Name Free Body Diagrams (A to Z) Draw and label ALL forces present. Assume static situations. F F = Friction Force. w = Weight (gravity) A B C D E F

Size: px
Start display at page:

Download "Name Free Body Diagrams (A to Z) Draw and label ALL forces present. Assume static situations. F F = Friction Force. w = Weight (gravity) A B C D E F"

Transcription

1 Name Free Body Diagrams (A to Z) Draw and label ALL forces present. Assume static situations. F N = Normal Force F F = Friction Force w = Weight (gravity) T = Tension F s = Spring Force A B C D E F

2 G H I J K L

3 M N O P

4 Q R S forklift U T slides

5 V W X Y

6 Z

7 PRACTICE WORKSHEET

8

9 Newton s Laws Conceptual questions: 1. Explain the difference between mass and weight. 2. The acceleration of an object is zero. Explain how there can be forces acting on it. 3. If you walk on a log that is floating in water, why does the log move backwards? 4. If only one force acts on an object can the object have zero acceleration? Zero velocity? 5. Driving down the road you hit the brakes suddenly. As a result your body moves toward the front of the car. Explain, using Newton s laws. 6. A whole brick has twice the weight of half a brick. Why doesn t the whole brick fall faster? 7. Determine which of Newton s three laws applies to the following situation (use 1,2, or3) A wet ball is harder to kick than a dry one. Push the wall and the wall pushes you back. A hockey puck slides to a stop on the ice. A cement truck is harder to stop than a mini cooper. A table cloth can be pulled from under a glass of water. More mass means less acceleration. A rocket pushes gases backwards and the rocket travels forward.

10 NET FORCE ( F) FOR ALL PROBLEMS: SOLVE FOR THE UNKNOWNS:

11 FIND THE NET FORCE AND THE ACCELERATION: Solve for the unknowns: m = 925 kg a = m/s 2 30 N m = 90 kg F NET = 550 kn F crane = 15 N a = 50 N 20 N 6500 N 8500 N 365,000 N a = m/s 2 F NET = m = 150 N 30 kg 10 N m = 80 kg a = 3 m/s 2 2 N 8 N F 1 F f = F 1 = m = 3.0 kg F NET = a = F NET = a =

12 1. What force is required to accelerate a 26.0 kg block at 4.50 m/s 2? 2. What is the acceleration of a 95.0 kg hockey player "shaving ice" while stopping if the force applied is N? [117 N] 3. When firing, a gun accelerates a kg bullet from rest to m/s in m. What force is applied to the bullet? [-1.58 m/s 2 ] [2810 N] 4. A person claims to be able to stop on a dime. What force is required to stop the person if their mass is 84.0 kg and they are running at 4.47 m/s? The distance they travel is the diameter of a dime, 1.8 cm. [46,600 N] 5. A kg car is traveling at a constant speed of 28.0 m/s. The force required to keep it at this constant speed is N. What is the size of the air drag force (F D )? What happens to the car if the driver increases the car s force to N? 6. What is the mass of the box if it accelerates (no friction) at 0.75 m/s 2? [850.0 N] [car accelerates at m/s 2 ] [4.0 kg]

13 7. What will be the acceleration of the 25 kg box below (no friction)? [+0.08 m/s 2 ] 8. What will be the acceleration of the following (frictionless)? With what force does block A push block B? F =70 N 5 kg 12 kg [4.1 m/s 2, 49 N] 9. What is the weight (w) of Mr. McGeechan (mass = 83.9 kg)? [822 N] 10. What is the weight of a 25 kg anvil? [245 N] 11. A bowling ball has a weight of 71 N. What is the bowling ball s mass in kg? In lbs? [7.24 kg, 16 lbs.] 12. A 65 kg barrel is being pulled upward by a rope whose tension is 700 N. a. What is the weight of the barrel? b. What is the net force on the barrel? c. What will be the acceleration of the barrel a. [637 N b. [63 N]] c. [+0.97 m/s 2 ]

14 Friction Problems: 13. A 7.50 kg book is sitting on a table that has a μ K = 0.85 and a μ S = A. What is the normal force exerted on the book by the table? [73.5 N] B. What force is required to get the book to move? [95.6 N] C. A force of 110. N is applied to the book, how long will it take to travel 15.0 m? [2.18 s] 14. An 18 kg block is pulled to the right by a force of 115 N but it does not move! A. What is the normal force on the block? [176 N] B. What is the size of the friction force on the block? [115 N] C. What is the coefficient of friction (μ)? [0.65] N 115 N 15. A 35 kg crate is pushed along the floor by a force of 250. N A. What is the force of gravity on the crate (weight)? B. What is the normal force on the crate? C. If the ground is frictionless.what will be the acceleration of the crate? D. If the box accelerates at 2.24 m/s 2, what is the frictional force on the crate? E. For part D, what is the coefficient of friction (μ)? 16. An 80.0 kg firefighter slides down a pole with an acceleration of 4.0 m/s 2. What is the friction force that acts on the firefighter? A. [-343 N] B. [+343 N] C. [7.14 m/s 2 ] D. [171.6 N] E. [0.500] 17. An object takes 12.3 meters to stop because of friction. If the coefficient of friction is 0.82, what is the initial velocity of the object? [464 N] [14.1 m/s]

15 18. 3 forces here A 15.0 kg box is being pulled to the right by a tension of 75 N and is pulled to the left by a force of 20.0 N. In addition, there is friction that has a μ=0.20. DRAW A DIAGRAM! A. What is the net force on the box? B. What will be the acceleration of the box? C. How fast will the box be moving after 5.0 seconds? (starts from rest) A. [+25.6 N] B. [1.71 m/s 2 ] C. [8.55 m/s]

16 19. A physics book is sent sliding across on a table that has a μ K = 0.55 with a velocity of 3.5 m/s A. What is the acceleration of the book? [-5.39 m/s 2 ] B. How long will it take to stop? [0.65 s] 20. A chair is sliding across the room at a speed of 3.0 m/s. It comes to rest in 1.25 seconds. What is the coefficient of kinetic friction between the floor and the chair? 21. A 5.0 kg box is held at rest against a vertical wall by a horizontal force of N. A. What is the frictional force exerted by the wall on the block? B. What must the μ S of the wall? C. What is the minimum horizontal force needed to prevent the block from falling if μ S = 0.40? [0.244] 100 N A. [49 N] B.[0.49] C.[123 N] 22. In 2007 a fatal accident occurred in Florida. It was caused when a truck traveling at 31 m/s could not see the cars stopped in front until it was 80.0 m away. Assuming μ K for the tires is 0.55, what is the shortest possible stopping distance for the truck? [89 m]

17 Elevators and Pulleys 23. A 75.0 kg person is standing on scale in an elevator. What is the elevator doing if: A. The scale reads 735 N. B. The scale reads 1838 N C. The scale reads N [constant v or at rest] [a = m/s 2 ] [a = m/s 2 ] 24. The 52 kg crate is held at rest. What is the tension in the chain connected to the crate? In the rope? 25. The 55 kg woman is standing on scale in an elevator that is accelerating upward at 2.2 m/s 2. What will the scale read? [510 N, 255 N] 26. Determine the tension all ropes of the following: [660 N] 60 kg [588 N, 294 N, 147 N, 73.5 N]

18 27. The 25 kg Stewie is standing on scale in an elevator. What will the scale read if: A. The elevator is at rest or moving with a constant speed B. The elevator is accelerating up at 3.5 m/s 2 C. The elevator is accelerating down at -7.0 m/s The boy lowers the 250 kg safe by exerting a force of 1163 N on the rope at point B. How long will it take for the safe to reach the ground? (starts from rest) [245 N] [333 N] [70 N] 4.0 m 29. Determine the tension in all of the ropes of the following: [4.0 s] 8 kg [78.4 N, 39.2 N, 19.6 N, 39.2 N]

19 Multi-Body Problems: Draw FBD and solve for unknowns. All pulleys are massless. 30. a and T 13 kg T 8 kg [a = 2.3 m/s 2, T = 97 N] 31. a and T 6 kg T 2 kg [a = 2.5 m/s 2, T = 15 N]

20 32. a and T μ = kg T 5 kg [a = 4.4 m/s 2, T = 27 N] 33. µ =? a = 1.5 m/s 2 7 kg 3 kg [μ = 0.21]

21 34. m =? a = 4.0 m/s 2 6 kg m [m = 4.1 kg] 35. m =? μ = 0.15 m 3 kg a = 2.0 m/s 2 [m = 6.7 kg]

22 36. a, T 1, T 2 T 1 20 kg 5 kg T 2 10 kg [a = 1.4 m/s 2, T 1 = 168 N, T 2 = 112 N] 37. a, T 1, T 2 4 kg T 1 6 kg T 2 2 kg [a = 3.3 m/s 2, T 1 = 39 N, T 2 = 26 N]

23 38. a, T 1, T 2 μ = 0.2 3kg T 2 T 1 7 kg 2 kg 39. What must μ S be in order for the system to be at rest? [a = 3.6 m/s 2, T 1 = 43 N, T 2 = 27 N] 8.0 kg 15 kg [1.88]

24 40. If μ S = 1.22 and μ K = 0.95, what will be the acceleration of the system? 8.0 kg 15 kg [3.15 m/s 2 ] 41. What is the acceleration of the system and the tension in the string given µ K = 0.89? 8.0 kg 15 kg [a = 3.36 m/s 2 ] [T = 96.6 N]

25 42. What would the µ S have to be in order for the system in #42 to remain at rest (not move) [1.88] 43. If μ K = 0.35, what will be the acceleration of the system? 4.0 kg 2.0 kg 5.0 kg 44. The acceleration of the system is 5.00 m/s 2 what must the coefficient of kinetic friction? [1.43 m/s 2 ] 6.0 kg 13 kg 45. What will be the tension in the cord in #45? [0.55] [62.4 N]

26 46. Determine the acceleration and tension in the string if P = 140 N. m A = 8 kg, m B = 5 kg μ = 0.25 μ = For all surfaces μ K = 0.3. m A = 5 kg and m B = 4 kg. Determine the acceleration of A and the tension in the cord. [a = 7.4 m/s 2, T = 49.3 N] 80 N [a A = 8.4 m/s 2, T = 11.8 N]

AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

More information

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced?

2. If a net horizontal force of 175 N is applied to a bike whose mass is 43 kg what acceleration is produced? Chapter Problems Newton s 2nd Law: Class Work 1. A 0.40 kg toy car moves at constant acceleration of 2.3 m/s 2. Determine the net applied force that is responsible for that acceleration. 2. If a net horizontal

More information

HONORS PHYSICS Dynamics

HONORS PHYSICS Dynamics LESSON OBJECTIVES Students will be able to... SKILLS HONORS PHYSICS Dynamics define force describe Newton s First Law of Motion using inertia identify the criteria of balanced and unbalanced forces distinguish

More information

Physics 53 Exam #2 October 14, 2009

Physics 53 Exam #2 October 14, 2009 1. A 5-kg block is suspended by a rope from the ceiling of an elevator accelerates downward at 3.0 m/s 2. The tension force of the rope on the block is: A) 15 N, up B) 34 N, up C) 34 N, down D) 64 N, up

More information

B. the same as that of the lead ball C. less than that of the lead ball D. 9.8 m/s 2 E. zero since it floats in a vacuum

B. the same as that of the lead ball C. less than that of the lead ball D. 9.8 m/s 2 E. zero since it floats in a vacuum ENGPHY1 QUIZ 2 Force Laws of Motion Circular Motion Other Applications of Newton's Laws MULTIPLE CHOICE 1. Acceleration is always in the direction: A. of the displacement B. of the initial velocity C.

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) The graph in the figure shows the x component of the acceleration of a 2.4-kg object as a

More information

2) Draw an x y axis and define the direction you are moving in as the + direction. If not moving, + direction is arbitrary

2) Draw an x y axis and define the direction you are moving in as the + direction. If not moving, + direction is arbitrary Solving Dynamics Problems 1) Draw Sketch / FBD with all forces shown 2) Draw an x y axis and define the direction you are moving in as the + direction. If not moving, + direction is arbitrary 3) Write

More information

1. A 1000-kg elevator is rising and its speed is increasing at 3m/s 2. The tension force of the cable on the elevator is:

1. A 1000-kg elevator is rising and its speed is increasing at 3m/s 2. The tension force of the cable on the elevator is: 1. A 1000-kg elevator is rising and its speed is increasing at 3m/s 2. The tension force of the cable on the elevator is: A. 6800N B. 1000N C. 3000N D. 9800N E. 12800N ans: E 2. A 25-N crate slides down

More information

Chapter 5 Newton s Laws of Motion

Chapter 5 Newton s Laws of Motion Chapter 5 Newton s Laws of Motion Sir Isaac Newton (1642 1727) Developed a picture of the universe as a subtle, elaborate clockwork slowly unwinding according to well-defined rules. The book Philosophiae

More information

Phys101 Lectures 4 & 5 Dynamics: Newton s Laws of Motion

Phys101 Lectures 4 & 5 Dynamics: Newton s Laws of Motion Phys101 Lectures 4 & 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Friction Inclines Ref:

More information

FORCES AND NEWTON S LAWS OF MOTION

FORCES AND NEWTON S LAWS OF MOTION chapter FORCES AND NEWTON S LAWS OF MOTION Section 4.1 The Concepts of Force and Mass Section 4.2 Newton s First Law of Motion Section 4.3 Newton s Second Law of Motion 1. With one exception, each of the

More information

Zero 3.7 m/s 2, downward 7.4 m/s 2, upward 7.4 m/s 2, downward 3.7 m/s 2, upward

Zero 3.7 m/s 2, downward 7.4 m/s 2, upward 7.4 m/s 2, downward 3.7 m/s 2, upward PracticeExam2 1. A plastic ball in a liquid is acted upon by its weight and by a buoyant force. The weight of the ball is 2.5 N. The buoyant force has a magnitude of 4.4 N and acts vertically upward. At

More information

Chapter 4, The Laws of Motion. 1. Which of the following is an example of the type of force that acts at a distance?

Chapter 4, The Laws of Motion. 1. Which of the following is an example of the type of force that acts at a distance? CHAPTER 4 4.1 Forces 4.2 Newton s First Law 4.3 Newton s Second Law 4.4 Newton s Third Law 1. Which of the following is an example of the type of force that acts at a distance? a. gravitational b. magnetic

More information

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface?

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? Base your answers to questions 2 through 4 on the information A student and the waxed skis

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

The net force on the object always acts along the line of motion of the object.

The net force on the object always acts along the line of motion of the object. Physics 125 Practice-makes-perfect Quiz Chapter 4&5 These are the types of problems that you will see on the quizzes. Use this practice quiz as a gauge for your understanding of physics. The answers are

More information

1. Unless acted on by an external net force, an object will stay at rest or

1. Unless acted on by an external net force, an object will stay at rest or 1. Unless acted on by an external net force, an object will stay at rest or A. come to rest. B. decelerate at a constant rate. C. slow down from a given speed. D. continue to move in a straight line at

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

newton AP practice Multiple Choice Identify the choice that best completes the statement or answers the question.

newton AP practice Multiple Choice Identify the choice that best completes the statement or answers the question. newton AP practice Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In the figure, if the tension in string 1 is 34 N and the tension in string 2 is 24

More information

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

Ch 4 Test Review. Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain)

Ch 4 Test Review. Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain) Ch 4 Test Review Why do we say a speeding object doesn t have force? (Assume this object is speeding through space) (Explain) If the forces that act on a cannonball and the recoiling cannon from which

More information

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface?

Dynamics-Friction. 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? 1. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface? Base your answers to questions 2 and 3 on the information below. A student and the waxed

More information

PHYSICS Dynamics. gravity weight air resistance inertia friction normal force

PHYSICS Dynamics. gravity weight air resistance inertia friction normal force LESSON OBJECTIVES Students will be able to... PHYSICS Dynamics define force describe Newton s First Law of Motion using inertia identify the criteria of balanced and unbalanced forces distinguish among

More information

Review sheet 4 Newton s Laws

Review sheet 4 Newton s Laws Review sheet 4 Newton s Laws Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration or a

More information

For every action, there is an and.

For every action, there is an and. SPH4C1 Lesson 03 Newton s Laws NEWTON S THIRD LAW LEARNING GOALS Students will: Be able to state Newton s 3 rd Law and apply it in qualitative and quantitative terms to explain the effect of forces acting

More information

Physics 201 Fall 2009 Exam 2 October 27, 2009

Physics 201 Fall 2009 Exam 2 October 27, 2009 Physics 201 Fall 2009 Exam 2 October 27, 2009 Section #: TA: 1. A mass m is traveling at an initial speed v 0 = 25.0 m/s. It is brought to rest in a distance of 62.5 m by a force of 15.0 N. The mass is

More information

PSI AP Physics I Dynamics

PSI AP Physics I Dynamics PSI AP Physics I Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

The Laws of Motion. ANS: a

The Laws of Motion. ANS: a The Laws of Motion 1. When an object is observed to be at rest relative to an observer in an inertial reference frame, a. the sum of any forces acting on the object is zero. b. there are no forces acting

More information

Exam 2 PREP Chapters 4 & 5

Exam 2 PREP Chapters 4 & 5 PHY241 - General Physics I Dr. Carlson, Fall 2013 Prep Exam 2 PREP Chapters 4 & 5 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) If a 5.0 kg box is pulled simultaneously

More information

Kinetic Energy and Work

Kinetic Energy and Work PHYS 101 Previous Exam Problems CHAPTER 7 Kinetic Energy and Work Kinetic energy Work Work-energy theorem Gravitational work Work of spring forces Power 1. A single force acts on a 5.0-kg object in such

More information

Physics 11 - Chapter 4 FORCES 4.5 Using Newton s Law (Part 2)

Physics 11 - Chapter 4 FORCES 4.5 Using Newton s Law (Part 2) Name: Date: Physics 11 - Chapter 4 FORCES 4.5 Using Newton s Law (Part ) Q- A man wants to test a rope. He ties one end to a telephone pole and the other to a horse and makes the horse pull as hard as

More information

Forces and Laws of Motion Friction, Inclines and Multi-Body Problems

Forces and Laws of Motion Friction, Inclines and Multi-Body Problems Forces and Laws of otion Friction, Inclines and ulti-body Problems Do these problems on separate sheets of paper. For each of the problems below, you must begin your solution with a clear, accurate free

More information

Forces 2 Free Body Diagrams All objects are represented as a point 1. A 1.5 kg box hangs by a string. What is the net force on the box?

Forces 2 Free Body Diagrams All objects are represented as a point 1. A 1.5 kg box hangs by a string. What is the net force on the box? Physics R Forces 2 Free Body Diagrams All objects are represented as a point 1. A 1.5 kg box hangs by a string. What is the net force on the box? Date: What is the force of gravity? What is the tension

More information

How are forces & changes in motion related?

How are forces & changes in motion related? Lecture 7 l Goals: v Identify the types of forces v Use a Free Body Diagram to solve 1D and 2D problems with forces in equilibrium and non-equilibrium (i.e., acceleration) using Newton 1 st and 2 nd laws.

More information

1. One mile is equal to 1609 meters; one hour is equal to 3600 seconds, mph is 1 mile per hour. The speed of 17 m/s is equivalent to the speed of:

1. One mile is equal to 1609 meters; one hour is equal to 3600 seconds, mph is 1 mile per hour. The speed of 17 m/s is equivalent to the speed of: Sample Final 105_fall 2009 1. One mile is equal to 1609 meters; one hour is equal to 3600 seconds, mph is 1 mile per hour. The speed of 17 m/s is equivalent to the speed of: A) 17 mph B) 38 mph C) 7.6

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

More information

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s second law Friction. PHYS 1021: Chap. 4, Pg 1

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s second law Friction. PHYS 1021: Chap. 4, Pg 1 This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s second law Friction PHYS 1021: Chap. 4, Pg 1 PHYS 1021: Chap. 5, Pg 3 Two rubber bands stretched the standard distance cause

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

More information

15.2 s how long is the slope? Assume that frictional forces may be neglected.

15.2 s how long is the slope? Assume that frictional forces may be neglected. FLEX Physical Science AP Physics C Mechanics - Midterm 1) If you set the cruise control of your car to a certain speed and take a turn, the speed of the car will remain the same. Is the car accelerating?

More information

AP Physics B Unit 2 Test Dynamics/Work/Energy/Momentum Name

AP Physics B Unit 2 Test Dynamics/Work/Energy/Momentum Name AP Physics B Unit 2 Test Dynamics/Work/Energy/Momentum Name 1. The term "mass" refers to the same physical concept as: A) weight B) inertia C) force D) acceleration E) volume 2. When a certain force is

More information

2.4 Forces of Friction

2.4 Forces of Friction .4 Forces of Friction Friction may seem like it always makes movement more difficult because it always opposes motion. However, friction is actually essential for much of the motion that we rely on. Have

More information

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap.

This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension. PHYS 2: Chap. This week s homework. 2 parts Quiz on Friday, Ch. 4 Today s class: Newton s third law Friction Pulleys tension PHYS 2: Chap. 19, Pg 2 1 New Topic Phys 1021 Ch 7, p 3 A 2.0 kg wood box slides down a vertical

More information

Calculate acceleration of the block.

Calculate acceleration of the block. Physics, Mr. Kent Daily Worksheet: Friction Name: 1. A ball rolling on a horizontal surface slows down because of between the and the. 2. A sky diver slows down because of between the and the. That is,

More information

9) If the velocity versus time graph of an object is a horizontal line, the object is A) moving with zero acceleration.

9) If the velocity versus time graph of an object is a horizontal line, the object is A) moving with zero acceleration. 1) Which of the following quantities has units of a velocity? (There could be more than one correct choice.) A) 40 km southwest B) -120 m/s C) 9.8 m/s2 downward D) 186,000 mi E) 9.8 m/s downward 2) Suppose

More information

Dynamics Chapter Questions. 3. Discuss how an object s acceleration relates to the direction of its movement.

Dynamics Chapter Questions. 3. Discuss how an object s acceleration relates to the direction of its movement. PSI AP Physics I Dynamics Chapter Questions 1. What is Newton s First Law? 2. Can an object with zero net force acting on it be moving? Explain. 3. Discuss how an object s acceleration relates to the direction

More information

Physics-1 Recitation-3

Physics-1 Recitation-3 Physics-1 Recitation-3 The Laws of Motion 1) The displacement of a 2 kg particle is given by x = At 3/2. In here, A is 6.0 m/s 3/2. Find the net force acting on the particle. (Note that the force is time

More information

Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Chapter 4 Lecture Notes Physics 2414 - Strauss Formulas: ΣF = ma F G = mg F SF µ S N F KF = µ K N Main Ideas: 1. Newton s Three laws 2. Weight 3. Solving Problems 4. Friction In this chapter we will study

More information

AP Physics 1 Fall Semester Review

AP Physics 1 Fall Semester Review AP Physics 1 Fall Semester Review One Dimensional Kinematics 1. Be able to interpret motion diagrams. a. Assuming there are equal time intervals between each picture shown above, which car in the diagram

More information

4) A 445 N box is sliding down a frictionless 25 o inclined plane. Find the parallel component of the weight that causes the box to slide 188 N

4) A 445 N box is sliding down a frictionless 25 o inclined plane. Find the parallel component of the weight that causes the box to slide 188 N 1) A 7.6 kg object is at rest on an inclined plane. If the plane makes an angle with the horizontal of 33 o what is the normal force acting on the object? 62 N 2) A 7.6 kg object is pulled up an inclined

More information

Applications of Newton s Laws

Applications of Newton s Laws Applications of Newton s Laws How can Newton s laws be applied in different situations such as pushing a chair, sky diving, throwing a ball, and pulling two connected carts across the floor? What forces

More information

The force of friction is defined as: the force that acts between objects in contact to oppose their relative motion.

The force of friction is defined as: the force that acts between objects in contact to oppose their relative motion. 1.9.1 Introduction The study of friction is called tribology. The force of friction is defined as: the force that acts between objects in contact to oppose their relative motion. The force of friction

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause?

Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause? Physics B Newton s Laws Name: Per: Teacher: What is a force? Newton s First Law (Law of Inertial) What do forces cause? What is the relationship between mass and inertia? Draw a force diagram on the book.

More information

Objects in Equilibrium. Applications of Newton s Law

Objects in Equilibrium. Applications of Newton s Law Units of Force Gravitational Force The gravitational force, F g, is the force that the earth exerts on an object This force is directed toward the center of the earth Its magnitude is called the weight

More information

Serway_ISM_V1 1 Chapter 4

Serway_ISM_V1 1 Chapter 4 Serway_ISM_V1 1 Chapter 4 ANSWERS TO MULTIPLE CHOICE QUESTIONS 1. Newton s second law gives the net force acting on the crate as This gives the kinetic friction force as, so choice (a) is correct. 2. As

More information

Friction, inclines, and tension

Friction, inclines, and tension Friction, inclines, and tension Suppose a crate has a mass of 100kg and you push on it with a force of 1000N as it slides. You then measure the resulting acceleration and find it is only 4m/s 2. But you

More information

Recap - Forces. Action = - Reaction. Newton s first law:

Recap - Forces. Action = - Reaction. Newton s first law: Newton s first law: Newton s second law: Recap - Forces An object moves with a velocity that is constant in magnitude and direction unless a non-zero net force acts on it. Newton s 3rd law: Action = -

More information

2.2 FORCES AND DYNAMICS STUDENT Notes TENSION

2.2 FORCES AND DYNAMICS STUDENT Notes TENSION 2.2 FORCES AND DYNAMICS STUDENT Notes TENSION 1 NORMAL FORCES DRAG FORCES UPTHRUST 2 FRICTIONAL FORCES 3 A cup of coffee is sitting on a table in a recreational vehicle (RV). The cup slides toward the

More information

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2

1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C. PHYS 11: Chap. 2, Pg 2 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All of the movies A B C PHYS 11: Chap. 2, Pg 2 1 1) A 2) B 3) C 4) A and B 5) A and C 6) B and C 7) All three A B PHYS 11: Chap. 2, Pg 3 C 1) more than

More information

NEWTON'S LAWS OF MOTION

NEWTON'S LAWS OF MOTION CHAPTER 4 FORCES AND NEWTON'S LAWS OF MOTION CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION When the car comes to a sudden halt, the upper part of the body continues forward (as predicted by Newton's first

More information

A. 5 m/s B. 1 m/s C. 0 m/s D. 10 m/s E. 2 m/s

A. 5 m/s B. 1 m/s C. 0 m/s D. 10 m/s E. 2 m/s SQ1: Carl Lewis set a world record for the 100.0-m run with a time of 9.86 s. If, after reaching the finish line, Mr. Lewis walked directly back to his starting point in 90.14 s, what is the magnitude

More information

(a) 7 g (b) 70 g (c) 700 g (d) 7 kg (e) 70 kg (f) 700 kg

(a) 7 g (b) 70 g (c) 700 g (d) 7 kg (e) 70 kg (f) 700 kg Seat: PHYS 1500 (Fall 2008) Exam #1, V1 Name: 5 pts 1. Roughly, what is the mass of F. Robicheaux, your instructor? (a) 7 g (b) 70 g (c) 700 g (d) 7 kg (e) 70 kg (f) 700 kg 5 pts 2. You are holding a picture

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2

Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2 Name: Date: PRACTICE QUESTIONS PHYSICS 201 FALL 2009 EXAM 2 1. A force accelerates a body of mass M. The same force applied to a second body produces three times the acceleration. What is the mass of the

More information

Physics 125 Practice Exam #2 Chapters 4-5 Professor Siegel

Physics 125 Practice Exam #2 Chapters 4-5 Professor Siegel Physics 125 Practice Exam #2 Chapters 4-5 Professor Siegel Name: Lab Day: 1. With one exception, each of the following units can be used to express mass. What is the exception? A) newton B) slug C) gram

More information

Applying Newton s Laws

Applying Newton s Laws Chapter 5 Applying Newton s Laws PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 5 To use Newton s first

More information

AP* Newton s Laws Free Response Questions

AP* Newton s Laws Free Response Questions 1981 Q1 AP* Newton s Laws Free Response Questions A 10-kilogram block is pushed along a rough horizontal surface by a constant horizontal force F as shown above. At time t = 0, the velocity v of the block

More information

4.3. Tension and Pulleys

4.3. Tension and Pulleys 4.3. Tension and Pulleys Demonstration 1. Calibrate 2 spring scales, put them together horizontally, and pull apart. Do they always show the same force? What are they measuring? 2. Put 2 spring scales

More information

Wednesday, September 28, 11. Applying Newton s Laws

Wednesday, September 28, 11. Applying Newton s Laws Applying Newton s Laws Question 1a Tension I You tie a rope to a tree and you pull on the rope with a force of 100 N. What is the tension in the rope? a) 0 N b) 50 N c) 100 N d) 150 N e) 200 N Question

More information

3/10/2017. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

3/10/2017. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors What Is a Force? A force acts on an object. A force requires an agent, something that acts on the object. If you throw a ball, your hand is the agent or cause of the force exerted on the ball. A force

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Exam Arrive ON TIME by 10:20 or you will not take the exam. Only Section 1 students. Sit ONLY in your assigned seat. Latest assignments will be on

More information

Vector & Scalar Quantities

Vector & Scalar Quantities Chapter 2 Forces and Vectors Vector & Scalar Quantities Vector Quantities Vectors are physical quantities that have both magnitude and direction. Magnitude = amount and units. Direction can be stated as

More information

physicschapter10notes.notebook December 14, 2012 Dec 4 12:19 PM Dec 4 1:05 PM

physicschapter10notes.notebook December 14, 2012 Dec 4 12:19 PM Dec 4 1:05 PM Dec 4 12:19 PM Dec 4 1:05 PM 1 Dec 6 12:34 PM 10.1 Review Grade:12th Subject:Physics Date:12/6 Dec 5 4:56 PM 2 1 The work energy theorem states that when work is done on an object, the result is a change

More information

Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law

Isaac Newton (1642 to 1727) Force. Newton s Three Law s of Motion. The First Law. The First Law. The First Law Isaac Newton (1642 to 1727) Force Chapter 4 Born 1642 (Galileo dies) Invented calculus Three laws of motion Principia Mathematica. Newton s Three Law s of Motion 1. All objects remain at rest or in uniform,

More information

3. A student obtains data on the magnitude of force applied to an object as a function of time and displays the data on the graph

3. A student obtains data on the magnitude of force applied to an object as a function of time and displays the data on the graph 1. The graph above shows the force on an object of mass M as a function of time. For the time interval 0 to 4 s, the total change in the momentum of the object is (A) 40 kg m/s (B) 20 kg m/s (C) 0 kg m/s

More information

P211 Midterm 2 Spring 2004 Form D

P211 Midterm 2 Spring 2004 Form D 1. An archer pulls his bow string back 0.4 m by exerting a force that increases uniformly from zero to 230 N. The equivalent spring constant of the bow is: A. 115 N/m B. 575 N/m C. 1150 N/m D. 287.5 N/m

More information

1. Which object has the greatest inertia? 5. Compared to the inertia of a 0.10-kilogram steel ball, the inertia of a 0.20-kilogram Styrofoam ball is

1. Which object has the greatest inertia? 5. Compared to the inertia of a 0.10-kilogram steel ball, the inertia of a 0.20-kilogram Styrofoam ball is 1. Which object has the greatest inertia? 1) a 5.0-kg object moving at a speed of 5.0 m/s 2) a 10.-kg object moving at a speed of 3.0 m/s 3) a 15-kg object moving at a speed of 1.0 m/s 4) a 20.-kg object

More information

Chapter 6. Force and Motion II

Chapter 6. Force and Motion II Chapter 6 Force and Motion II 6.2 Friction Frictional forces are common in our everyday lives. Examples: 1. If you send a book sliding down a horizontal surface, the book will finally slow down and stop.

More information

8.2 A ball of mass m falls from a height h to the floor. S (a) Write the appropriate version of Equation 8.2 for the system of the ball and the Earth

8.2 A ball of mass m falls from a height h to the floor. S (a) Write the appropriate version of Equation 8.2 for the system of the ball and the Earth 8.2 A ball of mass m falls from a height h to the floor. S (a) Write the appropriate version of Equation 8.2 for the system of the ball and the Earth and use it to calculate the speed of the ball just

More information

Circular Velocity and Centripetal Acceleration

Circular Velocity and Centripetal Acceleration 1. An object is spun around in circular motion such that it completes 100 cycles in 25 s. a. What is the period of its rotation? [0.25 s] b. If the radius is 0.3 m what is the velocity? [7.54 m/s] Circular

More information

Quiz 10 Motion. Name: Group:

Quiz 10 Motion. Name: Group: Quiz 10 Motion Name: Group: 1. Two balls are released at the same time on the two tracks shown below. Which ball wins? a. The ball on the low road b. The ball on the high road c. They tie 2. What will

More information

Chapter 4: Forces & Newton s Laws of Motion. Newton s 3 Laws Types of Forces Solving 1D &2D Problems Force Vector Diagrams!!!

Chapter 4: Forces & Newton s Laws of Motion. Newton s 3 Laws Types of Forces Solving 1D &2D Problems Force Vector Diagrams!!! Chapter 4: Forces & Newton s Laws of Motion Newton s 3 Laws Types of Forces Solving 1D &2D Problems Force Vector Diagrams!!! Man of the Millennium Sir Issac Newton (1642-1727) 1687 Published Principia

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Unit 03 - Work, Energy, Power Quantitative Questions Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) An airplane flies 120 km at a constant altitude

More information

1. Which unit is equivalent to a newton per kilogram? A) m. s 2 B) W. s C) J s D) kg m

1. Which unit is equivalent to a newton per kilogram? A) m. s 2 B) W. s C) J s D) kg m 1. Which unit is equivalent to a newton per kilogram? A) m s 2 B) W 6. Base your answer to the following question on The diagram below shows a student throwing a baseball horizontally at 25 meters per

More information

1 st Semester Review 1980s problems

1 st Semester Review 1980s problems 1 st Semester Review 1980s problems 1980B1. A ball of weight 5 newtons is suspended by two strings as shown above. a. In the space below, draw and clearly label all the forces that act on the ball. b.

More information

PHYS101 The Laws of Motion Spring 2014

PHYS101 The Laws of Motion Spring 2014 The Laws of Motion 1. An object of mass m 1 = 55.00 kg placed on a frictionless, horizontal table is connected to a string that passes over a pulley and then is fastened to a hanging object of mass m 2

More information

Physics 11 Chapter 4 HW Solutions

Physics 11 Chapter 4 HW Solutions Physics 11 Chapter 4 HW Solutions Chapter 4 Conceptual Question: 5, 8, 10, 18 Problems: 3, 3, 35, 48, 50, 54, 61, 65, 66, 68 Q4.5. Reason: No. If you know all of the forces than you know the direction

More information

Drawing and Using Free-Body Diagrams

Drawing and Using Free-Body Diagrams Name (First AND Last): Date: Goal: Drawing and Using Free-Body Diagrams Adapted from Minds on Physics Activity #51: Recognizing and Interpreting Free-Body Diagrams After completing this activity, you should

More information

Clicker Question. A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm

Clicker Question. A. 5 cm B. 10 cm C cm D. 20 cm E. 40 cm A block of mass m slides with speed v on a frictionless surface. It collides with an ideal spring and compresses it 10 cm before momentarily stopping. What is the max compression if the same mass has speed

More information

Chapter 5 - Applying Newton s Laws w./ QuickCheck Questions

Chapter 5 - Applying Newton s Laws w./ QuickCheck Questions Chapter 5 - Applying Newton s Laws w./ QuickCheck Questions 2015 Pearson Education, Inc. Anastasia Ierides Department of Physics and Astronomy University of New Mexico September 17, 2015 Review of Last

More information

Forces and Friction Worksheet (Hons)

Forces and Friction Worksheet (Hons) Forces and Friction Worksheet (Hons) 1. A little boy pushes a 12 kg. box of library books with a constant velocity along the side walk by applying a horizontal force of 96N. Draw a free body diagram for

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

Ch.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66

Ch.4 Forces. Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Ch.4 Forces Conceptual questions #1, 2, 12 Problem 1, 2, 5, 6, 7, 10, 12, 15, 16, 19, 20, 21, 23, 24, 26, 27, 30, 38, 39, 41, 42, 47, 50, 56, 66 Forces Forces - vector quantity that changes the velocity

More information

What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction Sir Issac Newton s Contributions Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

More information

HONORS PHYSICS Linear Momentum

HONORS PHYSICS Linear Momentum HONORS PHYSICS Linear Momentum LESSON OBJECTIVES Students will be able to... understand that forces can act over time (impulse) resulting in changes in momentum identify characteristics of motion with

More information

BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino

BROCK UNIVERSITY. PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino BROCK UNIVERSITY PHYS 1P21/1P91 Solutions to Mid-term test 26 October 2013 Instructor: S. D Agostino 1. [10 marks] Clearly indicate whether each statement is TRUE or FALSE. Then provide a clear, brief,

More information