İSTANBUL AYDIN UNIVERSITY

Size: px
Start display at page:

Download "İSTANBUL AYDIN UNIVERSITY"

Transcription

1 İSTANBUL AYDIN UNIVERSITY FACULTY OF ENGİNEERİNG SOFTWARE ENGINEERING THE PROJECT OF THE INSTRUCTION SET COMPUTER ORGANIZATION GÖZDE ARAS B Instructor: Prof. Dr. HASAN HÜSEYİN BALIK DECEMBER 2013

2 Contents 1 Expansions and explanations together with abbreviations 2 Machine language 2.1 Instruction types Data handling and memory operations Arithmetic and logic operations Control flow operations 2.2 Classification of instruction sets CISC RISC 2.3 Complex instructions 2.4 Parts of an instruction 2.5 Instruction length 2.6 Representation 2.7 Design 3 Instruction set implementation 3.1 Code density 3.2 Number of operands Stack Accumulator General Purpose Register 4 References 1

3 Expansions and Explanations Together with Abbreviations Opcode: Operation Code; is the part of a machine language instruction that specifies the operation to be performed. CPU: Central Proccessing Unit; is the hardware within a computer that carries out the instructions of a computer program by performing the basic arithmetical, logical, and input/output operations of the system. ALU: Arithmetic and Logic Unit; is a digital circuit that performs integer arithmetic and logical operations. ROM: Read Only Memory; is a class of storage medium used in computers and other electronic devices. Data stored in ROM cannot be modified. RAM: Random Access Memory; is a form of computer data storage. A random access device allows stored data to be accessed directly in any random order. TOS: Terms of Services; - GPR: General Purpose Register; - PLA: Programmable Logic Array; is a kind of programmable logic device used to implement combinational logic circuits. SIMD: Single Instruction, Multiple Data; is a complex instruction type that has become particularly popular recently and is an operation that performs the same arithmetic operation on multiple pieces of data at the same time. SIMD instructions allow easy parallelization of algorithms commonly involved in sound, image, and video processing. ASIP: Application-Specific Instruction-set Processor; is a component used in system on a chip design. EDGE: Explicit Data Graph Execution; is a type of instruction set architecture which intends to greatly improve computing performance compared to common processors like the Intel x86 line. NISC: No Instruction Set Computing; is a computing architecture and compiler technology for designing highly efficient custom processors and hardware accelerators by allowing a compiler to have low-level control of hardware resources. ZISC: Zero Instruction Set Computer; refers to a computer architecture based on pure pattern matching and absence of instructions in the classical sense. MISC:Minimal Instruction Set Computer; is a processor architecture with a very small number of basic operations and corresponding opcodes. 2

4 OISC: One Instruction Set Computer; it sometimes called URISC: Ultimate Reduced Instruction Set Computer; is an abstract machine that uses only one instruction obviating the need for a machine language opcode. VLIW: Very Long Instruction Word; where the processor receives many instructions encoded and retrieved in one instruction word. It refers to a processor architecture designed to take advantage of instruction level parallelism. NOTE: ASIP, EDGE, NISC, ZISC, MISC, OISC and VLIW are instruction sets that are not implemented in commercial processors. RISC: Reduced Instruction Set Computer; simplifies the processor by only implementing instructions that are frequently used in programs. The RISC has reduced instruction set and addressing modes. Also it has a large number of recorders. CISC: Complex Insturction Set Computer; contains instructions which may only be rarely used in practical programs. Also, instructions are with variable length and complex formed. The CISC saves memory. ISA: Instruction Set Architecture; is the part of the computer architecture that is a set of commands implemented by a particular processor that gives direction to hardware devices. The ISA serves as the boundary between software and hardware. And the ISA includes a specification of the set of opcodes, thus it is only visible to the programmer. 3

5 MACHINE LANGUAGE Machine code or machine language is a set of instructions executed directly by a computer's CPU. The complexity of the instruction set depends on the following factors; - Command and data formats - Addresing modes - General-purpose recorders - Opcode definitions - The flow control mechanisms Instruction Types: 1. Data handling and memory operations: -Set a register to a fixed constant value. -Move data from a memory location to a register, or just the opposite. Used to store the contents of a register, result of a computation, or to retrieve stored data to perform a computation on it later. -Read and write data from hardware devices. 2. Arithmetic and logic operations: -Add, subtract, multiply, or divide the values of two registers, placing the result in a register, possibly setting one or more condition codes in a status register. -Perform bitwise operations -Compare two values in registers 3. Control flow operations: -Branch to another location in the program and execute instructions there. -Conditionally branch to another location if a certain condition holds. -Indirectly branch to another location, while saving the location of the next instruction as a point to return to (a call). 4

6 Classification of Instruction Sets 1. CISC: NOTE: MicroCode: There is a ROM memory includes MicroCode that serves the purpose: when a machine code accesses to processor, the processor executes more simple commands separately parts of the code. Advantages of CISC Architecture; The execution of the microprogram is easy. With each instruction is added to the microcode ROM, the CPU starts to become more skilled and it spends less time to execute a given task. The compiler made with this type of architecture does not have to be complicated Disadvantages of CISC Architecture; CPU structure has become more complex with every generation processors. Specially designed instructions are not used often enough. Decreasing of the performance is observed because different instructions need different number of clock cycles. 5

7 2. RISC: RISC architecture is based on three basic principles; All instructions should be executed in a single cycle. It should be accessed to memory only with 'load' and 'store' commands. All execution units should run from hardware without using microcode. Advantages of RISC Architecture; Speed Simple hardware Short design time Complex Instructions CISC processors include "complex" instructions in their instruction set. Some examples of "complex" instructions include; Saving many registers on the stack at once. Moving large blocks of memory. Complex and/or floating-point arithmetic (sine, cosine, square root, etc.). Performing an atomic test-and-set instruction. Instructions that combine ALU with an operand from memory rather than a register. Parts of an Instruction On traditional architectures, an instruction includes an opcode that specifies the operation to perform, such as add contents of memory to register and zero or more operand specifiers, which may specify registers, memory locations, or literal data. The operand specifiers may have addressing modes determining their meaning or may be in fixed fields. Instruction Length -The size of an instruction varies widely, - Processors used in personal computers, mainframes, and supercomputers have instruction sizes between 8 and 64 bits. -The longest possible instruction on x86 is 15 bytes (120 bits). -Within an instruction set, different instructions may have different lengths. RISCs instructions are a fixed length. In other architectures, instructions have variable length. 6

8 Design The design of instruction sets is a complex issue. There were two stages in history for the microprocessor. The first was the CISC, which had many different instructions. The second was the RISC, an architecture that uses a smaller set of instructions. A simpler instruction set may offer the potential for higher speeds, reduced processor size, and reduced power consumption. However, a more complex set may optimize common operations, improve memory/cache efficiency, or simplify programming. Instruction Set Implementation Any given instruction set can be implemented in a variety of ways. All ways of implementing a particular instruction set provide the same programming model, and all implementations of that instruction set are able to run the same binary executables. The various ways of implementing an instruction set give different compositions between cost, performance, power consumption, size, etc. When designing the microarchitecture of a processor, engineers use blocks of "hard-wired" electronic circuitry (often designed separately) such as registers, ALUs etc. Some kind of register transfer language is then often used to describe the decoding and sequencing of each instruction of an ISA using this physical microarchitecture. There are two basic ways to build a control unit to implement this description: 1. Some computer designs "hardwire" the complete instruction set decoding and sequencing. 2. Other designs employ microcode routines and/or tables to do this- typically as on chip ROMs and/or PLAs. Some CPU designs compile the instruction set to a writable RAM or flash inside the CPU. An ISA can also be emulated in software by an interpreter. Today, it is common practice for vendors of new ISAs or microarchitectures to make software emulators available to software developers before the hardware implementation is ready Code Density In early computers, memory was expensive, so minimizing the size of a programwas often central. Thus the combined size of all the instructions needed to perform a particular task, the code density was an important characteristic of any instruction set. Computers with high code density often have complex instructions for procedure entry, parameterized returns, loops etc. However, more typical, or frequent, "CISC" instructions merely combine a basic ALU operation, such as "add", with the access of one or more operands in memory. Certain architectures may allow two or three operands (including the result) directly in memory. Software-implemented instruction sets may have even more complex and powerful instructions. 7

9 RISC were first widely implemented during a period of rapidly growing memory subsystems. They sacrifice code density to simplify implementation circuitry, and try to increase performance via higher clock frequencies and more registers. A single RISC instruction typically performs only a single operation, such as an "add" of registers or a "load" from a memory location into a register. Number of operands Examples of instruction set: ADD - Add two numbers together. COMPARE - Compare numbers. IN - Input information from a device, e.g. keyboard. JUMP - Jump to designated RAM address. JUMP IF - Conditional statement that jumps to a designated RAM address. LOAD - Load information from RAM to the CPU. OUT - Output information to device, e.g. monitor. STORE - Store information to RAM. The three most common types of ISA s are: (a) STACK - The operands are implicitly on top of the stack. Advantages: Simple Model of expression evaluation. Short instructions. Disadvantages: A stack can't be randomly accessed. This makes it hard to generate efficient code. The stack itself is accessed every operation and becomes a bottleneck. (b) ACCUMULATOR - One operand is implicitly the accumulator. Advantages: Short instructions. Disadvantages: The accumulator is only temporary storage so memory traffic is the highest for this approach. (c) GENERAL PURPOSE REGISTER - All operands are explicitely mentioned, they are either registers or memory locations. Advantages: Makes code generation easy. Data can be stored for long periods in registers. Disadvantages: All operands must be named leading to longer instructions. 8

10 Implicit operands on stack Ex. C = A + B Push A Push B Add Pop C Good code density; used in 60 s-70 s; now in Java VM The accumulator provides an implicit input, and is the implicit place to store the result. Ex. C = A + B Load R1, A Add R3, R1, B Store R3, c Used before

11 General Purpose Registers General-purpose registers are preferred by compilers - Reduce memory traffic - Improve program speed - Improve code density Usage of general-purpose registers - Holding temporal variables in expression evaluation - Passing parameters - Holding variables GPR and RISC and CISC - RISC ISA is extensively used for desktop, server, and embedded: MIPS, PowerPC, UltraSPARC, ARM, MIPS16, Thumb - CISC: IBM 360/370, an VAX, Intel 80x86 There is no implicit operand One input operand is register, and one in memory - Ex. C = A + B - Load R1, A - Add R3, R1, B - Store R3, C Processors include VAX, 80x86 10

12 Both operands are registers Values in memory must be loaded into a register and stored back - Ex. C = A + B - Load R1, A - Load R2, B - Add R3, R1, R2 - Store R3, C Processors: MIPS, SPARC Lets look at again the assembly code of A = B + C; in all three architectures: Stack Accumulator GPR PUSH A LOAD A LOAD R1,A PUSH B ADD B ADD R1,B ADD STORE C STORE R1,C POP C - - Not all processors can be neatly tagged into one of the above catagories. The i8086 has many instructions that use implicit operands although it has a general register set. Earlier CPUs were of the first 2 types but in the last 15 years all CPUs made are GPR processors. The 2 major reasons are that registers are faster than memory and the registers are easier for a compiler to use. 11

13 References https://creately.com/app/# 12

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2

Advanced Computer Architecture-CS501. Computer Systems Design and Architecture 2.1, 2.2, 3.2 Lecture Handout Computer Architecture Lecture No. 2 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 2,Chapter3 Computer Systems Design and Architecture 2.1, 2.2, 3.2 Summary 1) A taxonomy of

More information

Instruction Set Design

Instruction Set Design Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,

More information

Chapter 2 Logic Gates and Introduction to Computer Architecture

Chapter 2 Logic Gates and Introduction to Computer Architecture Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are

More information

LSN 2 Computer Processors

LSN 2 Computer Processors LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA) * Instruction set architecture of a machine fills the semantic gap between the user and the machine. * ISA serves as the starting point for the design of a new machine

More information

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek

Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 145 4.1.1 CPU Basics and Organization 145 4.1.2 The Bus 147 4.1.3 Clocks 151 4.1.4 The Input/Output Subsystem 153 4.1.5 Memory Organization

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Advanced Microprocessors RISC & DSP

Advanced Microprocessors RISC & DSP Advanced Microprocessors RISC & DSP RISC & DSP :: Slide 1 of 23 RISC Processors RISC stands for Reduced Instruction Set Computer Compared to CISC Simpler Faster RISC & DSP :: Slide 2 of 23 Why RISC? Complex

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System?

Management Challenge. Managing Hardware Assets. Central Processing Unit. What is a Computer System? Management Challenge Managing Hardware Assets What computer processing and storage capability does our organization need to handle its information and business transactions? What arrangement of computers

More information

ARM & IA-32. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

ARM & IA-32. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University ARM & IA-32 Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ARM (1) ARM & MIPS similarities ARM: the most popular embedded core Similar basic set

More information

Hardware: Input, Processing, and Output Devices

Hardware: Input, Processing, and Output Devices Hardware: Input, Processing, and Output Devices Computer Systems Hardware Components Execution of an Instruction Processing Characteristics and Functions Physical Characteristics of CPU Memory Characteristics

More information

1 Computer Architecture Question Bank Part A Questions

1 Computer Architecture Question Bank Part A Questions 1 Computer Architecture Part A Questions 1. What is stored program concept? 2. Differentiate memory write and I/O write. 3. What are the various methods of accessing data from memory? 4. Define memory

More information

18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013

18-447 Computer Architecture Lecture 3: ISA Tradeoffs. Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 18-447 Computer Architecture Lecture 3: ISA Tradeoffs Prof. Onur Mutlu Carnegie Mellon University Spring 2013, 1/18/2013 Reminder: Homeworks for Next Two Weeks Homework 0 Due next Wednesday (Jan 23), right

More information

Central Processing Unit (CPU)

Central Processing Unit (CPU) Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following

More information

MICROPROCESSOR AND MICROCOMPUTER BASICS

MICROPROCESSOR AND MICROCOMPUTER BASICS Introduction MICROPROCESSOR AND MICROCOMPUTER BASICS At present there are many types and sizes of computers available. These computers are designed and constructed based on digital and Integrated Circuit

More information

Unit 5 Central Processing Unit (CPU)

Unit 5 Central Processing Unit (CPU) Unit 5 Central Processing Unit (CPU) Introduction Part of the computer that performs the bulk of data-processing operations is called the central processing unit (CPU). It consists of 3 major parts: Register

More information

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.

Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit. Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

Design Cycle for Microprocessors

Design Cycle for Microprocessors Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types

More information

Recap & Perspective. Sequential Logic Circuits & Architecture Alternatives. Register Operation. Building a Register. Timing Diagrams.

Recap & Perspective. Sequential Logic Circuits & Architecture Alternatives. Register Operation. Building a Register. Timing Diagrams. Sequential Logic Circuits & Architecture Alternatives Recap & Perspective COMP 251 Computer Organization and Architecture Fall 2009 So Far: ALU Implementation Next: Register Implementation Register Operation

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit

More information

Processing Unit Design

Processing Unit Design &CHAPTER 5 Processing Unit Design In previous chapters, we studied the history of computer systems and the fundamental issues related to memory locations, addressing modes, assembly language, and computer

More information

Chapter 4 The Components of the System Unit

Chapter 4 The Components of the System Unit Chapter 4 The Components of the System Unit The System Unit Box-like case that contains computer s electronic components Sometimes called the chassis What are common components inside the system unit?

More information

Classification of Microprocessors

Classification of Microprocessors Classification of Microprocessors Microprocessors General Purpose Processors ( GPP) Application Specific Processors ( ASP) Requirements: high performance low cost low power consumption GPP proper: general

More information

Outline - Microprocessors

Outline - Microprocessors Outline - Microprocessors General Concepts Memory Bus Structure Central Processing Unit Registers Instruction Set Clock Architecture Von Neuman vs. Harvard CISC vs. RISC General e Concepts - Computer Hardware

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three subsystems of a computer. Describe the

More information

Processing Unit. Backing Store

Processing Unit. Backing Store SYSTEM UNIT Basic Computer Structure Input Unit Central Processing Unit Main Memory Output Unit Backing Store The Central Processing Unit (CPU) is the unit in the computer which operates the whole computer

More information

CPU- Internal Structure

CPU- Internal Structure ESD-1 Elettronica dei Sistemi Digitali 1 CPU- Internal Structure Lesson 12 CPU Structure&Function Instruction Sets Addressing Modes Read Stallings s chapters: 11, 9, 10 esd-1-9:10:11-2002 1 esd-1-9:10:11-2002

More information

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.

Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu. Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University cwliu@twins.ee.nctu.edu.tw Review Computers in mid 50 s Hardware was expensive

More information

Introduction to Microcontrollers. ECE473/573 Microprocessor System Design, Dr. Shiue

Introduction to Microcontrollers. ECE473/573 Microprocessor System Design, Dr. Shiue Introduction to Microcontrollers 1 Introduction It is hard to imagine the present world of electronic devices without the microprocessor. Cash register, scales, ovens, washing machine, alarm clock, thermostats,

More information

Introduction to Design of a Tiny Computer

Introduction to Design of a Tiny Computer Introduction to Design of a Tiny Computer (Background of LAB#4) Objective In this lab, we will build a tiny computer in Verilog. The execution results will be displayed in the HEX[3:0] of your board. Unlike

More information

Processor Architectures

Processor Architectures ECPE 170 Jeff Shafer University of the Pacific Processor Architectures 2 Schedule Exam 3 Tuesday, December 6 th Caches Virtual Memory Input / Output OperaKng Systems Compilers & Assemblers Processor Architecture

More information

SESSION 8 MARIE. ISE218 Fundamentals of Information Technology. Robert F. Kelly,

SESSION 8 MARIE. ISE218 Fundamentals of Information Technology. Robert F. Kelly, SESSION 8 MARIE Reading: Sections 4.8-4.11 ISE218 Fundamentals of Information Technology 2 Objectives Better understand the operations of a computer by examining a very simple processor that includes many

More information

CHAPTER 4 MARIE: An Introduction to a Simple Computer

CHAPTER 4 MARIE: An Introduction to a Simple Computer CHAPTER 4 MARIE: An Introduction to a Simple Computer 4.1 Introduction 195 4.2 CPU Basics and Organization 195 4.2.1 The Registers 196 4.2.2 The ALU 197 4.2.3 The Control Unit 197 4.3 The Bus 197 4.4 Clocks

More information

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My!

Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Today s lecture is all about the System Unit, the Motherboard, and the Central Processing Unit, Oh My! Or what s happening inside the computer? Computer Architecture CPU Input Memory a.k.a. RAM Output

More information

Engineering 9859 CoE Fundamentals Computer Architecture

Engineering 9859 CoE Fundamentals Computer Architecture Engineering 9859 CoE Fundamentals Computer Architecture Instruction Set Principles Dennis Peters 1 Fall 2007 1 Based on notes from Dr. R. Venkatesan RISC vs. CISC Complex Instruction Set Computers (CISC)

More information

Chapter 5. Processing Unit Design

Chapter 5. Processing Unit Design Chapter 5 Processing Unit Design 5.1 CPU Basics A typical CPU has three major components: Register Set, Arithmetic Logic Unit, and Control Unit (CU). The register set is usually a combination of general-purpose

More information

TDTS 08 Advanced Computer Architecture

TDTS 08 Advanced Computer Architecture TDTS 08 Advanced Computer Architecture [Datorarkitektur] www.ida.liu.se/~tdts08 Zebo Peng Embedded Systems Laboratory (ESLAB) Dept. of Computer and Information Science (IDA) Linköping University Contact

More information

The Central Processing Unit:

The Central Processing Unit: The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Objectives Identify the components of the central processing unit and how they work together and interact with memory Describe how

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 12 CPU Structure and Function Rev. 3.3 (2009-10) by Enrico Nardelli 12-1 CPU Functions CPU must: Fetch instructions Decode instructions

More information

CHAPTER 7: The CPU and Memory

CHAPTER 7: The CPU and Memory CHAPTER 7: The CPU and Memory The Architecture of Computer Hardware, Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint slides

More information

An Overview of Stack Architecture and the PSC 1000 Microprocessor

An Overview of Stack Architecture and the PSC 1000 Microprocessor An Overview of Stack Architecture and the PSC 1000 Microprocessor Introduction A stack is an important data handling structure used in computing. Specifically, a stack is a dynamic set of elements in which

More information

A4-R3: COMPUTER ORGANISATION

A4-R3: COMPUTER ORGANISATION A4-R3: COMPUTER ORGANISATION NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE is to be answered in the TEAR-OFF ANSWER

More information

Lecture-I An Overview of Microprocessor The first question comes in a mind "What is a microprocessor?. Let us start with a more familiar term

Lecture-I An Overview of Microprocessor The first question comes in a mind What is a microprocessor?. Let us start with a more familiar term Lecture-I An Overview of Microprocessor The first question comes in a mind "What is a microprocessor?. Let us start with a more familiar term computer. A digital computer is an electronic machine capable

More information

Intro to Microprocessors and Microcomputers

Intro to Microprocessors and Microcomputers Intro to Microprocessors and Microcomputers Content Microprocessor, microcontrollers and microcomputers Communication within microcomputers Registers Process architecture CPU Data and program storage Negative

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, students should be able to: List the three subsystems of a computer. Describe

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Chapter 11 Instruction Sets: Addressing Modes and Formats Instruction Set Design One goal of instruction set design is to minimize instruction length Another goal

More information

Instruction Set Architecture (ISA) Design. Classification Categories

Instruction Set Architecture (ISA) Design. Classification Categories Instruction Set Architecture (ISA) Design Overview» Classify Instruction set architectures» Look at how applications use ISAs» Examine a modern RISC ISA (DLX)» Measurement of ISA usage in real computers

More information

Lecture 1: Introduction to Microcomputers

Lecture 1: Introduction to Microcomputers Lecture 1: Introduction to Microcomputers Today s Topics What is a microcomputers? Why do we study microcomputers? Two basic types of microcomputer architectures Internal components of a microcomputers

More information

ARM. Architecture, Programming and Development Tools

ARM. Architecture, Programming and Development Tools ARM Architecture, Programming and Development Tools Lesson 1 ARM CPUs 2 Outline ARM Processors Features of a RISC architecture ARM Family and ARM many variant architectures 3 Examples of Systems needing

More information

I. Ch 6 The System Unit

I. Ch 6 The System Unit I. Ch 6 The System Unit A. Competencies 1. Describe the four basic types of system units. 2. Discuss how a computer uses binary codes to represent data in electronic form. 3. Describe each of the major

More information

ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER

ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER ASSEMBLY PROGRAMMING ON A VIRTUAL COMPUTER Pierre A. von Kaenel Mathematics and Computer Science Department Skidmore College Saratoga Springs, NY 12866 (518) 580-5292 pvonk@skidmore.edu ABSTRACT This paper

More information

The ARM11 Architecture

The ARM11 Architecture The ARM11 Architecture Ian Davey Payton Oliveri Spring 2009 CS433 Why ARM Matters Over 90% of the embedded market is based on the ARM architecture ARM Ltd. makes over $100 million USD annually in royalties

More information

Performance Basics; Computer Architectures

Performance Basics; Computer Architectures 8 Performance Basics; Computer Architectures 8.1 Speed and limiting factors of computations Basic floating-point operations, such as addition and multiplication, are carried out directly on the central

More information

a. Chapter 1: Exercises: =>

a. Chapter 1: Exercises: => Selected Solutions to Problem-Set #1 COE608: Computer Organization and Architecture Introduction, Instruction Set Architecture and Computer Arithmetic Chapters 1, 2 and 3 a. Chapter 1: Exercises: 1.1.1

More information

Why study the Alpha (assembly)?

Why study the Alpha (assembly)? Why study the Alpha (assembly)? The Alpha architecture is the first 64-bit load/store RISC (as opposed to CISC) architecture designed to enhance computer performance by improving clock speeding, multiple

More information

Computer Architecture

Computer Architecture Chapter 1 Computer Architecture Introduction to Computer Architecture Bryar M. Shareef (bryarmustafa.epu.edu.krd) 2016-2017 Fundamental Concepts What is a computer architecture? Computer Architecture:

More information

Assembly Language: Overview! Jennifer Rexford!

Assembly Language: Overview! Jennifer Rexford! Assembly Language: Overview! Jennifer Rexford! 1 Goals of this Lecture! Help you learn:! The basics of computer architecture! The relationship between C and assembly language! IA-32 assembly language,

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures Early trend was to add more and more instructions to new CPUs to do elaborate operations (CISC) VAX architecture had an instruction to multiply polynomials! RISC philosophy

More information

CS1101: Lecture 37 Introduction to Assembly Language

CS1101: Lecture 37 Introduction to Assembly Language CS1101: Lecture 37 Introduction to Assembly Language Dr. Barry O Sullivan b.osullivan@cs.ucc.ie Introduction What is Translation? Types of Translator Lecture Outline What is an Assembly Language? Assembly

More information

Embedded Systems Dr Santanu Chaudhury Department of Electrical Engineering IIT Delhi Lecture 5 ARM Processor

Embedded Systems Dr Santanu Chaudhury Department of Electrical Engineering IIT Delhi Lecture 5 ARM Processor Embedded Systems Dr Santanu Chaudhury Department of Electrical Engineering IIT Delhi Lecture 5 ARM Processor In the last class we had discussed PIC processors which were targeted primarily for low end

More information

Describe how program instructions are executed by the computer. Understand how data is represented in the computer

Describe how program instructions are executed by the computer. Understand how data is represented in the computer Chapter 2 23 Chapter 3 - The Central Processing Unit What Goes on Inside the Computer LEARNING OBJECTIVES Identify the components of the central processing unit and how they work together and interact

More information

BASIC COMPUTER ORGANISATION. Basic Computer Model and different units of Computer

BASIC COMPUTER ORGANISATION. Basic Computer Model and different units of Computer BASIC COMPUTER ORGANISATION Basic Computer Model and different units of Computer The model of a computer can be described by four basic units in high level abstraction. These basic units are: Central Processor

More information

Ľudmila Jánošíková. Department of Transportation Networks Faculty of Management Science and Informatics University of Žilina

Ľudmila Jánošíková. Department of Transportation Networks Faculty of Management Science and Informatics University of Žilina Assembly Language Ľudmila Jánošíková Department of Transportation Networks Faculty of Management Science and Informatics University of Žilina Ludmila.Janosikova@fri.uniza.sk 041/5134 220 Recommended texts

More information

Microprocessor and Microcontroller Architecture

Microprocessor and Microcontroller Architecture Microprocessor and Microcontroller Architecture 1 Von Neumann Architecture Stored-Program Digital Computer Digital computation in ALU Programmable via set of standard instructions input memory output Internal

More information

The Von Neumann Model. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell

The Von Neumann Model. University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell The Von Neumann Model University of Texas at Austin CS310H - Computer Organization Spring 2010 Don Fussell The Stored Program Computer 1943: ENIAC Presper Eckert and John Mauchly -- first general electronic

More information

Computers Are Your Future Eleventh Edition

Computers Are Your Future Eleventh Edition Computers Are Your Future Eleventh Edition Chapter 2: Inside the System Unit Copyright 2011 Pearson Education, Inc. Publishing as Prentice Hall 1 All rights reserved. No part of this publication may be

More information

ARM Cortex M3: Overview & Programmer s Model

ARM Cortex M3: Overview & Programmer s Model ARM Cortex M3: Overview & Programmer s Model ECE 331, Spring 2013 RISC Overview of Computing Systems ARM stands for Advanced RISC Machine RISC = Reduced Instruction Set Computer Earliest work began in

More information

COMPUTER ARCHITECTURE I CIS Page

COMPUTER ARCHITECTURE I CIS Page COMPUTER ARCHITECTURE I CIS 210 1 Page TABLE OF CONTENTS UNIT ONE General Overview of Computer Organization UNIT TWO Registers and Instruction Code 14 UNIT THREE Control Unit Design Hardwired and Multiprogramming-

More information

Chapter 5 Instructor's Manual

Chapter 5 Instructor's Manual The Essentials of Computer Organization and Architecture Linda Null and Julia Lobur Jones and Bartlett Publishers, 2003 Chapter 5 Instructor's Manual Chapter Objectives Chapter 5, A Closer Look at Instruction

More information

EE482: Advanced Computer Organization Lecture #11 Processor Architecture Stanford University Wednesday, 31 May 2000. ILP Execution

EE482: Advanced Computer Organization Lecture #11 Processor Architecture Stanford University Wednesday, 31 May 2000. ILP Execution EE482: Advanced Computer Organization Lecture #11 Processor Architecture Stanford University Wednesday, 31 May 2000 Lecture #11: Wednesday, 3 May 2000 Lecturer: Ben Serebrin Scribe: Dean Liu ILP Execution

More information

CPU Organization and Assembly Language

CPU Organization and Assembly Language COS 140 Foundations of Computer Science School of Computing and Information Science University of Maine October 2, 2015 Outline 1 2 3 4 5 6 7 8 Homework and announcements Reading: Chapter 12 Homework:

More information

Administrative Issues

Administrative Issues CSC 3210 Computer Organization and Programming Introduction and Overview Dr. Anu Bourgeois (modified by Yuan Long) Administrative Issues Required Prerequisites CSc 2010 Intro to CSc CSc 2310 Java Programming

More information

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc

A single register, called the accumulator, stores the. operand before the operation, and stores the result. Add y # add y from memory to the acc Other architectures Example. Accumulator-based machines A single register, called the accumulator, stores the operand before the operation, and stores the result after the operation. Load x # into acc

More information

COMPUTER ARCHITECTURE IMPORTANT QUESTIONS FOR PRACTICE

COMPUTER ARCHITECTURE IMPORTANT QUESTIONS FOR PRACTICE COMPUTER ARCHITECTURE IMPORTANT QUESTIONS FOR PRACTICE 1. How many bits wide memory address have to be if the computer had 16 MB of memory? (use the smallest value possible) 2. A digital computer has a

More information

#5. Show and the AND function can be constructed from two NAND gates.

#5. Show and the AND function can be constructed from two NAND gates. Study Questions for Digital Logic, Processors and Caches G22.0201 Fall 2009 ANSWERS Digital Logic Read: Sections 3.1 3.3 in the textbook. Handwritten digital lecture notes on the course web page. Study

More information

New York University, Leonard N. Stern School of Business. C Information Systems for Managers Fall Hardware Fundamentals

New York University, Leonard N. Stern School of Business. C Information Systems for Managers Fall Hardware Fundamentals New York University, Leonard N. Stern School of Business C20.0001 Information Systems for Managers Fall 1999 Hardware Fundamentals Hardware is a general term used to describe the electronic machines that

More information

Intel 8086 architecture

Intel 8086 architecture Intel 8086 architecture Today we ll take a look at Intel s 8086, which is one of the oldest and yet most prevalent processor architectures around. We ll make many comparisons between the MIPS and 8086

More information

BLOCK DIAGRAM OF A COMPUTER SYSTEM

BLOCK DIAGRAM OF A COMPUTER SYSTEM BLOCK DIAGRAM OF A COMPUTER SYSTEM Analysis of CPU In order to work, a computer needs some sort of "brain" or "calculator". At the core of every computer is a device roughly the size of a large postage

More information

CS107 Handout 12 Spring 2008 April 18, 2008 Computer Architecture: Take I

CS107 Handout 12 Spring 2008 April 18, 2008 Computer Architecture: Take I CS107 Handout 12 Spring 2008 April 18, 2008 Computer Architecture: Take I Computer architecture Handout written by Julie Zelenski and Nick Parlante A simplified picture with the major features of a computer

More information

Machine Architecture. ITNP23: Foundations of Information Technology Una Benlic 4B69

Machine Architecture. ITNP23: Foundations of Information Technology Una Benlic 4B69 Machine Architecture ITNP23: Foundations of Information Technology Una Benlic 4B69 ube@cs.stir.ac.uk Basic Machine Architecture In these lectures we aim to: Understand the basic architecture of a simple

More information

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune

Introduction to RISC Processor. ni logic Pvt. Ltd., Pune Introduction to RISC Processor ni logic Pvt. Ltd., Pune AGENDA What is RISC & its History What is meant by RISC Architecture of MIPS-R4000 Processor Difference Between RISC and CISC Pros and Cons of RISC

More information

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX

CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX CHAPTER 2: HARDWARE BASICS: INSIDE THE BOX Multiple Choice: 1. Processing information involves: A. accepting information from the outside world. B. communication with another computer. C. performing arithmetic

More information

Advanced Computer Architecture-CS501

Advanced Computer Architecture-CS501 Lecture Handouts Computer Architecture Lecture No. 12 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 4 Computer Systems Design and Architecture 4.1, 4.2, 4.3 Summary 7) The design process

More information

Spring 2010 Prof. Hyesoon Kim

Spring 2010 Prof. Hyesoon Kim Spring 2010 Prof. Hyesoon Kim ARM is short for Advanced Risc Machines Ltd. Founded 1990, owned by Acorn, Apple and VLSI Known before becoming ARM as computer manufacturer ARM is one of the most licensed

More information

Binary Representation and Computer Arithmetic

Binary Representation and Computer Arithmetic Binary Representation and Computer Arithmetic The decimal system of counting and keeping track of items was first created by Hindu mathematicians in India in A.D. 4. Since it involved the use of fingers

More information

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX

Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy

More information

MACHINE ARCHITECTURE & LANGUAGE

MACHINE ARCHITECTURE & LANGUAGE in the name of God the compassionate, the merciful notes on MACHINE ARCHITECTURE & LANGUAGE compiled by Jumong Chap. 9 Microprocessor Fundamentals A system designer should consider a microprocessor-based

More information

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing.

a storage location directly on the CPU, used for temporary storage of small amounts of data during processing. CS143 Handout 18 Summer 2008 30 July, 2008 Processor Architectures Handout written by Maggie Johnson and revised by Julie Zelenski. Architecture Vocabulary Let s review a few relevant hardware definitions:

More information

PART B QUESTIONS AND ANSWERS UNIT I

PART B QUESTIONS AND ANSWERS UNIT I PART B QUESTIONS AND ANSWERS UNIT I 1. Explain the architecture of 8085 microprocessor? Logic pin out of 8085 microprocessor Address bus: unidirectional bus, used as high order bus Data bus: bi-directional

More information

Week 1 Introduction to Programming

Week 1 Introduction to Programming CME111 Programming Languages I Week 1 Introduction to Programming Assist. Prof. Dr. Caner ÖZCAN Introduction Course Web Site: www.canerozcan.net Office Hours: Tuesday 15:00-17:00 Thursday 13:00-15:00 or

More information

Computer Organization I. Lecture 3: von Neumann Architecture (Part I) von Neumann Architecture

Computer Organization I. Lecture 3: von Neumann Architecture (Part I) von Neumann Architecture Computer Organization I Lecture 3: von Neumann Architecture (Part I) von Neumann Architecture Overview General Architecture of von Neumann Machine - Memory Subsystem; - Arithmetic Logic Unit; - Control

More information

All computers can do is recognise two distinct physical states; essentially they can understand whether a switch is on or off.

All computers can do is recognise two distinct physical states; essentially they can understand whether a switch is on or off. Processing Data The difference between data and information All computers can do is recognise two distinct physical states; essentially they can understand whether a switch is on or off. The brain of the

More information

PART OF THE PICTURE: Computer Architecture

PART OF THE PICTURE: Computer Architecture PART OF THE PICTURE: Computer Architecture 1 PART OF THE PICTURE: Computer Architecture BY WILLIAM STALLINGS At a top level, a computer consists of processor, memory, and I/O components, with one or more

More information

EC 362 Problem Set #2

EC 362 Problem Set #2 EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?

More information

Code-generator of Parallel Assembly Code for Digital Signal Processor

Code-generator of Parallel Assembly Code for Digital Signal Processor Code-generator of Parallel Assembly Code for Digital Signal Processor Nikita Bukharenko, Alexey Syschikov State University of Aerospace Instrumentation 1 Saint-Petersburg, Russia massarakh@gmail.com, alexey.syschikov@guap.ru

More information

Anatomy of a Mobile. Steven R. Bagley

Anatomy of a Mobile. Steven R. Bagley Anatomy of a Mobile Steven R. Bagley Today Last week, considered the characteristics of a mobile device Today, look at what s inside a mobile Device Characteristics CPU (~1GHz or less) RAM (128MB 1GB)

More information

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level

Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY

More information

CISC, RISC, and DSP Microprocessors

CISC, RISC, and DSP Microprocessors CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:

More information