Muscle Anatomy. Muscle Fiber

Size: px
Start display at page:

Download "Muscle Anatomy. Muscle Fiber"

Transcription

1 Muscle Anatomy Muscle is made up of a group of fasiculi Muscle is surrounded by deep fascia and epimysium (connective tissue) Fasiculus is made up of a group of muscle fibers (cells) Fasiculus is surrounded by perimysium 1 Muscle Fiber 2 Each fasiculus is made up of groups of muscle fibers/cells Each muscle fiber is surrounded by endomysium Plasma membrane is called sarcolemma Cytoplasm is called sarcoplasm One muscle fiber contains Numerous nuclei, which regulate protein synthesis Numerous mitochondria for ATP production

2 Myofibrils 3 Each muscle fiber contains myofibrils Each myofibril is made up of myofilaments myofilament: proteins that actually move for contraction thin filament thick filament 4 Muscle Fiber

3 Connective Tissues=Movement 5 Endomysium, perimysium, and epimysium all connect to the muscle s tendon (dense regular connective tissue which attaches to bone) Contraction of muscle therefore pulls on tendon, which moves bone Myofibril 6 Made up of groups of myofilaments Thin filaments contain actin, troponin, tropomyosin (proteins) Thick filaments contain myosin (protein) Elastic filaments help hold thin and thick filaments in place Myofilaments interact with one another to produce muscle contraction

4 7 Myofibril 8 Myofibril structure Made up of many contractile subunits (sarcomeres) placed in series

5 Sarcomeres Ends of a sarcomere are called Z lines (disk), and anchor the thin filaments Thick filaments are anchored to each other at the center of a sarcomere (M line) Thick filaments are also indirectly anchored to the Z line through an elastic filament (titin/connectin) 9 Sarcomeres 10 I (isotropic) band: contains only thin filaments Contains Z band

6 Sarcomeres 11 A (anisotropic band): contains both thin and thick filaments, but border is the outside edge of thick filaments Anything that is not I band is part of A band Contains M (myosin) line and H (heavy) zone [thick filaments only] Sliding Filament Model 12 H.E. Huxley and A.F. Huxley, 1954, explained how muscles contract (shorten) to achieve the function of movement

7 Sliding Filament Model 13 Muscle contracts because thin (actin) and thick (myosin) filaments bind to one another The myosin twists like a ratchet to pull the actin toward the middle of the sarcomere (power stroke) Myosin releases and reattaches to the actin at a point closer to the Z line Sliding Filament Model 14 Pulling the actin in moves the Z lines closer together, shortening the overall length of the sarcomere(s) and thus shortening the length of the muscle = Contraction!

8 Sliding Filament Model 15 Muscle contraction is the result of the sarcomere shortening as thin filaments slide over thick filaments, drawing thin filaments closer together Myofilaments do not change their overall length H zones and I bands narrow A bands do not narrow Sliding Filament Model 16

9 Sliding Filament Model Contraction occurs when myosin binding sites on actin are exposed Binding site hidden by tropomyosin at rest Tropomyosin and troponin are bound to one another on the thin filament 17 Sliding Filament Model 18 Binding of calcium to troponin causes troponin to change shape, moving tropomyosin, and exposing myosin binding sites on actin

10 Sliding Filament Model 19 Myosin (already in energized, elongated position) binds to a binding site on actin, and myosin undergoes power stroke Sliding Filament Model 20 Power stroke requires energy, which was stored in elongated myosin Using that energy for stroke leaves myosin head in shorter, low energy configuration

11 Sliding Filament Model For myosin to release the thin filament, another ATP must bind to myosin head broken down to ADP + Pi + energy myosin releases actin and elongates (back to high energy configuration) 21 From where does calcium come? 22 Sarcoplasmic reticulum: a tubular system within the muscle fiber designed to store and release calcium upon muscle stimulation

12 Muscle Contraction & SR 23 When muscle fiber is stimulated by nervous system (motor unit) Electrical impulse moves down the T tubules, which contact the terminal cisterns on either side T tubule carries the impulse deep into the muscle myofibrils very quickly so that the myofibrils contract together Muscle fibers are all or none Neuromuscular Junction 24 Site of communication between neuron and muscle Gap=synapse Communication achieved by neuron releasing neurotransmitter (acetylcholine) which binds to receptors on sarcolemma

13 Sarcoplasmic Reticulum Calcium leaves the SR through calcium release channels in the cisterns bind to calcium binding sites on troponin 25 Muscle Relaxation 26 Relaxation occurs when muscle is no longer stimulated by the nervous system Calcium is taken up by calcium active transport pumps in the SR Without calcium available to bind to troponin, tropomyosin no longer pulls tropomyosin away from myosin binding sites Myosin therefore cannot bind with actin

14 Muscle Tone 27 At any given time in a resting muscle, some of the fibers within a muscle are contracting The fibers which are contracting alternate within a muscle to prevent fatigue of any particular fiber Muscle Contraction Two potential limits on muscle contraction Availability of calcium Calcium feedback (bones) No real loss from muscle cell Availability of ATP Body has multiple sources of ATP, each fine tuned to deliver ATP in a specific time frame and for a specific duration ATP depletion can occur 28

15 Muscle Metabolism 29 Muscle Metabolism 30 Two major categories of energy sources: aerobic and anaerobic Systems are linked together Aerobic capabilities can speed up recovery from anaerobic bursts of energy

16 31 Muscle Metabolism Aerobic Metabolism 32 Aerobic energy delivery Virtually limitless energy delivery Multiple sources of energy substrates (fat, carbohydrates, proteins) Relatively slow rate of energy delivery Produces only CO 2 and H 2 O as byproducts

17 Anaerobic Metabolism 33 Anaerobic energy delivery Very limited energy supply Rate of energy delivery is very fast Produces relatively harmful by- products (acid) ATP Available in Cell 34 Sources of energy Enough ATP in muscle for about 1-2 seconds Phosphocreatine (PC) good for a few seconds more Transfers its one P i group to ADP

18 35 Anaerobic Metabolism Glycolysis 36 Breakdown of sugar (glucose) Glucose converted to 2 pyruvic acid + 2 ATP Muscle s source of glucose is glycogen or newly digested glucose in blood Glycogen is the storage form of glucose in liver and muscle

19 37 Glycolysis 38 Rate limiting enzyme is phosphofructokinase (PFK) which converts fructose- 6- phosphate into fructose- 1,6- biphosphate

20 Muscle Metabolism 39 Two major fates of pyruvic acid Pyruvic Acid 40 If adequate mitochondrial capacity available, pyruvic acid is converted into acetyl- CoA and enters the Krebs Cycle [and then electron transport]

21 Pyruvic Acid 41 Krebs Cycle is the preferred pathway because it is much more efficient at producing energy and the only waste products are water and CO 2 Limits: number of mitochondria, availability of oxygen Enzyme for conversion to acetyl- CoA is pyruvate dehydrogenase Pyruvic Acid 42 If adequate mitochondrial capacity is not available, pyruvic acid is converted to lactic acid Enzyme: lactate dehydrogenase (LDH)

22 Muscle Fatigue 43 Lactic acid is disassociated into lactate ion (La - ) and hydrogen ion (H + ) The excess H + (increased acidity of muscle environment) inhibits muscle contraction Inhibits PFK (shutting down glycolysis) Reduces the effect of Ca +2 binding on troponin (actin and myosin cannot bind) Fates of Lactate 44 Cori Cycle Liver can convert lactate into glucose, which can them by stored as glycogen or reused (glyconeogenesis) Essentially the reverse of glycolysis and glycogenolysis

23 Fates of Lactate 45 Cardiac muscle and skeletal muscle can convert lactate into pyruvate (LDH) Pyruvate can then enter the mitochondria for aerobic energy production (pick up where you left off) Still limited by availability of oxygen and mitochondria Aerobic Metabolism 46 Krebs cycle (citric acid cycle, TCA) and electron transport (ET) / oxidative phosphorylation

24 Aerobic Metabolism 47 Glucose + 6O ADP + 38 P i 6CO 2 + 6H 2 O + 38 ATP Krebs Cycle 48 Produces electrons for ET which uses electrons to produce ATP (max. 34 electrons/glucose) Produces 2 CO 2 for each acetyl CoA (thus, 4 CO 2 for each glucose)

25 Krebs Cycle 49 Electron Transport Uses 3 O 2 for both acetyl CoA s to produce 32 or 34 ATP (+ 2 GTP) 50

26 Sources of Acetyl CoA Carbohydrates Proteins Lipids 51 Sources of Acetyl CoA Amino acids 52

27 Sources of Acetyl CoA Lipids TG converted to FA β- oxidation to acetyl- CoA 53 Changes in Muscle 54 Strength training Damage to muscle cells after overload produces soreness Damage also is stimulus for muscles to build more thin and thick filaments within a muscle cell (hypertrophy) Response to perceived inadequate muscle supply Positive effect of negative (soreness)

28 Changes in Muscle 55 Aerobic training More and larger mitochondria Increased capillarization (shorter distances for O 2 and CO 2 to travel) More myoglobin within the cell O 2 Consumption Dynamics 56 Exercise at or below 50% of maximal aerobic capacity (VO 2 max) Brain is using mostly glucose for ATP metabolism True under almost all conditions Muscles (and rest of body) using mostly lipid metabolism for ATP production

29 O 2 Consumption Dynamics 57 Exercise between 50-70% of (VO 2 max) Above 50%, we must use more carbohydrates (glycogen and recently consumed glucose) for additional energy required Breakdown of fats cannot supply energy fast enough to meet demand O 2 and mitochondria sufficient, so acidity doesn t increase, as pyruvate goes through preferred pathway O 2 Consumption Dynamics 58 Exercise above 70% (VO 2 max) Accumulate excess H + in blood Called anaerobic or lactate threshold Serious limitations in length of time you can perform at this level Acidity inhibits PFK Acidity inhibits Ca +2 and troponin binding Individual s lactate threshold can be changed

30 59 Neuromuscular Junction 60 Muscle Fiber Types Motor unit: one motor neuron and all the muscle fibers that it innervates (the group of muscle fibers that contract when stimulated by a single neuron) Fibers contract on all or nothing basis All muscle fibers of a motor unit are of the same type

31 Muscle Fiber Types 61 SO (slow oxidative) Type I or red muscle Contain large amounts of myoglobin, mitochondria, and capillaries Contain to primarily metabolize energy aerobically Muscle Fiber Types 62 FG (fast glycolytic) Type II or white muscle Largest fibers Contain little myoglobin, less mitochondria and fewer capillaries than SO More glycogen Enzymes to primarily go through glycolysis Powerful contractions but limited endurance

32 Muscle Fiber Types 63 FOG (fast oxidative glycolytic) Type IIA or intermediate fibers Contains characteristics of both SO and FG Most trainable type of muscle Will behave like SO or FG, depending on training Muscle Fiber Types 64 Most human skeletal muscle is a combination of types Triceps about 75% FG Soleus about 85% SO Vastus lateralis is about mix of slow, intermediate, and fast

33 Muscle Fiber Types 65 Motor units are recruited in the order of SO, then FOG, then FG Spares glycogen as much as possible Try to save the most powerful motor units for greatest muscular demand Use only SO motor units for delicate movements requiring light force

Muscles How muscles contract - The Sliding Filament Theory

Muscles How muscles contract - The Sliding Filament Theory Muscles How muscles contract - The Sliding Filament Theory A muscle contains many muscle fibers A muscle fiber is a series of fused cells Each fiber contains a bundle of 4-20 myofibrils Myofibrils are

More information

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure

Muscle Tissue. Muscle Physiology. Skeletal Muscle. Types of Muscle. Skeletal Muscle Organization. Myofibril Structure Muscle Tissue Muscle Physiology Chapter 12 Specially designed to contract Generates mechanical force Functions locomotion and external movements internal movement (circulation, digestion) heat generation

More information

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer.

CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY. Ms. K. GOWRI. M.Pharm., Lecturer. CHAPTER XV PDL 101 HUMAN ANATOMY & PHYSIOLOGY Ms. K. GOWRI. M.Pharm., Lecturer. Types of Muscle Tissue Classified by location, appearance, and by the type of nervous system control or innervation. Skeletal

More information

Biology 2401 Anatomy and Physiology I Exam 3 Notes- Muscular System Ch. 8

Biology 2401 Anatomy and Physiology I Exam 3 Notes- Muscular System Ch. 8 Biology 2401 Anatomy and Physiology I Exam 3 Notes- Muscular System Ch. 8 Functions of the muscular system: movement of body or body parts and materials within the body maintain posture and body position

More information

BIO 2401 MUSCLE TISSUE page 1 MUSCLES AND MUSCLE TISSUE. Striations Present or Absent?

BIO 2401 MUSCLE TISSUE page 1 MUSCLES AND MUSCLE TISSUE. Striations Present or Absent? BIO 2401 MUSCLE TISSUE page 1 Types of Muscle MUSCLES AND MUSCLE TISSUE Type of Muscle Skeletal Location of Muscle attaches to and covers bony skeleton Striations Present or Absent? present Control of

More information

Chapter 10 Muscle Tissue Lecture Outline

Chapter 10 Muscle Tissue Lecture Outline Chapter 10 Muscle Tissue Lecture Outline Muscle tissue types 1. Skeletal muscle = voluntary striated 2. Cardiac muscle = involuntary striated 3. Smooth muscle = involuntary nonstriated Characteristics

More information

Teppe Treppe: A staircase increase in tension production after repeated simulation, even though the muscle is allowed to relax between twitches.

Teppe Treppe: A staircase increase in tension production after repeated simulation, even though the muscle is allowed to relax between twitches. Part II, Muscle: Mechanisms of Contraction and Neural Control, Chapter 12 Outline of class notes Objectives: After studying part II of this chapter you should be able to: 1. Discuss how contractile force

More information

Chapter 10: Muscles and Muscle Tissue

Chapter 10: Muscles and Muscle Tissue Chapter 10: Muscles and Muscle Tissue Chapter Objectives OVERVIEW OF MUSCLE TISSUE 1. Describe the three key functions of muscle. 2. Describe the four special properties of muscle tissue. SKELETAL MUSCLE

More information

Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6

Anaerobic and Aerobic Training Adaptations. Chapters 5 & 6 Anaerobic and Aerobic Training Adaptations Chapters 5 & 6 Adaptations to Training Chronic exercise provides stimulus for the systems of the body to change Systems will adapt according to level, intensity,

More information

Muscular System: Muscle Tissue (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College

Muscular System: Muscle Tissue (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Muscular System: Muscle Tissue (Chapter 10) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Primary Sources for figures and content: Eastern Campus Marieb, E. N. Human Anatomy

More information

MUSCLES AND MUSCLE TISSUE

MUSCLES AND MUSCLE TISSUE MUSCLES AND MUSCLE TISSUE The muscular system provides for movement of the body and its parts (as muscles shorten), maintains posture, generates heat and stabilizes joints. The various types of muscles

More information

Muscle Fibres. Anatomy and Physiology Advanced Diploma Course Sample Pages Page 1

Muscle Fibres. Anatomy and Physiology Advanced Diploma Course Sample Pages Page 1 Muscle Fibres Muscles are composed of thousands of individual muscle fibres, which are held together by connective tissue. However, muscle fibres may differ in physiological makeup. Anatomy and Physiology

More information

Skeletal Muscle Structure & Function.

Skeletal Muscle Structure & Function. Skeletal Muscle Structure & Function. Learning Objectives. At the end of this course, you should be able to : 1. describe the structure of skeletal muscle 2. understand the function of a motor unit 3.

More information

Muscular System. Skeletal Muscle

Muscular System. Skeletal Muscle Muscular System Overview of Muscle Tissues Types of Muscle Tissue o Skeletal and smooth muscles which are elongated are called muscle fibers o Myo- and Mys- = muscle o Sarco = flesh refers to muscle; i.e.,

More information

Muscles and Contraction

Muscles and Contraction Muscles and Contraction Muscle tissue forms the organs called muscle. Three types of muscle tissue are (1) skeletal, (2) cardiac, and (3) smooth. Anatomy and Physiology Text and Laboratory Workbook, Stephen

More information

Practice Chapter 6. Figure 6.3. Multiple Choice Identify the choice that best completes the statement or answers the question.

Practice Chapter 6. Figure 6.3. Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Chapter 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Voluntary muscle tissue is; a. smooth muscle b. skeletal muscle c. dense regular d.

More information

Work and Energy in Muscles

Work and Energy in Muscles Work and Energy in Muscles Why can't I sprint forever? I'll start this section with that silly question. What lies behind the undisputable observation that we must reduce speed if we want to run longer

More information

Smooth Muscle. Learning Objectives.

Smooth Muscle. Learning Objectives. Smooth Muscle. Learning Objectives. At the end of this course, you should be able to : 1. describe the structure of smooth muscle 2. describe where smooth muscle occurs within the body 3. discuss the structural

More information

Chapter 6: The Muscular System

Chapter 6: The Muscular System Chapter 6: The Muscular System I. Overview of Muscle Tissues Objectives: Describe the similarities and differences in the structure and function of the three types of muscle tissue, and indicate where

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

Chapter 6. Components of Elasticity. Musculotendinous Unit. Behavioral Properties of the Musculotendinous Unit. Biomechanics of Skeletal Muscle

Chapter 6. Components of Elasticity. Musculotendinous Unit. Behavioral Properties of the Musculotendinous Unit. Biomechanics of Skeletal Muscle Chapter 6 Behavioral Properties of the Musculotendinous Unit 1) extensibility: ability to be stretched or to increase in length 2) elasticity: ability to return to normal resting length following a stretch

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

Muscle Tissue Muscle tissues are specialized to contract. Muscle cells are connected together, primarily by collagen fibers

Muscle Tissue Muscle tissues are specialized to contract. Muscle cells are connected together, primarily by collagen fibers Muscle Tissue Muscle tissues are specialized to contract. Muscle cells are connected together, primarily by collagen fibers When a muscle cell contracts t it pulls on the collagen fibers creating tension

More information

Exercise Metabolism II

Exercise Metabolism II Exercise Metabolism II Oxygen debt & deficit Lactate threshold --------------------------------------------------------------- VO2max, VO2max and Lactate threshold CHO and fat metabolism during exercise

More information

MUSCULAR SYSTEM. A. K. Sengupta 9/9/2010 1/12

MUSCULAR SYSTEM. A. K. Sengupta 9/9/2010 1/12 MUSCULAR SYSTEM Introduction Functions and basic types of muscle cells Skeletal muscle cells and connective tissues The nervous system Mechanism of muscle contraction Motor unit Action potential basis

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Integration of Metabolism

Integration of Metabolism I. Central Themes of Metabolism 1. ATP is the universal energy carrier. Integration of Metabolism Bryant Miles 2. ATP is generated by the oxidation of metabolic fuels Glucose Fatty Acids Amino Acids 3.

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism.

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism. Regulation of carbohydrate metabolism Intracellular metabolic regulators Each of the control point steps in the carbohydrate metabolic pathways in effect regulates itself by responding to molecules that

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

MUSCLE TISSUE. Larry Johnson Texas A&M University

MUSCLE TISSUE. Larry Johnson Texas A&M University MUSCLE TISSUE Larry Johnson Texas A&M University Objectives Histologically identify and functionally characterize each of the 3 types of muscle tissues. Describe the organization of the sarcomere as seen

More information

I have also included the questions from the muscular system quiz 7AB and 8 AB in this practice set.

I have also included the questions from the muscular system quiz 7AB and 8 AB in this practice set. 1 Practice Questions for Exam 2 As you prepare for the exam you should review all of your lecture notes, study guides, key medical terms, blood test information, and previous quizzes. The following are

More information

Neuromuscular Adaptations to Training

Neuromuscular Adaptations to Training Neuromuscular Adaptations to Training Baechle Chapter 4, pp. 143-151, 151, Powers & Howley pp. 253-255 255 Lecture Overview Neural Adaptations Skeletal Muscle Adaptations Connective Tissue Anatomy Connective

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch23_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following statements concerning digestion are correct except A) The major physical

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

11 - Types Of Skeletal Muscle Contractions. Taft College Human Physiology

11 - Types Of Skeletal Muscle Contractions. Taft College Human Physiology 11 - Types Of Skeletal Muscle Contractions Taft College Human Physiology Types Of Skeletal Muscle Contractions Isotonic Contractions: Tension produced and overall shortening of the muscle as a load is

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

PHYSIOLOGY AND MAINTENANCE Vol. IV - Muscle Energy Metabolism - Atalay M. and Hänninen O.O.P.

PHYSIOLOGY AND MAINTENANCE Vol. IV - Muscle Energy Metabolism - Atalay M. and Hänninen O.O.P. MUSCLE ENERGY METABOLISM Atalay M. and Hänninen O.O.P. University of Kuopio, Finland Keywords: aerobic, anaerobic, ATP, cardiac muscle, creatine phosphate, energy, glycolysis, metabolism, oxidation, skeletal

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Chapter 25: Metabolism and Nutrition

Chapter 25: Metabolism and Nutrition Chapter 25: Metabolism and Nutrition Chapter Objectives INTRODUCTION 1. Generalize the way in which nutrients are processed through the three major metabolic fates in order to perform various energetic

More information

Does Lactic Acid Cause Muscular Fatigue?

Does Lactic Acid Cause Muscular Fatigue? Does Lactic Acid Cause Muscular Fatigue? Ernest W. Maglischo, Ph.D. 1970 Lazy Meadow Lane Prescott, AZ 86303 USA ewmaglischo@cox.net Abstract. Until recently, lactic acid accumulation and the acidosis

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

Module F SKELETAL SYSTEM & ARTICULATIONS

Module F SKELETAL SYSTEM & ARTICULATIONS Module F SKELETAL SYSTEM & ARTICULATIONS Topic from General functions of bone & the skeletal system Structural components microscopic anatomy Structural components gross anatomy Physiology of embryonic

More information

UNIT 5 - MUSCULAR SYSTEM LECTURE NOTES

UNIT 5 - MUSCULAR SYSTEM LECTURE NOTES UNIT 5 - MUSCULAR SYSTEM LECTURE NOTES 5.0I MUSCLE TISSUE FUNCTIONS A. Motion by moving the skeletal levers of the body B. Posture - stabilizing body positions C. Regulation of organ volume D. Thermogenesis

More information

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Chapter 9: Muscular System

Chapter 9: Muscular System Shier, Butler, and Lewis: Hole s Human Anatomy and Physiology, 10 th ed. Chapter 9: Muscular System Chapter 9: Muscular System I. Structure of a Skeletal Muscle A. Introduction 1. A skeletal muscle is

More information

Biological Sciences Initiative. Muscle Contraction

Biological Sciences Initiative. Muscle Contraction BSI Activity Page 1 Biological Sciences Initiative HHMI Muscle Contraction SUMMARY In this activity, students will play the role of different proteins involved in muscle contraction and act out the process.

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Understanding energy systems

Understanding energy systems Understanding energy systems Key terms & definitions: Anaerobic: A process that does not require oxygen. Aerobic: A process that requires oxygen. ATP Yield: The total amount of ATP produced by an energy

More information

Lactic Acid Dehydrogenase

Lactic Acid Dehydrogenase Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

7Muscles. Major Themes. Chapter Objectives. Overview of Muscle 228. Structure of Skeletal Muscle Tissue 231. Muscle Energy 243

7Muscles. Major Themes. Chapter Objectives. Overview of Muscle 228. Structure of Skeletal Muscle Tissue 231. Muscle Energy 243 7Muscles Major Themes Muscle cells shorten on command; no other cells do. There are three types of muscle cells: skeletal, cardiac, and smooth. Skeletal muscle contracts voluntarily to produce body movements.

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Skeletal Muscle Contraction MUSCLE PHYSIOLOGY. Sliding Filament Model of Contraction. Nerve Stimulus of Skeletal Muscle

Skeletal Muscle Contraction MUSCLE PHYSIOLOGY. Sliding Filament Model of Contraction. Nerve Stimulus of Skeletal Muscle Skeletal Muscle Contraction MUSCLE PHYSIOLOGY In order to contract, a skeletal muscle must: Be stimulated by a nerve ending Propagate an electrical current, or action potential, along its sarcolemma Have

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

Interval Training. Interval Training

Interval Training. Interval Training Interval Training Interval Training More work can be performed at higher exercise intensities with same or less fatigue than in continuous training Fitness Weight Loss Competition Baechle and Earle, Essentials

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

Muscle Physiology and the. Pathology of Muscular Dystrophy

Muscle Physiology and the. Pathology of Muscular Dystrophy Muscle Physiology and the Pathology of Muscular Dystrophy Angela Tompkins February 23, 2010 Everglades University Biology 1 Muscle Physiology and the Pathology of Muscular Dystrophy Humans are able to

More information

MUSCULAR SYSTEM REVIEW. 1. Identify the general functions of the muscular system

MUSCULAR SYSTEM REVIEW. 1. Identify the general functions of the muscular system MUSCULAR SYSTEM REVIEW 1. Identify the general functions of the muscular system 2. Define the four characteristics of muscular tissue a. irritability (excitability) - b. extensibility- c. contractibility

More information

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical. THE LIVING CELL A Tour of the cell The cell is the smallest and the basic unit of structure of all organisms. There are two main types or categories of cells: prokaryotic cells and eukaryotic cells. Prokaryotic

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

Chapter 8 - Muscular System 8.1 Introduction (p. 178 ) A. The three types of muscle in the body are skeletal, smooth, and cardiac muscle. B.

Chapter 8 - Muscular System 8.1 Introduction (p. 178 ) A. The three types of muscle in the body are skeletal, smooth, and cardiac muscle. B. Chapter 8 - Muscular System 8.1 Introduction (p. 178 ) A. The three types of muscle in the body are skeletal, smooth, and cardiac muscle. B. This chapter focuses on skeletal muscle. 8.2 Structure of a

More information

Skeletal, Muscular, and Integumentary Systems

Skeletal, Muscular, and Integumentary Systems Chapter 36 Skeletal, Muscular, and Integumentary Systems Section 36 1 The Skeletal System (pages 921 925) This section describes the skeletal system and its functions. Introduction (page 921) 1. What forms

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

North Bergen School District Benchmarks

North Bergen School District Benchmarks Grade: 10,11, and 12 Subject: Anatomy and Physiology First Marking Period Define anatomy and physiology, and describe various subspecialties of each discipline. Describe the five basic functions of living

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

Electrode Placement Manual Visit our website: www.veritymedical.co.uk for detailed application protocols

Electrode Placement Manual Visit our website: www.veritymedical.co.uk for detailed application protocols NeuroTrac Electrode Placement Manual Visit our website: www.veritymedical.co.uk for detailed application protocols 1 Contents Contents Page Introduction 4 Muscle profile 4 Classification of the various

More information

Is ATP worth the investment?

Is ATP worth the investment? Is ATP worth the investment? ATP (adenosine tri-phosphate) can be thought of as the currency of the cell. Most cellular metabolic processes cost a certain amount of ATP in order to happen. Furthermore,

More information

BASIC PROPERTIES OF MUSCLE

BASIC PROPERTIES OF MUSCLE BASIC PROPERTIES OF MUSCLE 18-1 Lecture Overview Muscles and motion Muscles Muscle structure Relevant properties Force-length properties Muscle states Force-velocity relationship Muscle fiber types Isometric

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Carbon Hydrogen Oxygen Nitrogen

Carbon Hydrogen Oxygen Nitrogen Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw

More information

Muscle Physiology. Lab 5. Human Muscle Physiology

Muscle Physiology. Lab 5. Human Muscle Physiology Lab 5 Human At the beginning of lab you will have the opportunity for 2 bonus points! You must guess which person in the class will have: 1) Maximum Grip Force 2) Longest time to half-max Force (longest

More information

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Name PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY Cell Structure Identify animal, plant, fungal and bacterial cell ultrastructure and know the structures functions. Plant cell Animal cell

More information

Cardiac Muscle. Learning Objectives.

Cardiac Muscle. Learning Objectives. Cardiac Muscle. Learning Objectives. At the end of this course, you should be able to : 1. describe the structure of cardiac muscle 2. understand the concept of the functional syncytium 3. give a basic

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

The 3 stages of Glycolysis

The 3 stages of Glycolysis The Glycolytic pathway describes the oxidation of glucose to pyruvate with the generation of ATP and NADH It is also called as the Embden-Meyerhof Pathway is a universal pathway; present in all organisms:

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue Muscles and Muscle Tissue 9 Overview of Muscle Tissues (pp. 280=281) 1. Compare and contrast the basic types of muscle tissue. 2. List four important functions of muscle tissue. Skeletal Muscle (pp. 281=309)

More information

MOCK PAPER Level 3 Anatomy and Physiology For Exercise and Health. Unit Accreditation Number A/600/9051

MOCK PAPER Level 3 Anatomy and Physiology For Exercise and Health. Unit Accreditation Number A/600/9051 MULTIPLE CHOICE QUESTION PAPER Paper number APEH 3.01 Please insert this reference number in the appropriate boxes on your candidate answer sheet Title Time allocation 60 minutes MOCK PAPER Level 3 Anatomy

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu Electron Transport System May 16, 2014 Hagop Atamian hatamian@ucdavis.edu What did We learn so far? Glucose is converted to pyruvate in glycolysis. The process generates two ATPs. Pyruvate is taken into

More information

Objectives continued- Answer each of the objectives on a separate sheet of paper to demonstrate content mastery. Attach answers to back of packet.

Objectives continued- Answer each of the objectives on a separate sheet of paper to demonstrate content mastery. Attach answers to back of packet. Anatomy and Physiology Chapter 6: The Muscular System Name: Objectives- By the end of this chapter I will be able to: 1. Describe similarities and differences in the structure and function of the three

More information

Training our energy systems

Training our energy systems Training our energy systems By: Kelly Mackenzie, MSC, BPE, AFLCA trainer Regardless of what mode of exercise we are using, we can train all three of our energy systems. There are physiological adaptations

More information

Questions on The Nervous System and Gas Exchange

Questions on The Nervous System and Gas Exchange Name: Questions on The Nervous System and Gas Exchange Directions: The following questions are taken from previous IB Final Papers on Topics 6.4 (Gas Exchange) and 6.5 (Nerves, hormones and homeostasis).

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue < 278 UNIT 2 Covering, Support, and Movement of the Body Muscles and Muscle Tissue WHY THIS MATTERS In this chapter, you will learn that Muscles use actin and myosin molecules to convert the energy of

More information

2. Describe the structure of a muscle fibre and explain the structural and physiological differences between fast and slow twitch muscle fibres.

2. Describe the structure of a muscle fibre and explain the structural and physiological differences between fast and slow twitch muscle fibres. Unit 5 Biology Notes Topic 7: Run for Your Life 2. Describe the structure of a muscle fibre and explain the structural and physiological differences between fast and slow twitch muscle fibres. Muscle is

More information