Digital Logic Design: Memory & FPGAs Page 1 of 10. Stack Top. Register 1. Register 2. Stack Control. Register 3. Register 4.

Size: px
Start display at page:

Download "Digital Logic Design: Memory & FPGAs Page 1 of 10. Stack Top. Register 1. Register 2. Stack Control. Register 3. Register 4."

Transcription

1 Last In-First Out (LIFO) Memory Last In-First Out Memory finds applications in computer systems where it is used to implement a stack. The operation of a stack can be understood by viewing a stack of plates. In a stack of plates the first plate is placed at the bottom the next plate placed is placed on the top, the third plate is placed on the top of the second plate and so on. Plates are removed one at a time from the top of the stack, thus the last plate placed on the stack top is the first to be removed followed by the second plate and then the plate at the bottom which was placed first. In a register based LIFO memory implementation a set of Parallel In/Parallel Out registers are connected together such that data is pushed down or pulled up when data is stored or removed from the memory respectively. Figure Stack Top Register 1 Register 2 Stack Control Register 3 Register 4 Register 5 Figure 43.1 A five byte LIFO Memory In the LIFO memory shown, the first 8-bit data value is stored in the first register Reg. 1. To store the next value, the first value stored in Reg. 1 is pushed down (shifted) to the second register Reg. 2. The second 8-bit data value is written into the first register Reg. 1. The third data value can only be stored when both the previous values are pushed (shifted) down to the Registers 2 and 3. A maximum of five, 8-bit data values can be stored in the LIFO register. The fifth and the last value stored in the first register Reg. 1 is the first value to be read out. The remaining four values in the memory are pulled (shifted) up. At any time new data can be added to the LIFO memory or the stored data can be read out. Shift Register based Stack implementation finds use in specialized digital systems. A practical way to implement the program stack which a program under execution uses to access variables is by means of the RAM memory. The stack is known as a RAM Stack. A special purpose register known as the Stack Pointer Register stores the address of the top of the stack, a reserved area in the RAM memory. As data values Digital Design: Memory & FPGAs Page 1 of 10

2 are written or read from the RAM stack, the Stack Pointer Register increments or decrements its contents always pointing to the stack top. Figure Initially, the Stack Pointer Register has the contents 0, which is address of memory location of the stack. A value 7 is stored in the Stack by writing it to memory location 0 pointed to by the Stack Pointer Register. To store the next value 4 in the stack the contents of the Stack Register are incremented so that the next vacant location in the Stack is accessed. The new data value 4 is written at the new location. Similarly, data values 9 and 8 are stored in the next two consecutive locations in the Stack. The Stack Pointer Register points to the Stack Top (location 3) which has the data value 8 stored. A data value can be read from the Stack Top by reading the data value from the address pointed to by the Stack Pointer Register. After reading the data value the contents of the Stack Pointer Register are decremented to point to the new Stack Top. Figure 43.2 Memory Based Stack Memory Expansion Digital systems require different amounts of memory in the form of RAM and ROM Memory depending upon specific applications. A computer requires large amounts of RAM memory to store multiple application programs, data and the operating system. In a computer, part of the RAM is reserved to support the Video Memory, Stack and buffers. The ROM used by a computer is relatively very small as it stores few bytes of code used to Boot the Computer system on power up. Micro-controller based digital system designed for specific applications do not have large memory requirement, in fact the total memory requirement of such micro-controller systems is met by on-board RAM and ROM having a total storage capacity of few hundred of kilobytes. Computer and Digital systems have the capability to allow RAM memory to be expanded as the needed arises by inserting extra memory in dedicated memory sockets on the computer motherboard. Digital Design: Memory & FPGAs Page 2 of 10

3 The total amount of memory that is supported by any digital system depends upon the size of the address bus of the microprocessor or a micro-controller. A microprocessor having an address bus of 16 bits can generate 2 16 or unique addresses to access locations which allows either a single location RAM or a combination of RAM and ROM totalling memory locations to be connected to the microprocessor. It is also possible to initially have a location RAM connected to the microprocessor with the remaining address locations unoccupied allowing the microprocessor to execute a program that can be stored in locations. The remaining memory space can be utilized latter by connecting another location RAM. Microprocessors used in computer systems have memory spaces of the order of 2 32 and larger. The data unit size accessed by a microprocessor when it issues an address to either read or write from or to a memory also depends upon the microprocessor architecture more specifically the number of the data lines. A microprocessor having an 8-bit data bus can access a byte of information from any unique memory location. A microprocessor having a 16-bit data bus allows two bytes to be accessed from a memory location. Practically, microprocessors used in computer systems have up to 64 bit wide data buses allowing up to 8 bytes of data to be accessed simultaneously. A microprocessor that accesses 64-bits of data simultaneously requires RAM to be organized in such a way that allows 8 bytes of data to be accessed when ever any unique address is selected. On the other hand a microprocessor having a data bus of only 8-bits requires RAM that allows only a single byte of data to be accessed when ever any single address location is selected. The total memory requirement of a computer or digital system is determined by the size of the address and data bus of a microprocessor. Microprocessors which have small address bus and a data bus have a small memory space. Microprocessors which have wide address and data buses have very large memory spaces which are rarely fully occupied by RAM and ROM devices. Memory, both RAM and ROM are implemented in fixed data unit sizes of 1, 4 or 8 bits. Similarly, these memory devices are implemented having sizes in terms of total addressable locations which are restricted to address ranges between few hundred kilobytes to megabytes. The memories that are available in fixed sizes have to be connected together to form larger memories having appropriate data unit sizes and total number of addressable locations to fulfil the memory space requirements of a digital or computer system. Another important aspect of the RAM and ROM memories that are manufactured are the addresses of each memory location. For example, two 32Kbyte RAM chips have 2 15 locations each. The first addressable locations in both the RAM chips have an address 0. Similarly, the second and third locations in both the memory chips have addresses 1 and 2 respectively. If the two RAM chips are connected together to form a 64 Kbyte RAM then one of 32Kbyte memory chips should respond to the address between 0 and and the other 32Kbyte memory chip should respond to the address and The two memory chips have bases address 0 and respectively. Digital Design: Memory & FPGAs Page 3 of 10

4 Memory Map The Memory Map of any digital system specifies the total memory space that can be accessed by the microprocessor and the distribution of the total addressable space amongst RAM, ROM, stack and buffers. The memory map shown in the figure shows the division of 1 MByte of addressable space into ROM, RAM for storage of data, RAM for storage of program code, vacant space which can be used in the future and a stack. Figure The 1 MByte address space is divided into 16 equal blocks of 64 Kbytes each. The first 64Kbyte block having a base address 00000H is reserved for ROM memory. A maximum 64Kbyte sized ROM chip can be connected in the memory space. If a smaller ROM chip is connected in the memory space, the remaining unoccupied addresses can be utilized in future to expand the ROM memory by connecting extra ROM chips. The next block of 64KByte is reserved for storage of data by connecting a 64KByte RAM chip. The base address of the block is 10000H. The third block of 64KByte is used to store program code by connecting a 64KByte RAM chip. The base address of the third block is 20000H. The last 64KByte block having a base address of F0000H is reserved for implementing the stack. A 64Kbyte RAM chip is connected at the base address F0000H to support the Stack. Twelve blocks starting from base address 30000H are left unoccupied. These blocks can be used to connect additional RAM to increase the total amount of Memory RAM. Figure MByte Memory Map Digital Design: Memory & FPGAs Page 4 of 10

5 Expanding Data Unit Size Memories are implemented in 1, 4 and 8 bit data unit sizes. A processor that accesses 16-bit of data at each address location requires memory to be connected such that each address location allows access to 16-bits of data. In the example shown, two 4 K byte RAM chips are connected together to form a 4K Word (16-bit) memory or 8K Byte memory. Figure A 4KByte RAM memory chip has A 0 A 11 address lines to address 4K locations. The address lines of both the 4KByte RAM chips are connected together so that the same address is used to select identical memory locations in both the memory chips. Each 4KByte RAM chip has 8 data lines to allow access to 8-bits of data at each memory location. The address lines of both the memory chips are kept separate. The memory chip shown on the right stores the least significant byte of the 16-bit data and the chip on the left stores the most significant byte of the 16-bit data value. The least significant byte is accessed through data lines D 0 D 7 and the most significant byte is accessed through data lines D 8 D 15. The R / W control line of both the memory chips are also connected together so that a word (16-bit) value is read or written to the selected location. The CS pins of both the chips are also connected together so that both the memory chips are selected simultaneously when ever a read or write memory operation is carried out. Figure 43.4 Implementing 4K Word RAM using two 4K Byte RAM chips Digital Design: Memory & FPGAs Page 5 of 10

6 Expanding Memory Locations The two 4KByte memory chips can be connected together to form an 8 KByte memory thereby doubling the total number of memory locations. Addressing 8KByte of memory requires 13 address lines. The first 12 address lines A 0 A 11 of the two memory chips are connected together, the data lines of both the chips are also connected together. Since the data lines are shared, therefore at any given instant data can be read or written to one of the two chips. Selection of either of the two memory chips is done through the CS signal. The first memory chip which maps the address range from 0 to 4K is selected when the CS signal is set to logic 0. The second memory chip which maps the memory range 4K to 8K is connected to the CS through a NOT gate therefore it is selected when the signal is set to logic high. The CS line is connected to the A 12 address line which selects the first memory chip when it is logic 0, the second memory chip is selected when the A 12 signal is set to logic 1. Figure Figure 43.5 Implementing 8K Byte RAM using two 4K Byte RAM chips Expanding Data Unit Size and Memory Locations Memory chips can be connected together in different manners to increase the total size (locations) or the size of the data unit stored. Four 4K Byte chips can be connected together to implement an 8K x Word memory. Figure Chips A and B are connected to provide 4K x 16 bit of memory space and the chips C and D are connected to provide another 4K x 16 bit of memory space. The RAM chips A and B are selected simultaneously when A 12 address line is set to logic 0. The RAM chips C and D are Digital Design: Memory & FPGAs Page 6 of 10

7 selected simultaneously when A 12 address line is set to logic 1. The R / W control line is connected to all the four RAM chips. RAM chips A and C provide access to upper byte of the 16-bit data and RAM chips B and D provide access to the lower byte of the 16-bit data. Figure 43.6 An 8K x 16 RAM implemented using four 4K x 8 memory chips Address Decoders All memory chips have the first location identified by address zero. The next location has the address one and successive memory locations have addresses assigned in an ascending order. When these memory chips are connected to a microprocessor at the specified location represented in the memory map the memory chips are connected such that the memory chip has the start address specified by a Base Address and the successive memory locations are selected by ascending addresses with respect to the Base address. Thus the first memory location is accessed by the Base Address and the next successive location is accessed by Base Address +1 and so on. In the 8KByte memory implemented in figure 43.5 the first 4KByte memory has the base address 0000H and the second 4KByte memory chip has a base address 1000H. A memory chip is connected at the Base Address by selecting it when the specified Base Address is generated by the microprocessor. An Address Decoder detects the generated Base Address and selects the desired memory chip. Three 4KByte memory chips are shown to be connected at Base Addresses 0000H, 1000H and 2000H respectively. Figure A 2 x 4 decoder is used for address decoding. The most significant address lines A 12 and A 13 are connected to the two input lines of the 2 x 4 decoder. When both the address lines are logic 0, the base address is 0000 and the first 4K memory chip RAM1 is selected. When A 12 address line is logic 1 it Digital Design: Memory & FPGAs Page 7 of 10

8 indicates the Base Address 4K which selects the second 4K memory chip RAM2. When address line A 13 is set to logic 1 it indicates a Base Address 8K selecting the third 4K memory chip RAM3. Figure 43.7a Address Decoding of three 4KByte memory chips The memory map of the memory configuration shown in figure 43.7a is shown in figure 43.7b. A 13 A 12 Output 0 0 CS0 0 1 CS1 1 0 CS2 1 1 CS3 4K RAM0 4K RAM1 4K RAM2 Vacant Figure 43.7b Memory Map for the three 4K RAM chips Digital Design: Memory & FPGAs Page 8 of 10

9 Memory Decoders can be implemented in different ways. The simplest method to implement is by using logic gates. The other method is to use m x n decoders. Both decoders are shown. Figure 43.8 and In the logic based address decoder a combination of OR, NAND and NOT gates are used to select four memory devices at Base Addresses 000H, 200H, 400H, 600H respectively. A 2 x 4 Decoder is used to decode the same memory space. A 3 x 8 Decoder divides the 64K memory space into eight equal blocks of 8K. Figure 43.8 Gate based Address Decoder Figure x 4 and 3 x 8 Decoder based Address Decoders Digital Design: Memory & FPGAs Page 9 of 10

10 Introduction to FPGAs Programmable Devices are based on a programmable AND-OR gate array which are programmed to implement any function in the SOP form. The output of the AND-OR gate array can be directly used as a combinational circuit output. Provision is there to connect the output of the AND-OR gate array to a D-flip-flop for Sequential circuit operation. An FPGA is a more flexible device than PLDs as instead of a single AND-OR gate array, an FPGA device contains multiple logic blocks that can be individually programmed to perform different functions. Each is connected to other blocks through row and column interconnects that can be programmed to connect any block to another. The blocks are connected to the outside world through programmable blocks. The block diagram of a Field Programmable Gate Array FPGA is shown. Figure Input/Output Column Interconnect Row Interconnect Figure diagram of a FPA Digital Design: Memory & FPGAs Page 10 of 10

150127-Microprocessor & Assembly Language

150127-Microprocessor & Assembly Language Chapter 3 Z80 Microprocessor Architecture The Z 80 is one of the most talented 8 bit microprocessors, and many microprocessor-based systems are designed around the Z80. The Z80 microprocessor needs an

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

Memory Basics. SRAM/DRAM Basics

Memory Basics. SRAM/DRAM Basics Memory Basics RAM: Random Access Memory historically defined as memory array with individual bit access refers to memory with both Read and Write capabilities ROM: Read Only Memory no capabilities for

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

CHAPTER 11: Flip Flops

CHAPTER 11: Flip Flops CHAPTER 11: Flip Flops In this chapter, you will be building the part of the circuit that controls the command sequencing. The required circuit must operate the counter and the memory chip. When the teach

More information

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1

MICROPROCESSOR. Exclusive for IACE Students www.iace.co.in iacehyd.blogspot.in Ph: 9700077455/422 Page 1 MICROPROCESSOR A microprocessor incorporates the functions of a computer s central processing unit (CPU) on a single Integrated (IC), or at most a few integrated circuit. It is a multipurpose, programmable

More information

Lecture N -1- PHYS 3330. Microcontrollers

Lecture N -1- PHYS 3330. Microcontrollers Lecture N -1- PHYS 3330 Microcontrollers If you need more than a handful of logic gates to accomplish the task at hand, you likely should use a microcontroller instead of discrete logic gates 1. Microcontrollers

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

MACHINE ARCHITECTURE & LANGUAGE

MACHINE ARCHITECTURE & LANGUAGE in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies

ETEC 2301 Programmable Logic Devices. Chapter 10 Counters. Shawnee State University Department of Industrial and Engineering Technologies ETEC 2301 Programmable Logic Devices Chapter 10 Counters Shawnee State University Department of Industrial and Engineering Technologies Copyright 2007 by Janna B. Gallaher Asynchronous Counter Operation

More information

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware

A+ Guide to Managing and Maintaining Your PC, 7e. Chapter 1 Introducing Hardware A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware Objectives Learn that a computer requires both hardware and software to work Learn about the many different hardware components

More information

Let s put together a Manual Processor

Let s put together a Manual Processor Lecture 14 Let s put together a Manual Processor Hardware Lecture 14 Slide 1 The processor Inside every computer there is at least one processor which can take an instruction, some operands and produce

More information

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS

MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS MICROPROCESSOR BCA IV Sem MULTIPLE CHOICE QUESTIONS 1) Which is the microprocessor comprises: a. Register section b. One or more ALU c. Control unit 2) What is the store by register? a. data b. operands

More information

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop.

Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. Objectives Having read this workbook you should be able to: recognise the arrangement of NAND gates used to form an S-R flip-flop. describe how such a flip-flop can be SET and RESET. describe the disadvantage

More information

OpenSPARC T1 Processor

OpenSPARC T1 Processor OpenSPARC T1 Processor The OpenSPARC T1 processor is the first chip multiprocessor that fully implements the Sun Throughput Computing Initiative. Each of the eight SPARC processor cores has full hardware

More information

(Refer Slide Time: 00:01:16 min)

(Refer Slide Time: 00:01:16 min) Digital Computer Organization Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture No. # 04 CPU Design: Tirning & Control

More information

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design

COMBINATIONAL and SEQUENTIAL LOGIC CIRCUITS Hardware implementation and software design PH-315 COMINATIONAL and SEUENTIAL LOGIC CIRCUITS Hardware implementation and software design A La Rosa I PURPOSE: To familiarize with combinational and sequential logic circuits Combinational circuits

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-17: Memory organisation, and types of memory 1 1. Memory Organisation 2 Random access model A memory-, a data byte, or a word, or a double

More information

Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World

Chapter 4 System Unit Components. Discovering Computers 2012. Your Interactive Guide to the Digital World Chapter 4 System Unit Components Discovering Computers 2012 Your Interactive Guide to the Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin

More information

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance

Chapter 6. Inside the System Unit. What You Will Learn... Computers Are Your Future. What You Will Learn... Describing Hardware Performance What You Will Learn... Computers Are Your Future Chapter 6 Understand how computers represent data Understand the measurements used to describe data transfer rates and data storage capacity List the components

More information

Decimal Number (base 10) Binary Number (base 2)

Decimal Number (base 10) Binary Number (base 2) LECTURE 5. BINARY COUNTER Before starting with counters there is some vital information that needs to be understood. The most important is the fact that since the outputs of a digital chip can only be

More information

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa

Experiment # 9. Clock generator circuits & Counters. Eng. Waleed Y. Mousa Experiment # 9 Clock generator circuits & Counters Eng. Waleed Y. Mousa 1. Objectives: 1. Understanding the principles and construction of Clock generator. 2. To be familiar with clock pulse generation

More information

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1

PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1 UNIT 22: PROGRAMMABLE LOGIC CONTROLLERS Unit code: A/601/1625 QCF level: 4 Credit value: 15 TUTORIAL OUTCOME 2 Part 1 This work covers part of outcome 2 of the Edexcel standard module. The material is

More information

Discovering Computers 2011. Living in a Digital World

Discovering Computers 2011. Living in a Digital World Discovering Computers 2011 Living in a Digital World Objectives Overview Differentiate among various styles of system units on desktop computers, notebook computers, and mobile devices Identify chips,

More information

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer

Computers. Hardware. The Central Processing Unit (CPU) CMPT 125: Lecture 1: Understanding the Computer Computers CMPT 125: Lecture 1: Understanding the Computer Tamara Smyth, tamaras@cs.sfu.ca School of Computing Science, Simon Fraser University January 3, 2009 A computer performs 2 basic functions: 1.

More information

A s we saw in Chapter 4, a CPU contains three main sections: the register section,

A s we saw in Chapter 4, a CPU contains three main sections: the register section, 6 CPU Design A s we saw in Chapter 4, a CPU contains three main sections: the register section, the arithmetic/logic unit (ALU), and the control unit. These sections work together to perform the sequences

More information

Programming Logic controllers

Programming Logic controllers Programming Logic controllers Programmable Logic Controller (PLC) is a microprocessor based system that uses programmable memory to store instructions and implement functions such as logic, sequencing,

More information

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1

Module 2. Embedded Processors and Memory. Version 2 EE IIT, Kharagpur 1 Module 2 Embedded Processors and Memory Version 2 EE IIT, Kharagpur 1 Lesson 5 Memory-I Version 2 EE IIT, Kharagpur 2 Instructional Objectives After going through this lesson the student would Pre-Requisite

More information

A New Paradigm for Synchronous State Machine Design in Verilog

A New Paradigm for Synchronous State Machine Design in Verilog A New Paradigm for Synchronous State Machine Design in Verilog Randy Nuss Copyright 1999 Idea Consulting Introduction Synchronous State Machines are one of the most common building blocks in modern digital

More information

Computer Systems Structure Main Memory Organization

Computer Systems Structure Main Memory Organization Computer Systems Structure Main Memory Organization Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Storage/Memory

More information

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8

GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 GETTING STARTED WITH PROGRAMMABLE LOGIC DEVICES, THE 16V8 AND 20V8 Robert G. Brown All Rights Reserved August 25, 2000 Alta Engineering 58 Cedar Lane New Hartford, CT 06057-2905 (860) 489-8003 www.alta-engineering.com

More information

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory.

Machine Architecture and Number Systems. Major Computer Components. Schematic Diagram of a Computer. The CPU. The Bus. Main Memory. 1 Topics Machine Architecture and Number Systems Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Decimal to Binary Major Computer Components

More information

Connecting AMD Flash Memory to a System Address Bus

Connecting AMD Flash Memory to a System Address Bus Connecting AMD Memory to a System Address Bus Application Note This document is intended to clarify how memories may be connected to a system address bus and how software should issue device commands to

More information

Objectives. Units of Memory Capacity. CMPE328 Microprocessors (Spring 2007-08) Memory and I/O address Decoders. By Dr.

Objectives. Units of Memory Capacity. CMPE328 Microprocessors (Spring 2007-08) Memory and I/O address Decoders. By Dr. CMPE328 Microprocessors (Spring 27-8) Memory and I/O address ecoders By r. Mehmet Bodur You will be able to: Objectives efine the capacity, organization and types of the semiconductor memory devices Calculate

More information

Counters and Decoders

Counters and Decoders Physics 3330 Experiment #10 Fall 1999 Purpose Counters and Decoders In this experiment, you will design and construct a 4-bit ripple-through decade counter with a decimal read-out display. Such a counter

More information

Open Architecture Design for GPS Applications Yves Théroux, BAE Systems Canada

Open Architecture Design for GPS Applications Yves Théroux, BAE Systems Canada Open Architecture Design for GPS Applications Yves Théroux, BAE Systems Canada BIOGRAPHY Yves Théroux, a Project Engineer with BAE Systems Canada (BSC) has eight years of experience in the design, qualification,

More information

Module 3: Floyd, Digital Fundamental

Module 3: Floyd, Digital Fundamental Module 3: Lecturer : Yongsheng Gao Room : Tech - 3.25 Email : yongsheng.gao@griffith.edu.au Structure : 6 lectures 1 Tutorial Assessment: 1 Laboratory (5%) 1 Test (20%) Textbook : Floyd, Digital Fundamental

More information

Chapter 7 Memory and Programmable Logic

Chapter 7 Memory and Programmable Logic NCNU_2013_DD_7_1 Chapter 7 Memory and Programmable Logic 71I 7.1 Introduction ti 7.2 Random Access Memory 7.3 Memory Decoding 7.5 Read Only Memory 7.6 Programmable Logic Array 77P 7.7 Programmable Array

More information

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1.

1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. File: chap04, Chapter 04 1. True or False? A voltage level in the range 0 to 2 volts is interpreted as a binary 1. 2. True or False? A gate is a device that accepts a single input signal and produces one

More information

Record Storage and Primary File Organization

Record Storage and Primary File Organization Record Storage and Primary File Organization 1 C H A P T E R 4 Contents Introduction Secondary Storage Devices Buffering of Blocks Placing File Records on Disk Operations on Files Files of Unordered Records

More information

The 104 Duke_ACC Machine

The 104 Duke_ACC Machine The 104 Duke_ACC Machine The goal of the next two lessons is to design and simulate a simple accumulator-based processor. The specifications for this processor and some of the QuartusII design components

More information

361 Computer Architecture Lecture 14: Cache Memory

361 Computer Architecture Lecture 14: Cache Memory 1 361 Computer Architecture Lecture 14 Memory cache.1 The Motivation for s Memory System Processor DRAM Motivation Large memories (DRAM) are slow Small memories (SRAM) are fast Make the average access

More information

1 Classical Universal Computer 3

1 Classical Universal Computer 3 Chapter 6: Machine Language and Assembler Christian Jacob 1 Classical Universal Computer 3 1.1 Von Neumann Architecture 3 1.2 CPU and RAM 5 1.3 Arithmetic Logical Unit (ALU) 6 1.4 Arithmetic Logical Unit

More information

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC.

To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.1 Objectives To design digital counter circuits using JK-Flip-Flop. To implement counter using 74LS193 IC. 8.2 Introduction Circuits for counting events are frequently used in computers and other digital

More information

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR

AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR AUTOMATIC NIGHT LAMP WITH MORNING ALARM USING MICROPROCESSOR INTRODUCTION This Project "Automatic Night Lamp with Morning Alarm" was developed using Microprocessor. It is the Heart of the system. The sensors

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING Question Bank Subject Name: EC6504 - Microprocessor & Microcontroller Year/Sem : II/IV UNIT I THE 8086 MICROPROCESSOR 1. What is the purpose of segment registers

More information

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

More information

İSTANBUL AYDIN UNIVERSITY

İSTANBUL AYDIN UNIVERSITY İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B1205.090015 Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER

More information

Memory. The memory types currently in common usage are:

Memory. The memory types currently in common usage are: ory ory is the third key component of a microprocessor-based system (besides the CPU and I/O devices). More specifically, the primary storage directly addressed by the CPU is referred to as main memory

More information

Low Power AMD Athlon 64 and AMD Opteron Processors

Low Power AMD Athlon 64 and AMD Opteron Processors Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD

More information

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder

FORDHAM UNIVERSITY CISC 3593. Dept. of Computer and Info. Science Spring, 2011. Lab 2. The Full-Adder FORDHAM UNIVERSITY CISC 3593 Fordham College Lincoln Center Computer Organization Dept. of Computer and Info. Science Spring, 2011 Lab 2 The Full-Adder 1 Introduction In this lab, the student will construct

More information

Gates, Circuits, and Boolean Algebra

Gates, Circuits, and Boolean Algebra Gates, Circuits, and Boolean Algebra Computers and Electricity A gate is a device that performs a basic operation on electrical signals Gates are combined into circuits to perform more complicated tasks

More information

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories

Handout 17. by Dr Sheikh Sharif Iqbal. Memory Unit and Read Only Memories Handout 17 by Dr Sheikh Sharif Iqbal Memory Unit and Read Only Memories Objective: - To discuss different types of memories used in 80x86 systems for storing digital information. - To learn the electronic

More information

The Evolution of CCD Clock Sequencers at MIT: Looking to the Future through History

The Evolution of CCD Clock Sequencers at MIT: Looking to the Future through History The Evolution of CCD Clock Sequencers at MIT: Looking to the Future through History John P. Doty, Noqsi Aerospace, Ltd. This work is Copyright 2007 Noqsi Aerospace, Ltd. This work is licensed under the

More information

Figure 8-1 Four Possible Results of Adding Two Bits

Figure 8-1 Four Possible Results of Adding Two Bits CHPTER EIGHT Combinational Logic pplications Thus far, our discussion has focused on the theoretical design issues of computer systems. We have not yet addressed any of the actual hardware you might find

More information

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements )

Sequential Logic. (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential Logic (Materials taken from: Principles of Computer Hardware by Alan Clements ) Sequential vs. Combinational Circuits Combinatorial circuits: their outputs are computed entirely from their present

More information

A N. O N Output/Input-output connection

A N. O N Output/Input-output connection Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash, EEPROM Static RAM (SRAM) Dynamic RAM (DRAM), SDRAM, RAMBUS, DDR RAM Generic pin configuration:

More information

RAM & ROM Based Digital Design. ECE 152A Winter 2012

RAM & ROM Based Digital Design. ECE 152A Winter 2012 RAM & ROM Based Digital Design ECE 152A Winter 212 Reading Assignment Brown and Vranesic 1 Digital System Design 1.1 Building Block Circuits 1.1.3 Static Random Access Memory (SRAM) 1.1.4 SRAM Blocks in

More information

Contents COUNTER. Unit III- Counters

Contents COUNTER. Unit III- Counters COUNTER Contents COUNTER...1 Frequency Division...2 Divide-by-2 Counter... 3 Toggle Flip-Flop...3 Frequency Division using Toggle Flip-flops...5 Truth Table for a 3-bit Asynchronous Up Counter...6 Modulo

More information

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ

NAND Flash FAQ. Eureka Technology. apn5_87. NAND Flash FAQ What is NAND Flash? What is the major difference between NAND Flash and other Memory? Structural differences between NAND Flash and NOR Flash What does NAND Flash controller do? How to send command to

More information

Lecture-3 MEMORY: Development of Memory:

Lecture-3 MEMORY: Development of Memory: Lecture-3 MEMORY: It is a storage device. It stores program data and the results. There are two kind of memories; semiconductor memories & magnetic memories. Semiconductor memories are faster, smaller,

More information

3.Basic Gate Combinations

3.Basic Gate Combinations 3.Basic Gate Combinations 3.1 TTL NAND Gate In logic circuits transistors play the role of switches. For those in the TTL gate the conducting state (on) occurs when the baseemmiter signal is high, and

More information

Lecture 2: Computer Hardware and Ports. y.alharbi@sau.edu.sa http://faculty.sau.edu.sa/y.alharbi/en

Lecture 2: Computer Hardware and Ports. y.alharbi@sau.edu.sa http://faculty.sau.edu.sa/y.alharbi/en BMTS 242: Computer and Systems Lecture 2: Computer Hardware and Ports Yousef Alharbi Email Website y.alharbi@sau.edu.sa http://faculty.sau.edu.sa/y.alharbi/en The System Unit McGraw-Hill Copyright 2011

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

MULTIPLE CHOICE FREE RESPONSE QUESTIONS

MULTIPLE CHOICE FREE RESPONSE QUESTIONS MULTIPLE CHOICE FREE RESPONSE QUESTIONS World ORT Union I n p u t d e v i c e s Where would you find the letters QUERTY? A. Mouse B. Keyboard C.Numeric Keypad How did the computer mouse get its name? A.

More information

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng

Digital Logic Design. Basics Combinational Circuits Sequential Circuits. Pu-Jen Cheng Digital Logic Design Basics Combinational Circuits Sequential Circuits Pu-Jen Cheng Adapted from the slides prepared by S. Dandamudi for the book, Fundamentals of Computer Organization and Design. Introduction

More information

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks

SECTION C [short essay] [Not to exceed 120 words, Answer any SIX questions. Each question carries FOUR marks] 6 x 4=24 marks UNIVERSITY OF KERALA First Degree Programme in Computer Applications Model Question Paper Semester I Course Code- CP 1121 Introduction to Computer Science TIME : 3 hrs Maximum Mark: 80 SECTION A [Very

More information

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter

NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter NTE2053 Integrated Circuit 8 Bit MPU Compatible A/D Converter Description: The NTE2053 is a CMOS 8 bit successive approximation Analog to Digital converter in a 20 Lead DIP type package which uses a differential

More information

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters

LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB #4 Sequential Logic, Latches, Flip-Flops, Shift Registers, and Counters LAB OBJECTIVES 1. Introduction to latches and the D type flip-flop 2. Use of actual flip-flops to help you understand sequential

More information

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global

CSCA0102 IT & Business Applications. Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global CSCA0102 IT & Business Applications Foundation in Business Information Technology School of Engineering & Computing Sciences FTMS College Global Chapter 2 Data Storage Concepts System Unit The system unit

More information

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access?

Homework # 2. Solutions. 4.1 What are the differences among sequential access, direct access, and random access? ECE337 / CS341, Fall 2005 Introduction to Computer Architecture and Organization Instructor: Victor Manuel Murray Herrera Date assigned: 09/19/05, 05:00 PM Due back: 09/30/05, 8:00 AM Homework # 2 Solutions

More information

EXERCISES OF FUNDAMENTALS OF COMPUTER TECHNOLOGY UNIT 5. MEMORY SYSTEM

EXERCISES OF FUNDAMENTALS OF COMPUTER TECHNOLOGY UNIT 5. MEMORY SYSTEM EXERCISES OF FUNDAMENTALS OF COMPUTER TECHNOLOGY UNIT 5. MEMORY SYSTEM Unit 5. Memory System 2 / 6 Most of the exercises in this units deal with installing memory chips in a computer to increase its capacity,

More information

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. COURSE CURRICULUM COURSE TITLE: COMPUTER ORGANIZATION AND ARCHITECTURE (Code: 3340705)

GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT. COURSE CURRICULUM COURSE TITLE: COMPUTER ORGANIZATION AND ARCHITECTURE (Code: 3340705) GUJARAT TECHNOLOGICAL UNIVERSITY, AHMEDABAD, GUJARAT COURSE CURRICULUM COURSE TITLE: COMPUTER ORGANIZATION AND ARCHITECTURE (Code: 3340705) Diploma Programmes in which this course is offered Computer Engineering

More information

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:

Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to: 55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................

More information

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit

Modeling Sequential Elements with Verilog. Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw. Sequential Circuit Modeling Sequential Elements with Verilog Prof. Chien-Nan Liu TEL: 03-4227151 ext:34534 Email: jimmy@ee.ncu.edu.tw 4-1 Sequential Circuit Outputs are functions of inputs and present states of storage elements

More information

9/14/2011 14.9.2011 8:38

9/14/2011 14.9.2011 8:38 Algorithms and Implementation Platforms for Wireless Communications TLT-9706/ TKT-9636 (Seminar Course) BASICS OF FIELD PROGRAMMABLE GATE ARRAYS Waqar Hussain firstname.lastname@tut.fi Department of Computer

More information

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995

UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering. EEC180B Lab 7: MISP Processor Design Spring 1995 UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering EEC180B Lab 7: MISP Processor Design Spring 1995 Objective: In this lab, you will complete the design of the MISP processor,

More information

The Motherboard Chapter #5

The Motherboard Chapter #5 The Motherboard Chapter #5 Amy Hissom Key Terms Advanced Transfer Cache (ATC) A type of L2 cache contained within the Pentium processor housing that is embedded on the same core processor die as the CPU

More information

Lesson 12 Sequential Circuits: Flip-Flops

Lesson 12 Sequential Circuits: Flip-Flops Lesson 12 Sequential Circuits: Flip-Flops 1. Overview of a Synchronous Sequential Circuit We saw from last lesson that the level sensitive latches could cause instability in a sequential system. This instability

More information

DDR4 Memory Technology on HP Z Workstations

DDR4 Memory Technology on HP Z Workstations Technical white paper DDR4 Memory Technology on HP Z Workstations DDR4 is the latest memory technology available for main memory on mobile, desktops, workstations, and server computers. DDR stands for

More information

Switch Fabric Implementation Using Shared Memory

Switch Fabric Implementation Using Shared Memory Order this document by /D Switch Fabric Implementation Using Shared Memory Prepared by: Lakshmi Mandyam and B. Kinney INTRODUCTION Whether it be for the World Wide Web or for an intra office network, today

More information

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board.

UMBC. ISA is the oldest of all these and today s computers still have a ISA bus interface. in form of an ISA slot (connection) on the main board. Bus Interfaces Different types of buses: ISA (Industry Standard Architecture) EISA (Extended ISA) VESA (Video Electronics Standards Association, VL Bus) PCI (Periheral Component Interconnect) USB (Universal

More information

M25P05-A. 512-Kbit, serial flash memory, 50 MHz SPI bus interface. Features

M25P05-A. 512-Kbit, serial flash memory, 50 MHz SPI bus interface. Features 512-Kbit, serial flash memory, 50 MHz SPI bus interface Features 512 Kbits of flash memory Page program (up to 256 bytes) in 1.4 ms (typical) Sector erase (256 Kbits) in 0.65 s (typical) Bulk erase (512

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

An Introduction to the ARM 7 Architecture

An Introduction to the ARM 7 Architecture An Introduction to the ARM 7 Architecture Trevor Martin CEng, MIEE Technical Director This article gives an overview of the ARM 7 architecture and a description of its major features for a developer new

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: omputer Organization and Architecture Lecture 8: Registers and ounters Registers A register is a group of flip-flops. Each flip-flop stores one bit of data; n flip-flops are required to store

More information

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.

So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the

More information

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions

CS101 Lecture 26: Low Level Programming. John Magee 30 July 2013 Some material copyright Jones and Bartlett. Overview/Questions CS101 Lecture 26: Low Level Programming John Magee 30 July 2013 Some material copyright Jones and Bartlett 1 Overview/Questions What did we do last time? How can we control the computer s circuits? How

More information

An Overview of Stack Architecture and the PSC 1000 Microprocessor

An Overview of Stack Architecture and the PSC 1000 Microprocessor An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which

More information

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram

SEQUENTIAL CIRCUITS. Block diagram. Flip Flop. S-R Flip Flop. Block Diagram. Circuit Diagram SEQUENTIAL CIRCUITS http://www.tutorialspoint.com/computer_logical_organization/sequential_circuits.htm Copyright tutorialspoint.com The combinational circuit does not use any memory. Hence the previous

More information

Interfacing Analog to Digital Data Converters

Interfacing Analog to Digital Data Converters Converters In most of the cases, the PIO 8255 is used for interfacing the analog to digital converters with microprocessor. We have already studied 8255 interfacing with 8086 as an I/O port, in previous

More information

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language

Chapter 4 Register Transfer and Microoperations. Section 4.1 Register Transfer Language Chapter 4 Register Transfer and Microoperations Section 4.1 Register Transfer Language Digital systems are composed of modules that are constructed from digital components, such as registers, decoders,

More information

Basic Logic Gates Richard E. Haskell

Basic Logic Gates Richard E. Haskell BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that

More information

The components. E3: Digital electronics. Goals:

The components. E3: Digital electronics. Goals: E3: Digital electronics Goals: Basic understanding of logic circuits. Become familiar with the most common digital components and their use. Equipment: 1 st. LED bridge 1 st. 7-segment display. 2 st. IC

More information

Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors

Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors. Lesson 05: Array Processors Chapter 07: Instruction Level Parallelism VLIW, Vector, Array and Multithreaded Processors Lesson 05: Array Processors Objective To learn how the array processes in multiple pipelines 2 Array Processor

More information