or absorbed (+) when a change occurs m = amount of substance (g or mol) (H fusion = heat needed to melt a mole of substance (H vap = heat needed to vaporize a mole of substance Jensen Chem 110 Chap 11 Page: 13 Jensen Chem 110 Chap 11 Page: 14

18 Calculation of Energy Change Measure the heat required for each segment of heating curve, then sum all individual steps. Scratch Paper Example: Ethanol (C 2 H 5 OH) melts at 114 C. The enthalpy of fusion is 5.02 kj/mol. The specific heats of solid and liquid ethanol are 0.97 J/g K and 2.3 J/g K, respectively. How much heat is needed to convert 25.0 g of solid ethanol at 135 C to liquid ethanol at 50 C? A kj B kj C kj D kj E kj Jensen Chem 110 Chap 11 Page: 15 Jensen Chem 110 Chap 11 Page: 16

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

More information

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C 1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

More information

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

More information

Chemistry 13: States of Matter

Chemistry 13: States of Matter Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

More information

CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

More information

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory Week lectures--tentative 0.7 Kinetic-Molecular Theory 40 Application to the Gas Laws 0.8 Molecular Effusion and Diffusion 43 Graham's Law of Effusion Diffusion and Mean Free Path 0.9 Real Gases: Deviations

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Exam 4 Practice Problems false false

Exam 4 Practice Problems false false Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

More information

Bomb Calorimetry. Example 4. Energy and Enthalpy

Bomb Calorimetry. Example 4. Energy and Enthalpy Bomb Calorimetry constant volume often used for combustion reactions heat released by reaction is absorbed by calorimeter contents need heat capacity of calorimeter q cal = q rxn = q bomb + q water Example

More information

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework

Composition of the Atmosphere. Outline Atmospheric Composition Nitrogen and Oxygen Lightning Homework Molecules of the Atmosphere The present atmosphere consists mainly of molecular nitrogen (N2) and molecular oxygen (O2) but it has dramatically changed in composition from the beginning of the solar system.

More information

Intermolecular Forces

Intermolecular Forces Intermolecular Forces: Introduction Intermolecular Forces Forces between separate molecules and dissolved ions (not bonds) Van der Waals Forces 15% as strong as covalent or ionic bonds Chapter 11 Intermolecular

More information

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

More information

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion. Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

More information

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

More information

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

More information

CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12. Gases and the Kinetic-Molecular Theory CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

More information

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

ESSAY. Write your answer in the space provided or on a separate sheet of paper. Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

More information

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random) Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

More information

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING

CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING CHEMISTRY STANDARDS BASED RUBRIC ATOMIC STRUCTURE AND BONDING Essential Standard: STUDENTS WILL UNDERSTAND THAT THE PROPERTIES OF MATTER AND THEIR INTERACTIONS ARE A CONSEQUENCE OF THE STRUCTURE OF MATTER,

More information

Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount

Surface Tension. the surface tension of a liquid is the energy required to increase the surface area a given amount Tro, Chemistry: A Molecular Approach 1 Surface Tension surface tension is a property of liquids that results from the tendency of liquids to minimize their surface area in order to minimize their surface

More information

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will

Test 5 Review questions. 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will Name: Thursday, December 13, 2007 Test 5 Review questions 1. As ice cools from 273 K to 263 K, the average kinetic energy of its molecules will 1. decrease 2. increase 3. remain the same 2. The graph below

More information

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics

1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics Chem 105 Fri 10-23-09 1. Thermite reaction 2. Enthalpy of reaction, H 3. Heating/cooling curves and changes in state 4. More thermite thermodynamics 10/23/2009 1 Please PICK UP your graded EXAM in front.

More information

CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

More information

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g) CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

More information

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude

Why? Intermolecular Forces. Intermolecular Forces. Chapter 12 IM Forces and Liquids. Covalent Bonding Forces for Comparison of Magnitude 1 Why? Chapter 1 Intermolecular Forces and Liquids Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water?

More information

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure.

Phase diagram of water. Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. Phase diagram of water Note: for H 2 O melting point decreases with increasing pressure, for CO 2 melting point increases with increasing pressure. WATER Covers ~ 70% of the earth s surface Life on earth

More information

Chapter 4 Practice Quiz

Chapter 4 Practice Quiz Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:

More information

Test Review # 9. Chemistry R: Form TR9.13A

Test Review # 9. Chemistry R: Form TR9.13A Chemistry R: Form TR9.13A TEST 9 REVIEW Name Date Period Test Review # 9 Collision theory. In order for a reaction to occur, particles of the reactant must collide. Not all collisions cause reactions.

More information

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10 Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N 2 80 70 Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases 60 50 40 Oxygen 30 20 10 0 Gas Carbon dioxide and Noble Gases Pressure Pressure = Force

More information

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

More information

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. General Chemistry PHS 1015 Practice Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about pressure

More information

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES

AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES AP ENVIRONMENTAL SCIENCE 2013 SCORING GUIDELINES Question 3 (a) Identify the type of solar radiation that is absorbed by stratospheric ozone and describe one human health benefit that results from the

More information

KS3 Science: Chemistry Contents

KS3 Science: Chemistry Contents summary KS3 Science MyWorks Guide Chemistry KS3 Science: Chemistry Mini zes: 40 Super zes: 5 Extension zes: 4 Skills zes: 6 TOTAL 54 What are MyWorks zes? MyWorks zes are short individual learning tasks

More information

Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

More information

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS

SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to

More information

Chapter 12 - Liquids and Solids

Chapter 12 - Liquids and Solids Chapter 12 - Liquids and Solids 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008 Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

More information

UNIT 1 THERMOCHEMISTRY

UNIT 1 THERMOCHEMISTRY UNIT 1 THERMOCHEMISTRY THERMOCHEMISTRY LEARNING OUTCOMES Students will be expected to: THERMOCHEMISTRY STSE analyse why scientific and technological activities take place in a variety individual and group

More information

Calorimetry: Heat of Vaporization

Calorimetry: Heat of Vaporization Calorimetry: Heat of Vaporization OBJECTIVES INTRODUCTION - Learn what is meant by the heat of vaporization of a liquid or solid. - Discuss the connection between heat of vaporization and intermolecular

More information

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

More information

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule?

Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule? Chapter 10 Can You... 1. draw the Lewis structure for a given covalently bonded molecule? e.g. SF 6 and CH 3 Cl 2. identify and count the number of non-bonding and bonding domains within a given covalently

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K

Standard Free Energies of Formation at 298 K. Average Bond Dissociation Energies at 298 K 1 Thermodynamics There always seems to be at least one free response question that involves thermodynamics. These types of question also show up in the multiple choice questions. G, S, and H. Know what

More information

Absorption by atmospheric gases in the IR, visible and UV spectral regions.

Absorption by atmospheric gases in the IR, visible and UV spectral regions. Lecture 6. Absorption by atmospheric gases in the IR, visible and UV spectral regions. Objectives: 1. Gaseous absorption in thermal IR. 2. Gaseous absorption in the visible and near infrared. 3. Gaseous

More information

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134) 1. Helium atoms do not combine to form He 2 molecules, What is the strongest attractive

More information

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion

1. The Kinetic Theory of Matter states that all matter is composed of atoms and molecules that are in a constant state of constant random motion Physical Science Period: Name: ANSWER KEY Date: Practice Test for Unit 3: Ch. 3, and some of 15 and 16: Kinetic Theory of Matter, States of matter, and and thermodynamics, and gas laws. 1. The Kinetic

More information

CHEMISTRY 113 EXAM 4(A)

CHEMISTRY 113 EXAM 4(A) Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

More information

Unit 3: States of Matter Practice Exam

Unit 3: States of Matter Practice Exam Page 1 Unit 3: States of Matter Practice Exam Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Two gases with unequal masses are injected into opposite

More information

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work.

The first law: transformation of energy into heat and work. Chemical reactions can be used to provide heat and for doing work. The first law: transformation of energy into heat and work Chemical reactions can be used to provide heat and for doing work. Compare fuel value of different compounds. What drives these reactions to proceed

More information

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 5 Practice Test. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 5 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1) The internal energy of a system is always increased by. A) adding

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Given: 4 NO2(g) + O2(g) 2 N2O5(g) ΔH = -110.2 kj find ΔH for N2O5(g) 2 NO2(g) + 1/2 O2(g).

More information

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2

A n = 2 to n = 1. B n = 3 to n = 1. C n = 4 to n = 2. D n = 5 to n = 2 North arolina Testing Program EO hemistry Sample Items Goal 4 1. onsider the spectrum for the hydrogen atom. In which situation will light be produced? 3. Which color of light would a hydrogen atom emit

More information

48 Practice Problems for Ch. 17 - Chem 1C - Joseph

48 Practice Problems for Ch. 17 - Chem 1C - Joseph 48 Practice Problems for Ch. 17 - Chem 1C - Joseph 1. Which of the following concentration measures will change in value as the temperature of a solution changes? A) mass percent B) mole fraction C) molality

More information

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I PREPARED BY: NICOLE HELDT SCHOOL OF SCIENCE, HEALTH, AND PROFESSIONAL STUDIES SCIENCE DEPARTMENT

More information

Molar Mass of Butane

Molar Mass of Butane Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

More information

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790. CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

More information

Chapter 13 Properties of liquids

Chapter 13 Properties of liquids Chapter 13 Properties of liquids 1 over 75% of earth is covered with water water supports and enhance life in chemistry, water provides the medium of numerous reactions 13.1 What is a liquid? liquids lie

More information

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide

Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide

More information

Enthalpy of Reaction and Calorimetry worksheet

Enthalpy of Reaction and Calorimetry worksheet Enthalpy of Reaction and Calorimetry worksheet 1. Calcium carbonate decomposes at high temperature to form carbon dioxide and calcium oxide, calculate the enthalpy of reaction. CaCO 3 CO 2 + CaO 2. Carbon

More information

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson

INSPIRE GK12 Lesson Plan. The Chemistry of Climate Change Length of Lesson Lesson Title The Chemistry of Climate Change Length of Lesson 180 min Created By David Wilson Subject Physical Science / Chemistry / Organic Chemistry Grade Level 8-12 State Standards 2c, 4d / 2a, 4d /

More information

10. Calculate the mass percent nitrogen in (NH 4 ) 2 CO 3 (molar mass = 96.09 g/mol). a. 29.1 % c. 17.9 % e. 14.6 % b. 35.9 % d. 0.292 % f. 96.

10. Calculate the mass percent nitrogen in (NH 4 ) 2 CO 3 (molar mass = 96.09 g/mol). a. 29.1 % c. 17.9 % e. 14.6 % b. 35.9 % d. 0.292 % f. 96. Chem 171-2-3: Final Exam Review Multiple Choice Problems 1. What is the molar mass of barium perchlorate, Ba(ClO 4 ) 2? a. 189.90 g/mol c. 272.24 g/mol e. 336.20 g/mol b. 240.24 g/mol d. 304.24 g/mol f.

More information

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson

Thermochemistry. r2 d:\files\courses\1110-20\99heat&thermorans.doc. Ron Robertson Thermochemistry r2 d:\files\courses\1110-20\99heat&thermorans.doc Ron Robertson I. What is Energy? A. Energy is a property of matter that allows work to be done B. Potential and Kinetic Potential energy

More information

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64

CHAPTER 3: MATTER. Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 CHAPTER 3: MATTER Active Learning Questions: 1-6, 9, 13-14; End-of-Chapter Questions: 1-18, 20, 24-32, 38-42, 44, 49-52, 55-56, 61-64 3.1 MATTER Matter: Anything that has mass and occupies volume We study

More information

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10. CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6,10.15-10.33, 10.35-10.40, 10.56-10.60, 10.101-10.102 10.1 INTERACTIONS BETWEEN IONS Ion-ion Interactions and Lattice Energy

More information

Chapter 3: Water and Life

Chapter 3: Water and Life Name Period Chapter 3: Water and Life Concept 3.1 Polar covalent bonds in water result in hydrogen bonding 1. Study the water molecules at the right. On the central molecule, label oxygen (O) and hydrogen

More information

CHEMISTRY II FINAL EXAM REVIEW

CHEMISTRY II FINAL EXAM REVIEW Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

The Kinetics of Atmospheric Ozone

The Kinetics of Atmospheric Ozone The Kinetics of Atmospheric Ozone Ozone is a minor component of the earth s atmosphere (0.02 0.1 parts per million based on volume (ppm v )), yet it has a significant role in sustaining life on earth.

More information

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

More information

VCE CHEMISTRY UNIT 2 Environmental Chemistry SAMPLE COURSE OUTLINE

VCE CHEMISTRY UNIT 2 Environmental Chemistry SAMPLE COURSE OUTLINE VCE CHEMISTRY UNIT 2 Environmental Chemistry SAMPLE COURSE OUTLINE Week Area of Study Key knowledge Possible activities Key skills 1 1 Water Role of water in maintaining life in the environment unique

More information

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32.

ENTHALPY CHANGES FOR A CHEMICAL REACTION scaling a rxn up or down (proportionality) quantity 1 from rxn heat 1 from Δ r H. = 32. CHEMISTRY 103 Help Sheet #10 Chapter 4 (Part II); Sections 4.6-4.10 Do the topics appropriate for your lecture Prepared by Dr. Tony Jacob http://www.chem.wisc.edu/areas/clc (Resource page) Nuggets: Enthalpy

More information

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part.

Part B 2. Allow a total of 15 credits for this part. The student must answer all questions in this part. Part B 2 Allow a total of 15 credits for this part. The student must answer all questions in this part. 51 [1] Allow 1 credit for 3 Mg(s) N 2 (g) Mg 3 N 2 (s). Allow credit even if the coefficient 1 is

More information

Chapter 18 Homework Answers

Chapter 18 Homework Answers Chapter 18 Homework Answers 18.22. 18.24. 18.26. a. Since G RT lnk, as long as the temperature remains constant, the value of G also remains constant. b. In this case, G G + RT lnq. Since the reaction

More information

MEMORANDUM GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Paper 2

MEMORANDUM GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Paper 2 MEMORANDUM GRADE 11 PHYSICAL SCIENCES: CHEMISTRY Paper 2 MARKS: 150 TIME: 3 hours Learning Outcomes and Assessment Standards LO1 LO2 LO3 AS 11.1.1: Plan and conduct a scientific investigation to collect

More information

Chapter 6 Thermodynamics: The First Law

Chapter 6 Thermodynamics: The First Law Key Concepts 6.1 Systems Chapter 6 Thermodynamics: The First Law Systems, States, and Energy (Sections 6.1 6.8) thermodynamics, statistical thermodynamics, system, surroundings, open system, closed system,

More information

Chapter 10 Liquids & Solids

Chapter 10 Liquids & Solids 1 Chapter 10 Liquids & Solids * 10.1 Polar Covalent Bonds & Dipole Moments - van der Waals constant for water (a = 5.28 L 2 atm/mol 2 ) vs O 2 (a = 1.36 L 2 atm/mol 2 ) -- water is polar (draw diagram)

More information

Page 2. Base your answers to questions 7 through 9 on this phase diagram

Page 2. Base your answers to questions 7 through 9 on this phase diagram 1. The normal boiling point of water is often depressed at high altitudes. Which of the following explains this phenomenon? t high altitudes, the lower atmospheric pressure equals the equilibrium water

More information

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. I - Air Pollution Caused by Industries - Jiming HAO and Guowen LI

POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. I - Air Pollution Caused by Industries - Jiming HAO and Guowen LI AIR POLLUTION CAUSED BY INDUSTRIES Department of Evironmental Sciences and Engineering, Tsinghua University, Beijing 100084, P.R.China Keywords: Emission sources, emission inventory, emission factors,

More information

4.5 Physical Properties: Solubility

4.5 Physical Properties: Solubility 4.5 Physical Properties: Solubility When a solid, liquid or gaseous solute is placed in a solvent and it seems to disappear, mix or become part of the solvent, we say that it dissolved. The solute is said

More information

KINETIC MOLECULAR THEORY OF MATTER

KINETIC MOLECULAR THEORY OF MATTER KINETIC MOLECULAR THEORY OF MATTER The kinetic-molecular theory is based on the idea that particles of matter are always in motion. The theory can be used to explain the properties of solids, liquids,

More information

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1

Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 Experiment 12E LIQUID-VAPOR EQUILIBRIUM OF WATER 1 FV 6/26/13 MATERIALS: PURPOSE: 1000 ml tall-form beaker, 10 ml graduated cylinder, -10 to 110 o C thermometer, thermometer clamp, plastic pipet, long

More information

What You Need To Know for the Chemistry Regents Exam

What You Need To Know for the Chemistry Regents Exam Name: What You Need To Know for the Chemistry Regents Exam The Test The Chemisty Regents Exam is broken down into three sections: Part A: 35 mulitple choice questions from all units covered over the course

More information

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

More information

Chemical Equations & Stoichiometry

Chemical Equations & Stoichiometry Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term

More information

Final Exam Review. I normalize your final exam score out of 70 to a score out of 150. This score out of 150 is included in your final course total.

Final Exam Review. I normalize your final exam score out of 70 to a score out of 150. This score out of 150 is included in your final course total. Final Exam Review Information Your ACS standardized final exam is a comprehensive, 70 question multiple choice (a d) test featuring material from BOTH the CHM 101 and 102 syllabi. Questions are graded

More information

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states.

Study the following diagrams of the States of Matter. Label the names of the Changes of State between the different states. Describe the strength of attractive forces between particles. Describe the amount of space between particles. Can the particles in this state be compressed? Do the particles in this state have a definite

More information

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass.

MOLAR MASS AND MOLECULAR WEIGHT Themolar mass of a molecule is the sum of the atomic weights of all atoms in the molecule. Molar Mass. Counting Atoms Mg burns in air (O 2 ) to produce white magnesium oxide, MgO. How can we figure out how much oxide is produced from a given mass of Mg? PROBLEM: If If 0.200 g of Mg is is burned, how much

More information

Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

More information

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Unit 11 Practice. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Unit 11 Practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Crystalline solids. A) have their particles arranged randomly B) have

More information

Chemistry 151 Final Exam

Chemistry 151 Final Exam Chemistry 151 Final Exam Name: SSN: Exam Rules & Guidelines Show your work. No credit will be given for an answer unless your work is shown. Indicate your answer with a box or a circle. All paperwork must

More information

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3

DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 DETERMINING THE ENTHALPY OF FORMATION OF CaCO 3 Standard Enthalpy Change Standard Enthalpy Change for a reaction, symbolized as H 0 298, is defined as The enthalpy change when the molar quantities of reactants

More information

IB Chemistry. DP Chemistry Review

IB Chemistry. DP Chemistry Review DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission 2015. M33 Coimisiún na Scrúduithe Stáit State Examinations Commission LEAVING CERTIFICATE EXAMINATION, 2015 CHEMISTRY ORDINARY LEVEL TUESDAY, 16 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions

More information

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7. Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

More information