More Linear Algebra Study Problems

Size: px
Start display at page:

Download "More Linear Algebra Study Problems"

Transcription

1 More Linear Algebra Study Problems The final exam will cover chapters -3 except chapter. About half of the exam will cover the material up to chapter 8 and half will cover the material in chapters 9-3. Refer to the previous study problems for more exercises on the material up to chapter 8, as well as the homework problems for all chapters (except chapter ). The problems below are in no particular order.. Find the kernel and image of the matrix A = Solution: The kernel of A is the hyperplane in R 6 with equation x + x + + 6x 6 = 0. The image is the line in R 4 through the vector (,,, ).. Find the 3 3 matrix that reflects about the plane x + y + z = 0. Solution: Use the formula (3) from chap. 7: Av = v v, u u, where u is a unit vector normal to the plane. Here u = (/ 3)(,, ) and the matrix is A = 3 (You can check your answer by computing the eigenspaces of your matrix.) 3. Find the angle and axis of rotation of the matrix A = Solution: The cosine of the rotation angle θ is given by cos(θ) = (tr(a) ) =, so θ = π. The axis is ker(a I) = R(, 4, ). 4. Find the inverse of the matrix 0 A =. 0 Check your answer. Then use your answer to solve the system x + y = x + y + z = y + z =

2 Solution: 3 A =, x =, y =, z =. 5. Find the ranks and the kernels of the following matrices A = , B = Solutions: rank(a) = 3, ker A = Re 4, rank(b) =, ker(b) is the plane spanned by (, 3, 0, ), (,,, 0). 6. Find the inverse of the matrix Check your answer. Solutions: 0 0 A = A = Find, if possible, planes in R 4 which meet the hyperplane x + y + z + w = 0 in a) a point; b) a line; c) a plane. Solutions: A plane is the intersection of two hyperplanes, so we are looking at the intersection of three hyperplanes, one of which is x+y+z +w = 0. Let the other two hyperplanes be ax+by+cz +dw = 0 and ex + fy + gz + hw = 0. This intersection is the kernel of the matrix A = a b c d. e f g h By the Kernel-Image Theorem we have dim(ker A) = 4 dim(im A) = 4 rank(a), since rank(a) 3. Hence it is not possible for the intersection to be a point. The intersection is a line exactly when rank(a) = 3, for example, A = 0 0 0, 0 0 0

3 and the intersection is a plane exactly when rank(a) =, for example A = A 4 4 matrix A with real entries satisfies A 4 = I. What are the possible characteristic polynomials of A? Solutions: The eigenvalues of A must satisfy λ 4 =, so λ {,, i, i}. Since A is real, its characteristic polynomial P A (x) is real, so ±i must appear in pairs. The possibilities for P A (x) are: (x ) 4, (x ) 3 (x + ), (x ) (x + ), (x )(x + ) 3, (x + ) 4, (x + )(x ), (x + )(x ), (x + )(x + ), (x + ). 9. Find a 4 4 non-diagonal matrix with eigenvalues,, 3, 4. Solutions: Let D be the diagonal matrix with diagonal entries,, 3, 4. For almost any invertible matrix B we will have BDB non-diagonal. Just don t choose B to have exactly one nonzero entry in each row and column. 0. Let M = Find a nonzero vector v such that Mv = v. Solutions: We must find a -eigenvector of M, or equivalently a 6-eigenvector for the matrix A = 6M = This means we must compute the kernel of 5 A 6I = The answer is any nonzero scalar multiple of (8, 9, ).. Determine whether the following sets of vectors are linearly independent or not. (a) (, 0,, 0), (, 0, 0, ), (0,, 0, ), (0,,, 0) (b) (, 0,, 0), (, 0, 0, ), (0,, 0, ), (0, 0,, 0) 3

4 (c) (,, 3), (4, 5, 6), (7, 8, 9). (d) (a, b, c), (d, e, f), (0, 0, 0). (e) (,, 3, 4), (, 3, 4, 5), (3, 4, 5, 6), (4, 5, 6, 7), (5, 6, 7, 8) Solutions: (a) Linearly Dependent, since (, 0,, 0) (, 0, 0, ) + (0,, 0, ) (0,,, 0) = (0, 0, 0, 0). (b) Linearly Independent, because setting leads to the equations c (, 0,, 0) + c (, 0, 0, ) + c 3 (0,, 0, ) + c 4 (0, 0,, 0) = (0, 0, 0, 0) c + c = 0, c 3 = 0, c + c 4 = 0, c + c 3 = 0, and the only solution of these equations is all c i = 0. (c) Linearly Dependent, since (,, 3) (4, 5, 6) + (7, 8, 9) = (0, 0, 0). (d) Linearly Dependent, since 0(a, b, c) + 0(d, e, f) + (0, 0, 0) = (0, 0, 0). Any set of vectors which contains the zero vector is linearly dependent. (e) Linearly Dependent, because there are more vectors than components in the vectors.. Suppose A is a 3 3 matrix and u, v, w are nonzero vectors in R 3 such that Au = 0, Av = v, Aw = w. Show that u, v, w are linearly independent. (This is a special case of a theorem from class (which one?), but prove it here from scratch.) Solution: Suppose c u+c v +c 3 w = 0. Apply A to both sides of this equation. We get c v +c 3 w = 0. Apply A again, and get c v + 4c 3 w = 0. Subtract these last two equations, and get c 3 w = 0, so c 3 = 0. Then c = 0, and then c = 0 as well. 3. Give an example of four vectors u, u, u 3, u 4 in R 3 which are linearly dependent, but any three of the four are linearly independent. Solution: One such example is (, 0, 0), (0,, 0), (0, 0, ), (,, ). 4. Suppose A is an n m matrix, and the columns of A are linearly independent. What is ker A? Solution: Suppose x = (x,..., x m ) belongs to ker A. Let u,..., u m be the columns of A. Then Ax = x u + + x m u m = 0. 4

5 Since the u i s are linearly independent, we have all x i = 0. So x = 0. Thus, ker A is zero. 5. Determine whether or not the following sets of vectors u, u, u 3 are bases of R 3. (a) u = (,, ), u = (,, 0), u 3 = (, 0, 0) (b) u = (,, 0), u = (0,, ), u 3 = (, 0, ) (c) u = (,, 3), u = (4, 5, 6), u 3 = (7, 8, 9) (d) u = (,, 3), u = (6, 5, 4), u 3 = (7, 8, 9) Solutions: It suffices to check if the sets are linearly independent. (a) basis (b) not a basis (u 3 = u + u ) (c) not a basis (u = u + u 3 ) (d) not a basis (7u 3 = 3u + 6u 3 ) 6. The intersection of two subspaces V and W of R n is the set of vectors which belong to both V and W. This intersection is denoted by V W. The union of V and W is the set of vectors belonging to either V or W, and is denoted V W. (a) Show that V W is a subspace of R n. (b) Show that V W is not, in general, a subspace of R n. (c) Let A = [a ij ] be an n m matrix. Describe the kernel of A as an intersection of hyperplanes. (How many hyperplanes, and where do they live?) Solutions: (a) Check closure under addition and scalar multiplication. (b) For example, the union of the line through e and the line through e is not a subspace, because it doesn t contain e + e. (c) For each i such that the i th row of A is not all zero, consider the hyperplane with equation a i x + a i x + + a im x m = 0. Then ker A is the intersection of these hyperplanes in R n, one hyperplane for every nonzero row of A. 7. In R 3, two planes intersect in either a line or a plane. The minimum possible dimension of the intersection is (which happens when the intersection is a line). What is the minimum possible 5

6 dimension of intersection of two hyperplanes in R 4? In general, for two subspaces V, W of R n, with dimensions dim V = k, and dim W = l, what is the minimum possible dimension of V W? Solution: The intersection of two hyperplanes in R 4 is the kernel of a 4 matrix A. We have ker A = 4 rank(a). As rank(a), the minimum interesection two dimensional. If k + l n then the intersection is the kernel of a (k + l) n matrix A, and dim(ker A) = n rank(a) n (k + l) with equality if and only if rank(a) = k + l. So in this case the minimum possible dimension of V W is n (k + l). If k + l > n then there is a (k + l) n matrix A of rank n, for which ker(a) = {0}. So in this case the minimum possible dimension of V W is Let A be the reflection about a plane in R 3 with normal vector n, and let B be a 3 3 rotation matrix. Show that BAB is reflection about the plane with normal vector Bn. Solution: BAB is a product of three orthogonal matrices, hence is orthogonal. Since An = n we have BAB (Bn) = BA(n) = B( n) = Bn. If u is in the plane perpendicular to Bn then B u is in the plane perpendicular to u, and the same calculation shows that BAB u = u. So BAB fixes the plane perpendicular to Bn and negates Bn. It follows that BAB is reflection about Bn. 9. Let A be a rotation about an axis u in R 3 by angle θ, measured counterclockwise as u points at you. Let B be a 3 3 rotation matrix. Show that BAB is a rotation and give its axis and angle in terms u and θ. Solution: BAB is a product of three orthogonal matrices, hence is orthogonal. And det(bab ) = det(a) = since A is a rotation. Hence BAB is also a rotation. Since u is on the axis for A we have BAB (Bu) = BAu = Bu, so Bu is on the axis for BAB. Finally the angle of rotation is determined by the trace, which is the same for A and BAB. Therefore BAB also rotates by θ. And since B is a rotation, it preserves handedness, so the direction of rotation by θ is also counterclockwise as Bu points at you. [If B had been a reflection everything above would be the same, but BAB would rotate by θ in the other direction. ] 0. Let D : P 3 P 3 be the linear map given by D(f) = df/dx. (a) Find the matrix of D with respect to the basis {, x, x, x 3 }. (b) Find the matrix of D with respect to the basis of Legendre polynomials {P 0, P, P, P 3 }. (c) Find a matrix B which conjugates the matrix in part (a) to the matrix in part (b). Solution: 6

7 (a) We compute the effect of D on the basis vectors, x, x, x 3 : D() = 0, D(x) = =, D(x ) = x = x, D(x 3 ) = 3x = 3 x, So the matrix of D with respect to the basis {, x, x, x 3 } is (b) We compute the effect of D on the basis vectors P 0, P, P, P 3, where we recall that We find P 0 =, P = x, P = (3x ) P 3 = (5x3 3x). D(P 0 ) = 0, D(P ) = = P 0, D(P ) = 3x = 3 P, D(P 3 ) = 5 x 3 = 5P + P 0, So the matrix of D with respect to the basis {P 0, P, P, P 3 } is (c) Such a matrix B is the change of basis matrix. More precisely if A is the matrix in (a) and A is the matrix in (b), then B AB = A, where 0 / 0 B = 0 0 3/ 0 0 3/ / 7

c 1 v 1 + c 2 v c k v k

c 1 v 1 + c 2 v c k v k Definition: A vector space V is a non-empty set of objects, called vectors, on which the operations addition and scalar multiplication have been defined. The operations are subject to ten axioms: For any

More information

Note: A typo was corrected in the statement of computational problem #19.

Note: A typo was corrected in the statement of computational problem #19. Note: A typo was corrected in the statement of computational problem #19. 1 True/False Examples True or false: Answers in blue. Justification is given unless the result is a direct statement of a theorem

More information

Linear Algebra Notes

Linear Algebra Notes Linear Algebra Notes Chapter 19 KERNEL AND IMAGE OF A MATRIX Take an n m matrix a 11 a 12 a 1m a 21 a 22 a 2m a n1 a n2 a nm and think of it as a function A : R m R n The kernel of A is defined as Note

More information

MA 52 May 9, Final Review

MA 52 May 9, Final Review MA 5 May 9, 6 Final Review This packet contains review problems for the whole course, including all the problems from the previous reviews. We also suggest below problems from the textbook for chapters

More information

SOLUTIONS TO PROBLEM SET 6

SOLUTIONS TO PROBLEM SET 6 SOLUTIONS TO PROBLEM SET 6 18.6 SPRING 16 Note the difference of conventions: these solutions adopt that the characteristic polynomial of a matrix A is det A xi while the lectures adopt the convention

More information

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations. Row operations.

1. Linear systems of equations. Chapters 7-8: Linear Algebra. Solution(s) of a linear system of equations. Row operations. A linear system of equations of the form Sections 75 78 & 8 a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m can be written in matrix form as AX = B where a a a n x

More information

Math 24 Winter 2010 Wednesday, February 24

Math 24 Winter 2010 Wednesday, February 24 (.) TRUE or FALSE? Math 4 Winter Wednesday, February 4 (a.) Every linear operator on an n-dimensional vector space has n distinct eigenvalues. FALSE. There are linear operators with no eigenvalues, and

More information

Coordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write

Coordinates. Definition Let B = { v 1, v 2,..., v n } be a basis for a vector space V. Let v be a vector in V, and write MATH10212 Linear Algebra Brief lecture notes 64 Coordinates Theorem 6.5 Let V be a vector space and let B be a basis for V. For every vector v in V, there is exactly one way to write v as a linear combination

More information

MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial.

MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial. MATH 304 Linear Algebra Lecture 22: Eigenvalues and eigenvectors (continued). Characteristic polynomial. Eigenvalues and eigenvectors of a matrix Definition. Let A be an n n matrix. A number λ R is called

More information

Similarity and Diagonalization. Similar Matrices

Similarity and Diagonalization. Similar Matrices MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Math 20F Linear Algebra Lecture 2 Eigenvalues and Eigenvectors Slide Review: Formula for the inverse matrix. Cramer s rule. Determinants, areas and volumes. Definition of eigenvalues and eigenvectors.

More information

2.5 Spaces of a Matrix and Dimension

2.5 Spaces of a Matrix and Dimension 38 CHAPTER. MORE LINEAR ALGEBRA.5 Spaces of a Matrix and Dimension MATH 94 SPRING 98 PRELIM # 3.5. a) Let C[, ] denote the space of continuous function defined on the interval [, ] (i.e. f(x) is a member

More information

Review: Vector space

Review: Vector space Math 2F Linear Algebra Lecture 13 1 Basis and dimensions Slide 1 Review: Subspace of a vector space. (Sec. 4.1) Linear combinations, l.d., l.i. vectors. (Sec. 4.3) Dimension and Base of a vector space.

More information

Chapters 7-8: Linear Algebra

Chapters 7-8: Linear Algebra Sections 75, 78 & 81 Solutions 1 A linear system of equations of the form a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m can be written

More information

MATH 33A LECTURE 2 FINAL EXAM #1 #2 #3 #4 #5 #6. #7 #8 #9 #10 #11 #12 Total. Student ID:

MATH 33A LECTURE 2 FINAL EXAM #1 #2 #3 #4 #5 #6. #7 #8 #9 #10 #11 #12 Total. Student ID: MATH A LECTURE FINAL EXAM Please note: Show your work. Except on true/false problems, correct answers not accompanied by sufcent explanations will receive little or no credit. Please call one of the proctors

More information

Linear Algebra PRACTICE EXAMINATION SOLUTIONS

Linear Algebra PRACTICE EXAMINATION SOLUTIONS Linear Algebra 2S2 PRACTICE EXAMINATION SOLUTIONS 1. Find a basis for the row space, the column space, and the nullspace of the following matrix A. Find rank A and nullity A. Verify that every vector in

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

More information

Two dimensions. In two dimensions, every rotation is of the form

Two dimensions. In two dimensions, every rotation is of the form 4. Orthogonal transformations and Rotations A matrix is defined to be orthogonal if the entries are real and (1) A A = I. Condition (1) says that the gram matrix of the sequence of vectors formed by the

More information

MATH 240 Fall, Chapter 1: Linear Equations and Matrices

MATH 240 Fall, Chapter 1: Linear Equations and Matrices MATH 240 Fall, 2007 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 9th Ed. written by Prof. J. Beachy Sections 1.1 1.5, 2.1 2.3, 4.2 4.9, 3.1 3.5, 5.3 5.5, 6.1 6.3, 6.5, 7.1 7.3 DEFINITIONS

More information

(u, Av) = (A T u,v), (6.4)

(u, Av) = (A T u,v), (6.4) 216 SECTION 6.1 CHAPTER 6 6.1 Hermitian Operators HERMITIAN, ORTHOGONAL, AND UNITARY OPERATORS In Chapter 4, we saw advantages in using bases consisting of eigenvectors of linear operators in a number

More information

EXERCISES IN LINEAR ALGEBRA. 1. Matrix operations

EXERCISES IN LINEAR ALGEBRA. 1. Matrix operations EXERCISES IN LINEAR ALGEBRA 1 Matrix operations (1) Put D = diag(d 1, d 2,, d n ) Let A = (a ij ) be an n n matrix Find DA and AD When is D invertible? (2) An n n matrix A = (a ij ) is called upper triangular

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 200: EIGENVALUES AND EIGENVECTORS Eigenvalues and Eigenvectors of n n matrices With the formula for the determinant of a n n matrix, we can extend our discussion on the eigenvalues and eigenvectors

More information

Preliminaries of linear algebra

Preliminaries of linear algebra Preliminaries of linear algebra (for the Automatic Control course) Matteo Rubagotti March 3, 2011 This note sums up the preliminary definitions and concepts of linear algebra needed for the resolution

More information

1 Eigenvalues and Eigenvectors

1 Eigenvalues and Eigenvectors Math 20 Chapter 5 Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors. Definition: A scalar λ is called an eigenvalue of the n n matrix A is there is a nontrivial solution x of Ax = λx. Such an x

More information

(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find

(a) Compute the dimension of the kernel of T and a basis for the kernel. The kernel of T is the nullspace of A, so we row reduce A to find Scores Name, Section # #2 #3 #4 #5 #6 #7 #8 Midterm 2 Math 27-W, Linear Algebra Directions. You have 0 minutes to complete the following 8 problems. A complete answer will always include some kind of work

More information

Chapter 17. Orthogonal Matrices and Symmetries of Space

Chapter 17. Orthogonal Matrices and Symmetries of Space Chapter 17. Orthogonal Matrices and Symmetries of Space Take a random matrix, say 1 3 A = 4 5 6, 7 8 9 and compare the lengths of e 1 and Ae 1. The vector e 1 has length 1, while Ae 1 = (1, 4, 7) has length

More information

Math 54 Midterm 2, Fall 2015

Math 54 Midterm 2, Fall 2015 Math 54 Midterm 2, Fall 2015 Name (Last, First): Student ID: GSI/Section: This is a closed book exam, no notes or calculators allowed. It consists of 7 problems, each worth 10 points. The lowest problem

More information

Similarly rotations R y (θ) commute and rotations R z (θ) commute. In general, however, rotations in three dimensions do not commute.

Similarly rotations R y (θ) commute and rotations R z (θ) commute. In general, however, rotations in three dimensions do not commute. 7. Rotations This lecture is a more formal discussion of orthogonal transformations, the orthogonal group O(3), and especially the orientation preserving ones, SO(3), the rotations. A matrix is defined

More information

SOLUTIONS TO HOMEWORK #7, MATH 54 SECTION 001, SPRING 2012

SOLUTIONS TO HOMEWORK #7, MATH 54 SECTION 001, SPRING 2012 SOLUTIONS TO HOMEWORK #7, MATH 54 SECTION, SPRING JASON FERGUSON Beware of typos These may not be the only ways to solve these problems In fact, these may not even be the best ways to solve these problems

More information

by the matrix A results in a vector which is a reflection of the given

by the matrix A results in a vector which is a reflection of the given Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that

More information

Linear transformations and their matrices

Linear transformations and their matrices Linear transformations and their matrices In older linear algebra courses, linear transformations were introduced before matrices. This geometric approach to linear algebra initially avoids the need for

More information

Homework 7 M 373K by Mark Lindberg and Travis Schedler

Homework 7 M 373K by Mark Lindberg and Travis Schedler Chapter 3, Exercise 5 Homework 7 M 373K by Mark Lindberg and Travis Schedler (a) Determine the basechange matrix in R, when the old basis is the standard basis E (e, e ) and the new basis is B (e + e,

More information

A Crash Course in Linear Algebra

A Crash Course in Linear Algebra A Crash Course in Linear Algebra Jim Fakonas October, 202 Definitions The goal of this section is to provide a brief refresher in the basic terms and concepts of linear algebra, listed here roughly in

More information

Vectors. Arrows that have the same direction and length represent the same vector.

Vectors. Arrows that have the same direction and length represent the same vector. Part 1. 1 Part 1. Vectors A vector in the plane is a quantity that has both a magnitude and a direction. We can represent it by an arrow. Arrows that have the same direction and length represent the same

More information

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).

MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued). MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0

More information

Math 22 Final Exam 1

Math 22 Final Exam 1 Math 22 Final Exam. (36 points) Determine if the following statements are true or false. In each case give either a short justification or example (as appropriate) to justify your conclusion. T F (a) If

More information

6 Inner Product Spaces

6 Inner Product Spaces Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space

More information

Math 215 HW #4 Solutions

Math 215 HW #4 Solutions Math 5 HW #4 Solutions. Problem.3.6. Choose three independent columns of U. Then make two other choice. Do the same for A. You have found bases for which spaces? U = 3 4 6 7 9 and A = 3 4 6 7 9 4 6 8 Solution:

More information

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) May 12, 2015

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) May 12, 2015 Final Exam Advanced Linear Algebra Math 4377 / 638 (Spring 215) May 12, 215 4 points 1. Label the following statements are true or false. (1) If S is a linearly dependent set, then each vector in S is

More information

Solutions to Linear Algebra Practice Problems

Solutions to Linear Algebra Practice Problems Solutions to Linear Algebra Practice Problems. Find all solutions to the following systems of linear equations. (a) x x + x 5 x x x + x + x 5 (b) x + x + x x + x + x x + x + 8x Answer: (a) We create the

More information

Linear Algebra Test File Spring Test #1

Linear Algebra Test File Spring Test #1 Linear Algebra Test File Spring 2015 Test #1 For problems 1-3, consider the following system of equations. Do not use your calculator. x + y - 2z = 0 3x + 2y + 4z = 10 2x + y + 6z = 10 1.) Solve the system

More information

NOTES ON LINEAR TRANSFORMATIONS

NOTES ON LINEAR TRANSFORMATIONS NOTES ON LINEAR TRANSFORMATIONS Definition 1. Let V and W be vector spaces. A function T : V W is a linear transformation from V to W if the following two properties hold. i T v + v = T v + T v for all

More information

Vector Spaces and Subspaces

Vector Spaces and Subspaces Chapter 5 Vector Spaces and Subspaces 5. The Column Space of a Matrix To a newcomer, matrix calculations involve a lot of numbers. To you, they involve vectors. The columns of Av and AB are linear combinations

More information

Math 215 Exam #1 Practice Problem Solutions

Math 215 Exam #1 Practice Problem Solutions Math 5 Exam # Practice Problem Solutions For each of the following statements, say whether it is true or false If the statement is true, prove it If false, give a counterexample (a) If A is a matrix such

More information

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each)

1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) Math 33 AH : Solution to the Final Exam Honors Linear Algebra and Applications 1. True/False: Circle the correct answer. No justifications are needed in this exercise. (1 point each) (1) If A is an invertible

More information

Math 308 Final Exam Winter 2015, Form Bonus. of (10) 135

Math 308 Final Exam Winter 2015, Form Bonus. of (10) 135 Math 308 Final Exam Winter 015, 3-18-015 Your Name Your Signature Student ID # Points 1.. 3. 4. 5. 6. 7. 8. 9. 10. 11. Form Bonus of 50 13 1 17 8 3 7 6 3 4 6 6 (10) 135 No books are allowed. But you are

More information

Chapter 6. Orthogonality

Chapter 6. Orthogonality 6.3 Orthogonal Matrices 1 Chapter 6. Orthogonality 6.3 Orthogonal Matrices Definition 6.4. An n n matrix A is orthogonal if A T A = I. Note. We will see that the columns of an orthogonal matrix must be

More information

Math 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 3

Math 2040: Matrix Theory and Linear Algebra II Solutions to Assignment 3 Math 24: Matrix Theory and Linear Algebra II Solutions to Assignment Section 2 The Characteristic Equation 22 Problem Restatement: Find the characteristic polynomial and the eigenvalues of A = Final Answer:

More information

2.8 Linear Transformation II

2.8 Linear Transformation II 2.8. LINEAR TRANSFORMATION II 7 2.8 Linear Transformation II MATH 294 SPRING 987 PRELIM 3 # 3 2.8. Consider the subspace of C 2 given by all things of the form [ ] a sin t + b cos t x(t) =, c sin t + d

More information

Summary of week 8 (Lectures 22, 23 and 24)

Summary of week 8 (Lectures 22, 23 and 24) WEEK 8 Summary of week 8 (Lectures 22, 23 and 24) This week we completed our discussion of Chapter 5 of [VST] Recall that if V and W are inner product spaces then a linear map T : V W is called an isometry

More information

LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS

LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS LECTURE NOTES FOR 416, INNER PRODUCTS AND SPECTRAL THEOREMS CHARLES REZK Real inner product. Let V be a vector space over R. A (real) inner product is a function, : V V R such that x, y = y, x for all

More information

Math 480 Diagonalization and the Singular Value Decomposition. These notes cover diagonalization and the Singular Value Decomposition.

Math 480 Diagonalization and the Singular Value Decomposition. These notes cover diagonalization and the Singular Value Decomposition. Math 480 Diagonalization and the Singular Value Decomposition These notes cover diagonalization and the Singular Value Decomposition. 1. Diagonalization. Recall that a diagonal matrix is a square matrix

More information

3d Geometry for Computer Graphics. Lesson 1: Basics & PCA

3d Geometry for Computer Graphics. Lesson 1: Basics & PCA 3d Geometry for Computer Graphics Lesson 1: Basics & PCA 3d geometry 3d geometry 3d geometry Why?? We represent objects using mainly linear primitives: points lines, segments planes, polygons Need to know

More information

University of Lille I PC first year list of exercises n 7. Review

University of Lille I PC first year list of exercises n 7. Review University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients

More information

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n.

Recall the basic property of the transpose (for any A): v A t Aw = v w, v, w R n. ORTHOGONAL MATRICES Informally, an orthogonal n n matrix is the n-dimensional analogue of the rotation matrices R θ in R 2. When does a linear transformation of R 3 (or R n ) deserve to be called a rotation?

More information

Math 108B Selected Homework Solutions

Math 108B Selected Homework Solutions Math 108B Selected Homework Solutions Charles Martin March 5, 2013 Homework 1 5.1.7 (a) If matrices A, B both represent T under different bases, then for some invertible matrix Q we have B = QAQ 1. Then

More information

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0

1 0 5 3 3 A = 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 Solutions: Assignment 4.. Find the redundant column vectors of the given matrix A by inspection. Then find a basis of the image of A and a basis of the kernel of A. 5 A The second and third columns are

More information

Linear Algebra A Summary

Linear Algebra A Summary Linear Algebra A Summary Definition: A real vector space is a set V that is provided with an addition and a multiplication such that (a) u V and v V u + v V, (1) u + v = v + u for all u V en v V, (2) u

More information

Linear Algebra Prerequisites - continued. Jana Kosecka

Linear Algebra Prerequisites - continued. Jana Kosecka Linear Algebra Prerequisites - continued Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html kosecka@cs.gmu.edu Matrices meaning m points from n-dimensional space n x m matrix transformation Covariance

More information

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible.

(a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. 1. or : (a) If A is an n n matrix with nonzero determinant and AB = AC then B = C. (b) A square matrix with zero diagonal entries is never invertible. (c) A linear transformation from R n to R n is one-to-one

More information

Solutions to Assignment 9

Solutions to Assignment 9 Solutions to Assignment 9 Math 7, Fall 5.. Construct an example of a matrix with only one distinct eigenvalue. [ ] a b We know that if A then the eigenvalues of A are the roots of the characteristic equation

More information

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

MATH 304 Linear Algebra Lecture 11: Basis and dimension.

MATH 304 Linear Algebra Lecture 11: Basis and dimension. MATH 304 Linear Algebra Lecture 11: Basis and dimension. Linear independence Definition. Let V be a vector space. Vectors v 1,v 2,...,v k V are called linearly dependent if they satisfy a relation r 1

More information

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A =

MAT 200, Midterm Exam Solution. a. (5 points) Compute the determinant of the matrix A = MAT 200, Midterm Exam Solution. (0 points total) a. (5 points) Compute the determinant of the matrix 2 2 0 A = 0 3 0 3 0 Answer: det A = 3. The most efficient way is to develop the determinant along the

More information

Well. Let me observe that what we want to do is. Orthogonally project f onto the space V spanned by 1, sin x, sin 2x.

Well. Let me observe that what we want to do is. Orthogonally project f onto the space V spanned by 1, sin x, sin 2x. LECTURE I. Fourier series We ended last week talking about our desire to take a function f defined on [, π] and approximate it by a combination of sine waves: f(x) b + a sin x + a sin x. If I haven t said

More information

M341 (56140), Sample Final Exam Solutions

M341 (56140), Sample Final Exam Solutions M4 (5640), Sample Final Exam Solutions Let V be an n-dimensional vector space and W be an m-dimensional vector space a) Suppose n < m Show that there is no linear transformation L: V W such that L is onto

More information

Inner products and orthogonality

Inner products and orthogonality Chapter 5 Inner products and orthogonality Inner product spaces, norms, orthogonality, Gram-Schmidt process Reading The list below gives examples of relevant reading. (For full publication details, see

More information

MATH 2300 Sample Proofs

MATH 2300 Sample Proofs MATH 2300 Sample Proofs This document contains a number of theorems, the proofs of which are at a difficulty level where they could be put on a test or exam. This should not be taken as an indication that

More information

13.1 An eigenvector for a given matrix A is any non zero vector v such that A(v) =!v where! is a scalar.

13.1 An eigenvector for a given matrix A is any non zero vector v such that A(v) =!v where! is a scalar. 5 CHAPTER THIRTEEN. Eigenvectors. An eigenvector for a given matrix A is any non zero vector v such that Av) v where is a scalar. i.e. an eigenvector is one which A maps into a multiple of itself. The

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Coordinates and linear transformations (Leon 3.5, 4.1 4.3) Coordinates relative to a basis Change of basis, transition matrix Matrix

More information

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.

Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively. Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry

More information

Reading [SB] Ch. 11, p , Ch. 27, p

Reading [SB] Ch. 11, p , Ch. 27, p Reading [SB] Ch., p. 237-25, Ch. 27, p. 75-77. Basis. Linear Combinations A linear combination of vectors v, v 2,, v m R n with scalar coefficients α, α 2,, α m R is the vector α v + α 2 v 2 + + α m v

More information

Matrix Groups. Matrix Groups over Fields

Matrix Groups. Matrix Groups over Fields Matrix Groups Among the most important examples of groups are groups of matrices The textbook briefly discusses groups of matrices in Chapter 2 and then largely forgets about them These notes remedy this

More information

RANK AND NULLITY. x 1. x m

RANK AND NULLITY. x 1. x m RANK AND NULLITY. The row and column spaces Let A be an m n matrix. Then A has n columns, each of which is a vector in R m. The linear span of the columns is a subspace of R n. It s called the column space

More information

Direct Sums of Subspaces and Fundamental Subspaces

Direct Sums of Subspaces and Fundamental Subspaces Direct Sums of Subspaces and Fundamental Subspaces S. F. Ellermeyer July, 008 Direct Sums Suppose that V is a vector space and that H and K are subspaces of V such that H \ K = f0g. The direct sum of H

More information

Vector Spaces and Linear Transformations

Vector Spaces and Linear Transformations Vector Spaces and Linear Transformations Beifang Chen Fall 6 Vector spaces A vector space is a nonempty set V whose objects are called vectors equipped with two operations called addition and scalar multiplication:

More information

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors Chapter 9. General Matrices An n m matrix is an array a a a m a a a m... = [a ij]. a n a n a nm The matrix A has n row vectors and m column vectors row i (A) = [a i, a i,..., a im ] R m a j a j a nj col

More information

Some Linear Algebra Problems Isabel Vogt Last Edited: May 24, 2013

Some Linear Algebra Problems Isabel Vogt Last Edited: May 24, 2013 Some Linear Algebra Problems Isabel Vogt Last Edited: May 24, 2013 Most of these problems were written for my students in Math 23a/b at Harvard in 2011/2012 and 2012/2013. 1. Consider a parallelogram spanned

More information

Math 215 HW #7 Solutions

Math 215 HW #7 Solutions Math 5 HW #7 Solutions Problem 8 If P is the projection matrix onto a k-dimensional subspace S of the whole space R n, what is the column space of P and what is its rank? Answer: The column space of P

More information

Math Final Review Dec 10, 2010

Math Final Review Dec 10, 2010 Math 301-001 Final Review Dec 10, 2010 General Points: Date and time: Monday, December 13, 10:30pm 12:30pm Exam topics: Chapters 1 4, 5.1, 5.2, 6.1, 6.2, 6.4 There is just one fundamental way to prepare

More information

Math 220 Sections 1, 9 and 11. Review Sheet v.2

Math 220 Sections 1, 9 and 11. Review Sheet v.2 Math 220 Sections 1, 9 and 11. Review Sheet v.2 Tyrone Crisp Fall 2006 1.1 Systems of Linear Equations Key terms and ideas - you need to know what they mean, and how they fit together: Linear equation

More information

Math 110, Spring 2015: Homework 10 Solutions

Math 110, Spring 2015: Homework 10 Solutions Math 0, Spring 205: Homework 0 Solutions Section 7 Exercise 73: Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits, and let λ, λ 2,, λ

More information

Examination in TMA4110/TMA4115 Calculus 3, August 2013 Solution

Examination in TMA4110/TMA4115 Calculus 3, August 2013 Solution Norwegian University of Science and Technology Department of Mathematical Sciences Page of Examination in TMA40/TMA45 Calculus 3, August 03 Solution 0 0 Problem Given the matrix A 8 4. 9 a) Write the solution

More information

2 Review of Linear Algebra and Matrices

2 Review of Linear Algebra and Matrices 5 2 Review of Linear Algebra and Matrices 2.1 Vector Spaces 2.1 Definition: A (real) vector space consists of a non empty set V of elements called vectors, and two operations: (1) Addition is defined for

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2012 CONTENTS LINEAR ALGEBRA AND

More information

16 Eigenvalues and eigenvectors

16 Eigenvalues and eigenvectors 6 Eigenvalues and eigenvectors Definition: If a vector x 0 satisfies the equation Ax = λx for some real or complex number λ then λ is said to be an eigenvalue of the matrix A and x is said to be an eigenvector

More information

Orthogonal Diagonalization of Symmetric Matrices

Orthogonal Diagonalization of Symmetric Matrices MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding

More information

POL502: Linear Algebra

POL502: Linear Algebra POL502: Linear Algebra Kosuke Imai Department of Politics, Princeton University December 12, 2005 1 Matrix and System of Linear Equations Definition 1 A m n matrix A is a rectangular array of numbers with

More information

Math 1180 Solutions to Homework 7

Math 1180 Solutions to Homework 7 Math 1180 Solutions to Homework 7 April 10, 01 LADW Chapter 5, Number 1.8 (a) Taking v = x gives so x = 0. x = x, x = 0, (b) Let v V. Since {v 1,..., v n } is a spanning set, there are scalars c 1,...,

More information

MATH1231 Algebra, 2015 Chapter 7: Linear maps

MATH1231 Algebra, 2015 Chapter 7: Linear maps MATH1231 Algebra, 2015 Chapter 7: Linear maps A/Prof. Daniel Chan School of Mathematics and Statistics University of New South Wales danielc@unsw.edu.au Daniel Chan (UNSW) MATH1231 Algebra 1 / 43 Chapter

More information

Lecture 19: Section 4.4

Lecture 19: Section 4.4 Lecture 19: Section 4.4 Shuanglin Shao November 11, 2013 Coordinate System in Linear Algebra. (1). Recall that S = {v 1, v 2,, v r } is linearly independent if the equation c 1 v 1 + + c r v r = 0 implies

More information

(2) Show that two symmetric matrices are similar if and only if they have the same characteristic polynomials.

(2) Show that two symmetric matrices are similar if and only if they have the same characteristic polynomials. () Which of the following statements are true and which are false? Justify your answer. (a) The product of two orthogonal n n matrices is orthogonal. Solution. True. Let A and B be two orthogonal matrices

More information

GRE math study group Linear algebra examples D Joyce, Fall 2011

GRE math study group Linear algebra examples D Joyce, Fall 2011 GRE math study group Linear algebra examples D Joyce, Fall 20 Linear algebra is one of the topics covered by the GRE test in mathematics. Here are the questions relating to linear algebra on the sample

More information

Questions on Eigenvectors and Eigenvalues

Questions on Eigenvectors and Eigenvalues Questions on Eigenvectors and Eigenvalues If you can answer these questions without any difficulty, the question set on this portion within the exam should not be a problem at all. Definitions Let A be

More information

for any pair of vectors u and v and any pair of complex numbers c 1 and c 2.

for any pair of vectors u and v and any pair of complex numbers c 1 and c 2. Linear Operators in Dirac notation We define an operator  as a map that associates with each vector u belonging to the (finitedimensional) linear vector space V a vector w ; this is represented by  u

More information

Orthogonal Transformations Math 217 Professor Karen Smith

Orthogonal Transformations Math 217 Professor Karen Smith Definition: A linear transformation R n Theorem: If R n Orthogonal Transformations Math 217 Professor Karen Smith (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License.

More information

COMPLEX EIGENVALUES OF REAL MATRICES The characteristic polynomial of an n n matrix A is the degree n polynomial in one variable λ:

COMPLEX EIGENVALUES OF REAL MATRICES The characteristic polynomial of an n n matrix A is the degree n polynomial in one variable λ: COMPLEX EIGENVALUES OF REAL MATRICES The characteristic polynomial of an n n matrix A is the degree n polynomial in one variable λ: p(λ) = det(λi A); its roots are the eigenvalues of A For example in the

More information

Lecture 7: Examples of linear operators, null space and range, and the rank-nullity theorem (1)

Lecture 7: Examples of linear operators, null space and range, and the rank-nullity theorem (1) Lecture 7: Examples of linear operators, null space and range, and the rank-nullity theorem (1) Travis Schedler Thurs, Sep 29, 2011 (version: Thurs, Sep 29, 1:00 PM) Goals (2) Understand dimension and

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra-Lab 2

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra-Lab 2 Linear Algebra-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4) 2x + 3y + 6z = 10

More information

Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 51 First Exam January 29, 2015 Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

More information