# The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10

Size: px
Start display at page:

Download "The Gas Laws. Our Atmosphere. Pressure = Units of Pressure. Barometer. Chapter 10"

Transcription

1 Our Atmosphere The Gas Laws 99% N 2 and O 2 78% N Nitrogen Chapter 10 21% O 2 1% CO 2 and the Noble Gases Oxygen Gas Carbon dioxide and Noble Gases Pressure Pressure = Force Area (Needles, High Heels, Snow shoes) Caused by the collisions of gases against a container We live at about 1 atmosphere of pressure Barometer Units of Pressure Torricelli (1643) Height of column stayed about 760 mm (760 torr) The higher the elevation, the lower the mercury Weather Rising pressure calm weather Dropping pressure storm (fast moving air) All of the following are equal: 760 mm Hg (760 torr) 29.9 inches Hg (weather reporting) 1 atmosphere (chemistry) kpa (kilopascals, physics) 760 mm = 29.9 in = 1 atmosphere = kpa (1 psi = 14.7 atm) 1

2 Converting Pressures The Ideal Gas Law Examples: 1. Express 485 torr in atmospheres. (0.638 atm) 2. Convert 2.4 atmospheres to mm Hg. (1824 mm Hg) 3. Convert 95.0 kpa to atmospheres and mm Hg. (0.938 atm, 712 mm Hg) PV = nrt P = pressure in atmosphere V = volume in Liters n = number of moles T = Temperature in Kelvin R = gas constant R = L-atm / mol-k The Ideal Gas Law STP Examples: 1. What is the pressure of a 1.45 mol sample of a gas in a 20.0 L container at 25 o C? (1.77 atm) 2. What volume will 5.00 grams of H 2 occupy at 10.0 o C and 1 atm of pressure? (58.1 L) 3. How many grams of O 2 are needed to occupy a ml aerosol can at 20.0 o C and atmospheres? (0.600 g) Standard Temperature & Pressure Standard Temperature = 0 o C (273 K) Standard Pressure = 1 atm 1 mole of a gas occupies 22.4 L at STP 1 mole or 22.4 L 22.4 L 1 mole STP Examples: 1. What volume will moles of nitrogen gas occupy at STP? 2. How many grams of chlorine (Cl 2 ) gas are present in 50.0 L at STP? 12.0 grams of Cl 2 is introduced into a 2.00 L flask at 25 o C. a) Calculate the pressure of the gas b) Convert the pressure to mm Hg. c) Calculate the volume the gas would occupy at STP. 2

3 Pressure Combined Gas Law P 1 V 1 = n 1 RT 1 P 2 V 2 = n 2 RT 2 Solve both equations for R R = P 1 V 1 R = P 2 V 2 n 1 T 1 n 2 T 2 Boyle s Law Boyle s Law Apparatus Demo Boyle s Law The pressure and volume of a gas are inversely related Bicycle pump example Piston down low volume, high pressure Piston up high volume, low pressure P 1 V 1 = P 2 V 2 n 1 T 1 n 2 T 2 Boyle s Law Pressure vs. Volume Example: 1. The volume of a car s cylinder is 475 ml at 1.05 atm. What is the volume when the cylinder is compressed and the pressure is 5.65 atm? P 1 V 1 = P 2 V 2 n 1 T 1 n 2 T 2 Volume (Answer: 88.3 ml) Example: Boyle s Law 2. A weather balloon has a volume of 40.0 liters on the surface of the earth at 1.00 atm. What will be the volume at atm as it rises? P 1 V 1 = P 2 V 2 Charles Law Charles Law The temperature and volume of a gas are directly related HOTTER = BIGGER A gas increases in volume 1/273 rd per degree celsius Can be used to find absolute zero Temperature must be in Kelvin n 1 T 1 n 2 T 2 3

4 Charles Law Charles Law 1. A basketball has a volume of 12.0 L when blown up at o C. What will be the volume if it is taken outside on a day when it is only 5.00 o C? Collapses to: V 1 = V 2 T 1 T 2 P 1 V 1 = P 2 V 2 n 1 T 1 n 2 T 2 Charles Law 2. If a tire contains 30.0 L of air at 10.0 o C, what volume will it occupy when it is driven and warms up to 50.0 o C? (34.2 L) Gay-Lussac s Law Gay-Lussac s Law = temperature and pressure of a gas are directly related 1. Gas in a spray can has a pressure of 5.00 atm at 25.0 o C. What will be the pressure at o C? (11.3 atm) P 1 V 1 = P 2 V 2 n 1 T 1 n 2 T 2 4

5 Avagadro s Law Avagadro s Law = The volume of a gas is directly proportional to the moles present MORE = BIGGER 1. A balloon has a volume of 1.00 L when 50.0 grams of N 2 are in the balloon. What is the volume if an additional 25.0 grams of N 2 are added? (1.50 L) 1. The volume of mol of a gas is ml at 1.00 atm and 20.0 o C. What is the volume at 2.00 atm and 30.0 o C? (259 ml) Gas Density and Molar Mass Ex 1 Remember D = mass volume Molar Mass = mass moles What is the density of carbon tetrachloride vapor at 714 torr and 125 o C? (HINT: Pretend 1 L, solve for n) (4.43 g/l) Ex 2 Ex 3 The average molar mass of atmosphere of Titan (Saturn s largest moon) is 28.6 g/mol. If the surface temperature is 95 K and the pressure 1.6 atm, calculate the gas density of Titan s atmosphere? A 936 ml flask masses g empty. When it is filled with gas to a pressure of 735 torr at 31.0 o C, it is found to mass g. What is the molar mass of the gas? (ANS: 5.9 g/l) 5

6 Ex 4 n = (0.967 atm)(0.936 L) ( L-atm/mol-K)(304 K) n = mol mass = g g = 2.89 g Calculate the average molar mass of dry air if it has a density of 1.17 g/l at 21 o C and torr. MM = 2.89 g = 79.6 g/mol mol ANS: 29.0 g/mol Gases and Reaction Stoichiometry: Ex 1 Calculate the molar mass of a gas whose density is 2.59 g/l at STP. 1. What mass of Al is needed to produce 50.0 L of H 2 at STP? 2Al(s) + 6HCl(aq) 2AlCl 3 (aq) + 3H 2 (g) (ANS: 40.2 g Al) Gases and Reaction Stoichiometry: Ex 2 2. What volume of NO gas measured at atm and 25 o C will be produced from the reaction of 19.5 g of O 2? 4NH 3 (g) + (Ans: 16.4 L) 5O 2 (g) 4NO(g) + 6H 2 O(l) Gases and Reaction Stoichiometry: Ex 3 3. Car safety bags are inflated through the decomposition of NaN 3. How many grams of NaN 3 are needed to produce 36.0 L of N 2 at 1.15 atm and 26.0 o C? (Ans: 73.1 g) 2NaN 3 (s) 2Na(s) + 3N 2 (g) 6

7 Gases and Reaction Stoichiometry: Ex 4 4. How many liters of H 2 and N 2 at 1.00 atm and 15.0 o C are needed to produce grams of NH 3? N 2 (g) + 3H 2 (g) 2NH 3 (g) Dalton s Law of Partial Pressures Dalton s Law the total pressure of a gas is equal to the sum of the partial pressures P tot = P A + P B + P C + P D +.. P atm = P N2 + P O2 + P rest 1 atm = 0.78atm atm atm Dalton s Law of Partial Pressures 1. Three gases are mixed in a 5.00 L container. In the container, there are 255 torr of Ar, 228 torr of N 2, and 752 torr of H 2. What is the total pressure? (1.63 atm) Dalton s Law of Partial Pressures 2. On a humid day, the partial pressure of water in the atmosphere is 18.0 torr. a) If the total pressure is 766 torr, what are the pressures of all of the other gases? b) If the atmosphere is 78.0% N 2 and 21.0% O 2, what are their pressures on this humid day? Dalton s Law of Partial Pressures Mole Fraction 3. What is the total pressure (in atm) exerted by a mixture of 12.0 g of N 2 and 12.0 g of O 2 in a 2.50 L container at 25.0 o C? (HINT: Calculate the moles of each gas, then use PV=nRT twice). (ANS: 7.87 atm) Mole fraction = moles gas A total moles P A = X A P tot = X A 7

8 Mole Fraction: Ex 1 A gas mixture contains mol of oxygen and mole of nitrogen. If the total pressure is 745 torr, what is the partial pressure of the two gases? X O2 = mol = mol X N2 = mol = mol P O2 = X O2 P tot P O2 = (0.286)(745 torr) = 213 torr P N2 = X N2 P tot P N2 = (0.714)(745 torr) = 532 torr Ex 2 The atmosphere of Titan is 82 mol % nitrogen, 12 mol % argon, and 6 mol % methane. Calculate the partial pressure of each gas if the total pressure on Titan is 1220 torr. P N2 = (0.82)(1220 torr) = 1000 torr P Ar = (0.12)(1220 torr) = 150 torr P CH4 = (0.06)(1220 torr) = 73 torr Ex 3 What is the mole fraction and mole percent of oxygen in exhaled air if P O2 is 116 torr and the P total is 760 torr? P O2 = X O2 P tot X O2 = P O2 /P tot X O2 = 116 torr/760 torr = (15.3%) Ex 4 Gas Collection Over Water A mixture contains 2.15 g H 2 and 34.0 g of O 2. Calculate the partial pressure of each gas if the total pressure is 2.05 atm. P tot = P gas + P H2O ANS: 1.03 atm H 2 and 1.02 atm O 2 8

9 Ex 1 A sample of KClO 3 is decomposed as shown. If 250 ml of gas are collected at 26 o C and 765 torr total pressure, calculate the partial pressure of O 2. 2KClO 3 (s) 2KCl(s) + 3O 2 (g) P tot = P O2 + P H2O P O2 = P tot - P H2O P O2 = 765 torr 25 torr = 740 torr (0.974 atm) How many moles of gas were collected? n = PV/RT n = (0.974 atm)(0.250 L) ( L-atm/mol-K)(299K) = mole Ex 2 How many grams of KClO 3 were decomposed? 2KClO 3 (s) 2KCl(s) + 3O 2 (g) mol When a sample of NH 4 NO 2 is decomposed, 511 ml of N 2 are collected over water at 26 o C and 745 torr total pressure. How many grams of NH 4 NO 2 were decomposed? NH 4 NO 2 (s) N 2 (g) + 2H 2 O(g) ANS: g KClO 3 ANS: 1.26 g Root Mean Square Speed of atoms/molecules m = (3RT/M) 1/2 M = molar mass (kg/mol) R = J/mol-K Graham s Law of Effusion the higher the molar mass of a gas, the slower it moves v 1 = m 2 v 2 m 1 Calculate the rms speed of NH 3 and HCl (25 o C). 9

10 Graham s Law Example Graham s Law Example At the same temperature, how much faster does an He atom move than an N 2 molecule? (Ans: 2.65 times faster) Which is faster (and by how much): Cl 2 or O 2? (Ans: O 2 is about 1.5 times faster) Ideal Gas (Kinetic Molecular Theory) Compressible (1000X less dense than liquids) Rapid Constant Motion Temp a KE (1/2mv 2 ) Elastic Collisions Real Gases (Van der Waals Equation) Real Gases 1. Would the ideal gas law work better on Mars (0.6 kpa pressure) or Venus (9300 kpa)? Explain. 2. Would the ideal gas law work better for H 2 O or Ar? Explain. No Volume Volume of molecules Important at high pressures No Attraction Molecular attraction Important at low temperatures (colder, stickier ) 10

11 1. A gas has a volume of ml at C and torr. What would the volume of the gas be at C and torr of pressure? 2. What is the volume at STP of 22 grams of CO 2? g of XeF 4 gas is placed into an evacuated 3.00 liter container at 80 C. What is the pressure in the container? The atmosphere of Jupiter is composed almost entirely of hydrogen (H 2 ) and helium (He). If the average molar mass of Jupiter s atmosphere is g/mole, calculate the percent composition. (ANS: 87.3% H 2, 12.7% He) The atmosphere of Mars is composed of CO 2, N 2 and 1.6% Ar. If the average molar mass of the gases in Mars atmosphere is g/mole, calculate the percentages of CO 2 and N a) 646 torr b) 105 kpa c) atm d) atm e) 2.53 bar 22. a) X 10-5 Earth atm b) 9,100 kpa 26. a) 2.31 L b) 6.67 L 34. a) 33.4 L b) 1170 K c) 3.81 atm d) mol g Ne X O 3 molecules 40. a) a) 5.07 atm b) 1.17 L c) 5.61 atm 42. a) 13.9 kg b) 9760 L c) 273 K. d) 1.96 X 10 4 kpa 46. CO 2 < SO 2 < HBr 50. a) 5.63 g/l b) 171 g/mol g CaH kg Fe 62. P tot = 23.3 atm 66. P N2 =0.389 atm, P H2 =0.968, P NH3 =0.496 atm 68. a) X O2 =0.149, X N2 = 0.239, X H2 =0.612 b) P O 2=0.303atm P N2 =0.488 atm P H2 =1.25atm 70. a) atm b) atm c) P t = atm 76. a) Same # molecules b) N 2 more dense c) Ave KE are equal d) CH4 effuses faster 78. a) SF 6 < HBr < Cl 2 < H 2 S < CO b) 517 m/s (CO) 325 m/s (Cl 2 ) 11

12 12

### Gas Laws. The kinetic theory of matter states that particles which make up all types of matter are in constant motion.

Name Period Gas Laws Kinetic energy is the energy of motion of molecules. Gas state of matter made up of tiny particles (atoms or molecules). Each atom or molecule is very far from other atoms or molecules.

### CHEMISTRY GAS LAW S WORKSHEET

Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The volume of a fixed mass of gas is

### Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1

Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0

### Boyles Law. At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 P = P

Boyles Law At constant temperature the volume occupied by a fixed amount of gas is inversely proportional to the pressure on the gas 1 or k 1 Boyles Law Example ressure olume Initial 2.00 atm 100 cm 3

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55

### CHAPTER 12. Gases and the Kinetic-Molecular Theory

CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids

### Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).

CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse

### Gases. States of Matter. Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large Chaotic (random)

Gases States of Matter States of Matter Kinetic E (motion) Potential E(interaction) Distance Between (size) Molecular Arrangement Solid Small Small Ordered Liquid Unity Unity Local Order Gas High Large

### = 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm

Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by

### 7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.

CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,

### Kinetic Theory of Gases. 6.1 Properties of Gases 6.2 Gas Pressure. Properties That Describe a Gas. Gas Pressure. Learning Check.

Chapter 6 Gases Kinetic Theory of Gases 6.1 Properties of Gases 6.2 Gas Pressure A gas consists of small particles that move rapidly in straight lines. have essentially no attractive (or repulsive) forces.

### Exam 4 Practice Problems false false

Exam 4 Practice Problems 1 1. Which of the following statements is false? a. Condensed states have much higher densities than gases. b. Molecules are very far apart in gases and closer together in liquids

### The Mole. Chapter 10. Dimensional Analysis. The Mole. How much mass is in one atom of carbon-12? Molar Mass of Atoms 3/1/2015

The Mole Chapter 10 1 Objectives Use the mole and molar mass to make conversions among moles, mass, and number of particles Determine the percent composition of the components of a compound Calculate empirical

### CHEMISTRY. Matter and Change. Section 13.1 Section 13.2 Section 13.3. The Gas Laws The Ideal Gas Law Gas Stoichiometry

CHEMISTRY Matter and Change 13 Table Of Contents Chapter 13: Gases Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry State the relationships among pressure, temperature,

### Gas Laws. vacuum. 760 mm. air pressure. mercury

Gas Laws Some chemical reactions take place in the gas phase and others produce products that are gases. We need a way to measure the quantity of compounds in a given volume of gas and relate that to moles.

### Gases and Kinetic-Molecular Theory: Chapter 12. Chapter Outline. Chapter Outline

Gases and Kinetic-Molecular heory: Chapter Chapter Outline Comparison of Solids, Liquids, and Gases Composition of the Atmosphere and Some Common Properties of Gases Pressure Boyle s Law: he Volume-Pressure

### Chapter 10. Can You... 1. draw the Lewis structure for a given covalently bonded molecule?

Chapter 10 Can You... 1. draw the Lewis structure for a given covalently bonded molecule? e.g. SF 6 and CH 3 Cl 2. identify and count the number of non-bonding and bonding domains within a given covalently

### 87 16 70 20 58 24 44 32 35 40 29 48 (a) graph Y versus X (b) graph Y versus 1/X

HOMEWORK 5A Barometer; Boyle s Law 1. The pressure of the first two gases below is determined with a manometer that is filled with mercury (density = 13.6 g/ml). The pressure of the last two gases below

### AS1 MOLES. oxygen molecules have the formula O 2 the relative mass will be 2 x 16 = 32 so the molar mass will be 32g mol -1

Moles 1 MOLES The mole the standard unit of amount of a substance the number of particles in a mole is known as Avogadro s constant (L) Avogadro s constant has a value of 6.023 x 10 23 mol -1. Example

### Chemistry 110 Lecture Unit 5 Chapter 11-GASES

Chemistry 110 Lecture Unit 5 Chapter 11-GASES I. PROPERITIES OF GASES A. Gases have an indefinite shape. B. Gases have a low density C. Gases are very compressible D. Gases exert pressure equally in all

### F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.

Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.

### 2. The percent yield is the maximum amount of product that can be produced from the given amount of limiting reactant.

UNIT 6 stoichiometry practice test True/False Indicate whether the statement is true or false. moles F 1. The mole ratio is a comparison of how many grams of one substance are required to participate in

### Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Assessment Chapter Test A Chapter: States of Matter In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. The kinetic-molecular

### ESSAY. Write your answer in the space provided or on a separate sheet of paper.

Test 1 General Chemistry CH116 Summer, 2012 University of Massachusetts, Boston Name ESSAY. Write your answer in the space provided or on a separate sheet of paper. 1) Sodium hydride reacts with excess

### Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.

Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven

### 1.4.6-1.4.8 Gas Laws. Heat and Temperature

1.4.6-1.4.8 Gas Laws Heat and Temperature Often the concepts of heat and temperature are thought to be the same, but they are not. Perhaps the reason the two are incorrectly thought to be the same is because

### Gases. Macroscopic Properties. Petrucci, Harwood and Herring: Chapter 6

Gases Petrucci, Harwood and Herring: Chapter 6 CHEM 1000A 3.0 Gases 1 We will be looking at Macroscopic and Microscopic properties: Macroscopic Properties of bulk gases Observable Pressure, volume, mass,

### Chemistry 13: States of Matter

Chemistry 13: States of Matter Name: Period: Date: Chemistry Content Standard: Gases and Their Properties The kinetic molecular theory describes the motion of atoms and molecules and explains the properties

### CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)

CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26

### Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K

Temperature Measure of KE At the same temperature, heavier molecules have less speed Absolute Zero -273 o C 0 K Kinetic Molecular Theory of Gases 1. Large number of atoms/molecules in random motion 2.

### Problem Solving. Stoichiometry of Gases

Skills Worksheet Problem Solving Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations.

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Given: 4 NO2(g) + O2(g) 2 N2O5(g) ΔH = -110.2 kj find ΔH for N2O5(g) 2 NO2(g) + 1/2 O2(g).

### Chapter 13 Gases. Review Skills

Chapter 13 Gases t s Monday morning, and Lilia is walking out of the chemistry building, thinking about the introductory lecture on gases that her instructor just presented. Dr. Scanlon challenged the

### Chapter 8: Gases and Gas Laws.

133 Chapter 8: Gases and Gas Laws. The first substances to be produced and studied in high purity were gases. Gases are more difficult to handle and manipulate than solids and liquids, since any minor

### EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 15: Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### Molar Mass of Butane

Cautions Butane is toxic and flammable. No OPEN Flames should be used in this experiment. Purpose The purpose of this experiment is to determine the molar mass of butane using Dalton s Law of Partial Pressures

### DETERMINING THE MOLAR MASS OF CARBON DIOXIDE

DETERMINING THE MOLAR MASS OF CARBON DIOXIDE PURPOSE: The goal of the experiment is to determine the molar mass of carbon dioxide and compare the experimentally determined value to the theoretical value.

### CHEMISTRY 113 EXAM 4(A)

Summer 2003 1. The molecular geometry of PF 4 + ion is: A. bent B. trigonal planar C. tetrahedral D. octahedral CHEMISTRY 113 EXAM 4(A) 2. The Cl-C-Cl bond angle in CCl 2 O molecule (C is the central atom)

### Review - After School Matter Name: Review - After School Matter Tuesday, April 29, 2008

Name: Review - After School Matter Tuesday, April 29, 2008 1. Figure 1 The graph represents the relationship between temperature and time as heat was added uniformly to a substance starting at a solid

### IB Chemistry. DP Chemistry Review

DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount

### AP CHEMISTRY 2009 SCORING GUIDELINES (Form B)

AP CHEMISTRY 2009 SCORING GUIDELINES (Form B) Question 3 (10 points) 2 H 2 O 2 (aq) 2 H 2 O(l) + O 2 (g) The mass of an aqueous solution of H 2 O 2 is 6.951 g. The H 2 O 2 in the solution decomposes completely

### THE IDEAL GAS LAW AND KINETIC THEORY

Chapter 14 he Ideal Gas Law and Kinetic heory Chapter 14 HE IDEAL GAS LAW AND KINEIC HEORY REIEW Kinetic molecular theory involves the study of matter, particularly gases, as very small particles in constant

### A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences.

I. MOLECULES IN MOTION: A. Kinetic Molecular Theory (KMT) = the idea that particles of matter are always in motion and that this motion has consequences. 1) theory developed in the late 19 th century to

### 7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter

7. Gases, Liquids, and Solids 7.1 Kinetic Molecular Theory of Matter Kinetic Molecular Theory of Matter The Kinetic Molecular Theory of Matter is a concept that basically states that matter is composed

### THE KINETIC THEORY OF GASES

Chapter 19: THE KINETIC THEORY OF GASES 1. Evidence that a gas consists mostly of empty space is the fact that: A. the density of a gas becomes much greater when it is liquefied B. gases exert pressure

### Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

### Gases. Solids' particles vibrate. This is the only motion experienced by this state of matter.

1. Kinetic Molecular Theory A. Main Points 1. All matter consists of particles: either atoms or molecules. For a gas, if it is monoatomic (like He or Ar), it will consist of atoms. If it consists of I2,

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

General Chemistry PHS 1015 Practice Exam 4 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about pressure

### CHEM 120 Online Chapter 7

CHEM 120 Online Chapter 7 Date: 1. Which of the following statements is not a part of kinetic molecular theory? A) Matter is composed of particles that are in constant motion. B) Particle velocity increases

### Chapter 3: Stoichiometry

Chapter 3: Stoichiometry Key Skills: Balance chemical equations Predict the products of simple combination, decomposition, and combustion reactions. Calculate formula weights Convert grams to moles and

### Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test

Unit 3 Notepack Chapter 7 Chemical Quantities Qualifier for Test NAME Section 7.1 The Mole: A Measurement of Matter A. What is a mole? 1. Chemistry is a quantitative science. What does this term mean?

### HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

### Stoichiometry V = 9.98 L CO2. 34.0 ml H 2 SO 4 soln 6.0 mol H 2 SO. 1000 ml H 2 SO 4 soln. 2 mol CO = 0.408 mol CO 2 1 mol H 2 SO 4

Stoichiometry We cannot count molecules so instead we weigh them; however, it is etremely inconvenient to weigh gases. So, when adding gases to a reaction how do we measure the amount of gas? We use the

### Moles. Moles. Moles. Moles. Balancing Eqns. Balancing. Balancing Eqns. Symbols Yields or Produces. Like a recipe:

Like a recipe: Balancing Eqns Reactants Products 2H 2 (g) + O 2 (g) 2H 2 O(l) coefficients subscripts Balancing Eqns Balancing Symbols (s) (l) (aq) (g) or Yields or Produces solid liquid (pure liquid)

### = 800 kg/m 3 (note that old units cancel out) 4.184 J 1000 g = 4184 J/kg o C

Units and Dimensions Basic properties such as length, mass, time and temperature that can be measured are called dimensions. Any quantity that can be measured has a value and a unit associated with it.

### 5. Which temperature is equal to +20 K? 1) 253ºC 2) 293ºC 3) 253 C 4) 293 C

1. The average kinetic energy of water molecules increases when 1) H 2 O(s) changes to H 2 O( ) at 0ºC 3) H 2 O( ) at 10ºC changes to H 2 O( ) at 20ºC 2) H 2 O( ) changes to H 2 O(s) at 0ºC 4) H 2 O( )

### EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES

Name Section EXPERIMENT 13: THE IDEAL GAS LAW AND THE MOLECULAR WEIGHT OF GASES PRE-LABORATORY QUESTIONS The following preparatory questions should be answered before coming to lab. They are intended to

### Mole Notes.notebook. October 29, 2014

1 2 How do chemists count atoms/formula units/molecules? How do we go from the atomic scale to the scale of everyday measurements (macroscopic scale)? The gateway is the mole! But before we get to the

### Chapter 3. Chemical Reactions and Reaction Stoichiometry. Lecture Presentation. James F. Kirby Quinnipiac University Hamden, CT

Lecture Presentation Chapter 3 Chemical Reactions and Reaction James F. Kirby Quinnipiac University Hamden, CT The study of the mass relationships in chemistry Based on the Law of Conservation of Mass

### Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.

Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven

### 1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams?

Name: Tuesday, May 20, 2008 1. What is the molecular formula of a compound with the empirical formula PO and a gram-molecular mass of 284 grams? 2 5 1. P2O 5 3. P10O4 2. P5O 2 4. P4O10 2. Which substance

### Other Stoich Calculations A. mole mass (mass mole) calculations. GIVEN mol A x CE mol B. PT g A CE mol A MOLE MASS :

Chem. I Notes Ch. 12, part 2 Using Moles NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 1 MOLE = 6.02 x 10 23 representative particles (representative particles

### Page 2. Base your answers to questions 7 through 9 on this phase diagram

1. The normal boiling point of water is often depressed at high altitudes. Which of the following explains this phenomenon? t high altitudes, the lower atmospheric pressure equals the equilibrium water

### CHEMISTRY II FINAL EXAM REVIEW

Name Period CHEMISTRY II FINAL EXAM REVIEW Final Exam: approximately 75 multiple choice questions Ch 12: Stoichiometry Ch 5 & 6: Electron Configurations & Periodic Properties Ch 7 & 8: Bonding Ch 14: Gas

### DATE PERFORMED: DATE DUE:

Sample lab report The first page is the cover page for the report. Title: Experiment #12 Determination of the Atomic Mass of Zinc ( p 117, Hunt and Block) YOUR NAME: PARTNER(S) NAME: DATE PERFORMED: DATE

### (1) The size of a gas particle is negligible as compared to the volume of the container in which the gas is placed.

Gas Laws and Kinetic Molecular Theory The Gas Laws are based on experiments, and they describe how a gas behaves under certain conditions. However, Gas Laws do not attempt to explain the behavior of gases.

### UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW

Version B UNIVERSITY OF VICTORIA CHEMISTRY 102 Midterm Test 1 January 31, 2014 5-6 pm (60 minutes) Version B DISPLAY YOUR STUDENT ID CARD ON THE TOP OF YOUR DESK NOW Answer all multiple choice questions

### CLASSICAL CONCEPT REVIEW 8

CLASSICAL CONCEPT REVIEW 8 Kinetic Theory Information concerning the initial motions of each of the atoms of macroscopic systems is not accessible, nor do we have the computational capability even with

### EXPERIMENT 9 Evaluation of the Universal Gas Constant, R

Outcomes EXPERIMENT 9 Evaluation of the Universal Gas Constant, R After completing this experiment, the student should be able to: 1. Determine universal gas constant using reaction of an acid with a metal.

### Final Exam CHM 3410, Dr. Mebel, Fall 2005

Final Exam CHM 3410, Dr. Mebel, Fall 2005 1. At -31.2 C, pure propane and n-butane have vapor pressures of 1200 and 200 Torr, respectively. (a) Calculate the mole fraction of propane in the liquid mixture

### Appendix D. Reaction Stoichiometry D.1 INTRODUCTION

Appendix D Reaction Stoichiometry D.1 INTRODUCTION In Appendix A, the stoichiometry of elements and compounds was presented. There, the relationships among grams, moles and number of atoms and molecules

### Element of same atomic number, but different atomic mass o Example: Hydrogen

Atomic mass: p + = protons; e - = electrons; n 0 = neutrons p + + n 0 = atomic mass o For carbon-12, 6p + + 6n 0 = atomic mass of 12.0 o For chlorine-35, 17p + + 18n 0 = atomic mass of 35.0 atomic mass

### Determining Equivalent Weight by Copper Electrolysis

Purpose The purpose of this experiment is to determine the equivalent mass of copper based on change in the mass of a copper electrode and the volume of hydrogen gas generated during an electrolysis reaction.

### Statistical Mechanics, Kinetic Theory Ideal Gas. 8.01t Nov 22, 2004

Statistical Mechanics, Kinetic Theory Ideal Gas 8.01t Nov 22, 2004 Statistical Mechanics and Thermodynamics Thermodynamics Old & Fundamental Understanding of Heat (I.e. Steam) Engines Part of Physics Einstein

### Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O

Balance the following equation: KClO 3 + C 12 H 22 O 11 KCl + CO 2 + H 2 O Ans: 8 KClO 3 + C 12 H 22 O 11 8 KCl + 12 CO 2 + 11 H 2 O 3.2 Chemical Symbols at Different levels Chemical symbols represent

### 10.7 Kinetic Molecular Theory. 10.7 Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory. Kinetic Molecular Theory

The first scheduled quiz will be given next Tuesday during Lecture. It will last 5 minutes. Bring pencil, calculator, and your book. The coverage will be pp 364-44, i.e. Sections 0.0 through.4. 0.7 Theory

### Chemistry B11 Chapter 4 Chemical reactions

Chemistry B11 Chapter 4 Chemical reactions Chemical reactions are classified into five groups: A + B AB Synthesis reactions (Combination) H + O H O AB A + B Decomposition reactions (Analysis) NaCl Na +Cl

### PHYS-2010: General Physics I Course Lecture Notes Section XIII

PHYS-2010: General Physics I Course Lecture Notes Section XIII Dr. Donald G. Luttermoser East Tennessee State University Edition 2.5 Abstract These class notes are designed for use of the instructor and

### States of Matter CHAPTER 10 REVIEW SECTION 1. Name Date Class. Answer the following questions in the space provided.

CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. ideal gas

### Name Date Class STOICHIOMETRY. SECTION 12.1 THE ARITHMETIC OF EQUATIONS (pages 353 358)

Name Date Class 1 STOICHIOMETRY SECTION 1.1 THE ARITHMETIC OF EQUATIONS (pages 353 358) This section explains how to calculate the amount of reactants required or product formed in a nonchemical process.

### CSUS Department of Chemistry Experiment 8 Chem.1A

EXPERIMENT #8 Name: PRE-LABORATORY ASSIGNMENT: Lab Section 1. The alkali metals are so reactive that they react directly with water in the absence of acid. For example, potassium reacts with water as follows:

### Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

Name Date Class 10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches

### Concentration of a solution

Revision of calculations Stoichiometric calculations Osmotic pressure and osmolarity MUDr. Jan Pláteník, PhD Concentration of a solution mass concentration: grams of substance per litre of solution molar

### 13.1 The Nature of Gases. What is Kinetic Theory? Kinetic Theory and a Model for Gases. Chapter 13: States of Matter. Principles of Kinetic Theory

Chapter 13: States of Matter The Nature of Gases The Nature of Gases kinetic molecular theory (KMT), gas pressure (pascal, atmosphere, mm Hg), kinetic energy The Nature of Liquids vaporization, evaporation,

### 2014 Spring CHEM101 Ch1-2 Review Worksheet Modified by Dr. Cheng-Yu Lai,

Ch1 1) Which of the following underlined items is not an intensive property? A) A chemical reaction requires 3.00 g of oxygen. B) The density of helium at 25 C is 1.64 10-4 g/cm3. C) The melting point

### Chemistry 101 Generating Hydrogen Gas

Chemistry 101 Generating Hydrogen Gas Objectives To experimentally verify the molar volume of hydrogen gas at STP To gain experience in collecting gas over water Discussion The molar volume of a gas is

### Name Date Class CHEMICAL QUANTITIES. SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296)

10 CHEMICAL QUANTITIES SECTION 10.1 THE MOLE: A MEASUREMENT OF MATTER (pages 287 296) This section defines the mole and explains how the mole is used to measure matter. It also teaches you how to calculate

### CHEMICAL EQUILIBRIUM (ICE METHOD)

CHEMICAL EQUILIBRIUM (ICE METHOD) Introduction Chemical equilibrium occurs when opposing reactions are proceeding at equal rates. The rate at which the products are formed from the reactants equals the

### Calculations and Chemical Equations. Example: Hydrogen atomic weight = 1.008 amu Carbon atomic weight = 12.001 amu

Calculations and Chemical Equations Atomic mass: Mass of an atom of an element, expressed in atomic mass units Atomic mass unit (amu): 1.661 x 10-24 g Atomic weight: Average mass of all isotopes of a given

### Chemistry: Chemical Equations

Chemistry: Chemical Equations Write a balanced chemical equation for each word equation. Include the phase of each substance in the equation. Classify the reaction as synthesis, decomposition, single replacement,

### Chapter 3 Mass Relationships in Chemical Reactions

Chapter 3 Mass Relationships in Chemical Reactions Student: 1. An atom of bromine has a mass about four times greater than that of an atom of neon. Which choice makes the correct comparison of the relative

### AP Physics Course 1 Summer Assignment. Teachers: Mr. Finn, Mrs. Kelly, Mr. Simowitz, Mr. Slesinski

AP Physics Course 1 Summer Assignment Teachers: Mr. Finn, Mrs. Kelly, Mr. Simowitz, Mr. Slesinski On the following pages, there are six sections that use the basic skills that will be used throughout the

### Geol 116 The Planet Class 7-1 Feb 28, 2005. Exercise 1, Calculate the escape velocities of the nine planets in the solar system

Exercises/Discussions Atmospheric Composition: Escape Velocities and Surface Temperature Objectives Escape velocity and the mass and size of a planetary body The effect of escape velocity and surface temperature

### Chapter 13 - Gases Special Topic 13.1: A Greener Way to Spray Paint Special Topic 13.2: Green Decaf Coffee

19 Chapter 1 - Gases Review Skills 1.1 Gases and Their Properties deal Gases Properties of Gases Discovering the Relationships Between Properties The Relationship Between Volume and Pressure nternet: Boyle

### CHEM 36 General Chemistry EXAM #1 February 13, 2002

CHEM 36 General Chemistry EXAM #1 February 13, 2002 Name: Serkey, Anne INSTRUCTIONS: Read through the entire exam before you begin. Answer all of the questions. For questions involving calculations, show

### Calculating Atoms, Ions, or Molecules Using Moles

TEKS REVIEW 8B Calculating Atoms, Ions, or Molecules Using Moles TEKS 8B READINESS Use the mole concept to calculate the number of atoms, ions, or molecules in a sample TEKS_TXT of material. Vocabulary

### The Mole. Chapter 2. Solutions for Practice Problems

Chapter 2 The Mole Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the full set of

### Name Class Date. Section: Calculating Quantities in Reactions. Complete each statement below by writing the correct term or phrase.

Skills Worksheet Concept Review Section: Calculating Quantities in Reactions Complete each statement below by writing the correct term or phrase. 1. All stoichiometric calculations involving equations