Velocity Calculations. Average Velocity Calculations

Size: px
Start display at page:

Download "Velocity Calculations. Average Velocity Calculations"

Transcription

1 Velocity Calculations 1. A traveler drives 568 km in 7.2 h. What is the average speed for the trip? 79 km/h 2. If you run with an average speed of 12.0 km/h, how far will you go in 3.2 min? 0.64 km 3. If the average speed of your private jet is 8.0 x 10 2 km/h, how long will it take you to travel 1.8 x 10 3 km? 2.3 h 4. The following distances and times for consecutive parts of a trip, made by a red ant on the prowl for food, were recorded by different observers. There is considerable variation in the precision of their measurements. A m in 12 s B. 3.4 m in 6.89 s C m in s a) What total distance did the ant travel? 20.8 m b) What was the total time for the trip? 55 s c) What was the average speed of the ant? 0.38 m/s or 38 cm/s 5. Light travels with a speed of 3.00 x 10 5 km/s. How long will it take light from a laser to travel to the moon (where it is reflected by a mirror) and back to Earth? The moon is 3.84 x 10 5 km away from the Earth s Average Velocity Calculations 1. A high school bus travels 240 km in 6.0 h. What is its average speed for the trip? (in km/h) v av = d t v av = v av = 40. km/h 2. A black widow spider chasing its mate (which it will eat) travels across a driveway 3.6 m wide with a speed of 12 cm/s. How long will it take to cross the driveway? v av = d t t = d vav t = t = 30. s

2 3. Joe Blow, one of the many stars of the local basketball team, steals the ball and runs the length of the court in 8.5 sec at a speed of 5.0 m/s. How long is the court? d = vt where v = 5 m/s, t = 8.5 s d = 5 x 8.5 d = 43 m 4. The average speed of a runner in a metre race is 8.0 m/s. How long did it take the runner to complete the race? v av = d t t = d v av t = t = 50. s 5. If a car is traveling at 25 m/s, how far does it travel in 1.0 hour? d = vt d = 25 m/s x 3600 s d = 9.0 x 10 4 m 6. A caterpillar travels across the length of a 2.00 m porch in 6.5 minutes. What is the average velocity of the caterpillar in m/s? v av = d t v= s v = 5.1 x 10-3 m/s 7. A motorist traveling on a straight stretch of open highway sets his cruise control at 90 km/h. How far will he travel in 15 minutes? d = vt d = 90 km/h x 0.25 h d = 23 km 8. A motorcycle travels 90.0 km/h. How many seconds will it take the motorcycle to cover 2.00 x 10 3 m? t = d v av t = 2.00 x 10 3 m 25 m/s t =80 s 9. A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is m from the wall and the sound of her voice travels at 340 m/s at that location. How long after she shouts will she hear her echo. t = d v av

3 t = 561 m 340 m/s t = 1.65 s 10. A woman from Pasadena makes a trip to a nearby shopping mall that is located 40 km from her home. On the trip to the mall she averages 80 km/h but gets a speeding ticket upon her arrival. On the return trip she averages just 40 km/h. What was her average speed for the entire trip? v = 53.3 km/h (determine total distance traveled and divide by total time) 11. A cross-country racecar driver sets out on a 100 km race. At the halfway marker (50 km), her pit crew radios that she has averages only 80 km/h. How fast must she drive over the remaining distance in order to average 100 km/h for the entire race? v = 133 km/h 12. A supersonic jet travels once around the earth at an average speed of 1.6 x 10 3 km/h. Its orbital radius is 6.5 x 10 3 km. How many hours does the trip take? d = vt where d = circumference of path (2πr), v = 1.6 x 10 3 km/h d v = t time will be in hours if we use d in km, and v in km/h 2πr v = t t = 2 x π x 6.5 x x 10 3 t = 25.5 h = 26 h Worksheet - Distance-Time Graphs Examine this graph carefully to answer questions 1 and 2.

4 1. How far is the truck from its starting point after: (a) 10 s 300 m (b) 15 s 300 m (c) 30 s 200 m (d) 43 s 650 m (e) 50 s 800 m 2. What is the truck s velocity in each of the intervals A through E? A 30 m/s B 0 m/s C -10 m/s D 40 m/s E 20 m/s 3. Beside the graph, describe briefly the kind of motion that is taking place in each of the situations represented by the following displacement vs. time graphs. a) object travels fast then changes to slower speed b) object travels fast then stops c) object travels slowly then changes to higher speed, stops then speeds off quickly 4. Beside the graph, describe briefly the motions represented by each of these graphs. If the speed is changing, state whether it is increasing or decreasing.

5 a) object travels faster and faster (accelerating) b) object travels fast then slows down (decelerating) c) object travels slowly then changes to higher speed (accelerates), then slows down (decelerates) 5. Beside the graph, describe the motion represented by each of the following displacement vs. time graphs. a) object travels faster, stops then travel fast back to starting point b) object travels fast then immediately travels back part way, then forward and back several times c) object travels slowly then changes to higher speed (accelerates), then slows down (decelerates) to a stop and reverses direction coming back to the starting point Use the following graph for question 6.

6 6. a) From the graph above, calculate the average speed for the entire 22 s. v=d/t or v = d t v = v = 1.14 m/s b) Find the average speed for each of the following time intervals: (i) 0 s to 2 s v = d t v = 5 2 v = 2.5 m/s (ii) 4 s to 8 s v = d t v = 0 4 v = 0 m/s (iii) 14 s to 18 s v = d t v = (19-13) 4 v = 1.5 m/s (iv) 6 s to 17 s v = d t v = (15-5) 11 v = 0.91 m/s Constant Acceleration Problems = FUN! 1. A skier accelerates at 1.20 m/s 2 down an icy slope, starting from rest. How far does he get in a) 5.0 s? 15 m b) 10.0 s? 60. m c) 15.0 s? 135 m

7 2. What is the acceleration of an object that accelerates steadily from rest, traveling 10.0 m in 10.0 s? d = v i t + 1 / 2 at 2 d = 1 / 2 at 2 since v i = 0 m/s a = 2d/t 2 a = 2(10.0 m)/(10.0 s) 2 a = 0.20 m/s 2 3. How long does it take an airplane, accelerating from rest at 5.00 m/s 2, to travel 360 m? 12 m/s 4. A body moving with uniform acceleration has a velocity of 11.5 cm/s when its x coordinate is 5.0 cm. If its x coordinate 6.0 s later if -5.0 cm, what is its acceleration? m/s 2 use d=v i t + 1 / 2 at 2 with v i = m/s, d=-0.10 m 5. The initial velocity of a body is 4.60 m/s. What is its velocity after 5.50 s if it: a) accelerates uniformly at 3.00 m/s m/s b) accelerates uniformly at m/s 2? (that is it accelerates in the negative x direction) 11.9 m/s 6. A jet plane lands with a velocity of 115 m/s and can accelerate at a maximum rate of m/s 2 as it comes to rest. a) From the instant it touches the runway, what is the minimum time needed before it comes to rest? t = 21.9 s b) Can this plane land on a small tropical runway airport where the runway is km long? d = v i t + 1 / 2 at 2 d = (115 m/s)(21.9 s) + 1 / 2 (-5.25)(21.9 s) 2 d = 1260 m therefore, no, the plane cannot land on this runway 7. A body is traveling at 18.0 m/s and comes to rest after undergoing a uniform negative acceleration for 40.0 m. a) What is the acceleration of this body? 4.05 m/s 2 b) How long does it take to come to rest? 4.44 s 8. A car enters a tunnel at 24 m/s and accelerates steadily at 2.0 m/s 2. At what speed does it leave the tunnel, 8.0 s later? 40. m/s 9. A runner accelerates uniformly form rest at 1.40 m/s 2 for 8.00 s. a) What is her final velocity? 11.2 m/s b) What is her average velocity? 5.6 m/s c) How far does she travel? 44.8 m 10. A car accelerates from rest at 6.65 m/s 2. How far does it get between 10.0 and 14.0 s m

8 Graphing in Kinematics 2 - Practice Examine this graph carefully to answer questions Above is a graph representing the motion of an object. For each section of that motion, labeled A through E, calculate the acceleration of the object. A 0 m/s 2 B -2.0 m/s 2 C 0 m/s 2 D 2.5 m/s 2 E -2.0 m/s 2 2. How long will it take a truck moving at 35 m/s to stop if it accelerates at -5.0 m/s 2? (show work) 7.0 s 3. A plane upon landing accelerates at -1.5 m/s 2 for 1.0 minute until it stops. How fast was it going before it started to slow down? (show work) 90. m/s 4. A car hitting a tree loses 40.0 m/s in s. What is its acceleration? (show work) m/s 2 5. Classify these graphs as representing constant, increasing, or decreasing acceleration. (a) increasing acceleration acceleration (b) decreasing

9 (c) constant acceleration of zero (d) constant acceleration 6. This graph represents the motion of a truck that begins to move from rest. From the graph, calculate the average acceleration of the truck over the following time intervals. (show work) (a) 0 s to 150 s. (b) 150 s to 225 s. (c) 150 s to 350 s. (d) 0 minutes to 6 minutes.

10 More Graphing Practice - Constant Acceleration Examine the v vs t graph above. Based on the motion represented by the graph, fill in the chart below: Time (s) Velocity (m/s) Acceleration (m/s 2 ) Displacement (m) Examine the v vs t graph above. Based on the motion represented by the graph, construct the corresponding a vs t graph and d vs t graph on your own graph paper:

11 Now refer back to the graphs and then 1. Draw a series of a diagrams of a car, person,...or whatever moving with the motion depicted in the graph. Label the starting position in the diagram and be sure to point out and label what is happening to the object s motion. 2. Along with your picture, right a series of statements specifically describing the characteristics of the object s motion. (Is it speeding up or slowing down? Moving forward or backward? Accelerating or decelerating?) Car is going constant speed (no acceleration between 0 and 1 second), then slows down (decelerating from 1 second to 3 seconds). It stops at 3 seconds (see zero velocity), then comes back towards its starting point until it reaches 2 m/s (decelerating due to the direction from 3 to 4 seconds). Between 4 and 5 seconds it travels back towards its starting point at 2 m/s. The car then accelerates from 5 to 7 seconds, first reducing its speed towards starting

12 point and then heading in the opposite direction increasing its speed. It hits 3 m/s at 7 second mark. From there the car slows down to zero m/s between 7 and 8.5 seconds. It then heads back towards its starting point from 8.5 to 10 seconds at a faster rate (but decelerating since it is coming back to its beginning as direction is negative) until it reaches 3 m/s towards the start point. Even More Graphing Practice - Constant Acceleration Complete the work on a separate piece of paper and attach it to this sheet... Examine the v vs t graph above. Based on the motion represented by the graph, answer the following questions (SHOW YOUR WORK) What is the acceleration of the object? Slope is 2.0 m/s 2 2. What is the object s displacement after 5 seconds? Area above x axis is 50. m 3. What is the object s displacement after 10 s? Area above x axis is m, area below is 6.25 m so therefore displacement is 50. m distance traveled after 10 seconds? Add the areas = 63.5 m 4. What is the equation for the line? v = -2.0t +15 Examine the v vs t graph above. Based on the motion represented by the graph, answer the following questions (SHOW YOUR WORK)...

13 5. What is the acceleration of the object between t = 0 and t = 8 s? Slope is m/s 2...between t = 8 s and t = 12 s? Slope is 0 m/s 2...between t = 12 s and t = 20 s? Slope is 12.5 m/s 2 6. What is the displacement of the object after 8 s? Area is 200 m approx...after 12 s? Area is 600 m...after 20 s? Area is 1000 m note that v = 0 m/s at 2.67 m/s; these values are close approx. 7. What is the distance traveled by the object after 8 s? Add areas; Area is 333 m...after 12 s? Area is 733 m...after 20 s? Area is 1133 m 8. What is the equation for the line segment A? v = 18.75t line segment B? v = line segment C? v = -12.5t +250 Acceleration Problems 1. A skier accelerates at 1.20 m/s 2 down an icy slope, starting from rest. How far does she get in 5.0 s? 15 m 2. What is the acceleration of an object that accelerates steadily from rest, traveling 10 m in 10 s? 0.20 m/s 2 3. A car enters a tunnel at 24 m/s and accelerates steadily at 2.0 m/s 2. At what velocity does it leave the tunnel, 8.0 s later? 40 m/s 4. How long does it take an airplane, accelerating from rest at 5.0 m/s 2, to travel 360 m? 12 s 5. The driver of a truck moving at 18 m/s throws on its brakes and stops it in 4.0 s. What is the acceleration of the truck? -4.5 m/s 2 6. A motorcycle stuntman accelerates from rest to a maximum velocity of 35.2 m/s at the top of the take-off ramp, then swoops up and over 20 cars. Calculate how long it takes him to accelerate, at an acceleration of 8.8 m/s s 7. Here is the velocity-time graph of a trip on a bicycle.

14 How fast is the bicycle moving at each of the following time? a) 4 s 4 m/s b) 6 s 6 m/s c) 10 s 3.4 m/s d) 12 s 2 m/s What is the acceleration of the bicycle at each of these times? a) 2 s 0 m/s 2 b) 5 s 1.0 m/s 2 c) 7 s m/s 2 d) 14 s 0.75 m/s 2 8. If an electron inside a TV tube accelerates from rest to 1/10c (where c is the speed of light), in a space of 5.0 cm, what is its acceleration? c = 3.00 x 10 8 m/s therefore 1 / 10 c is 3.00 x 10 7 m/s ; a = 9.0 x m/s 2 9. Two runners accelerate uniformly from rest at 1.40 m/s 2 for 8.00 s. a) What is their final velocity? 11.2 m/s b) What is their average velocity? 5.6 m/s c) How far do they run? 44.8 m

15 10. A car accelerates from rest at 6.00 m/s 2. How far does it get between 10.0 s and 15.0 s? At 10 s d = 300 m, at 15 s d = 675 m, therefore d between 10 and 15 seconds is 375 m 11. A skier accelerates steadily down a hill from 3.50 m/s to m/s in 4.20 s. a = 1.88 m/s 2 a) What is the average velocity for the trip? 7.45 m/s b) What is the displacement? 31.3 m 12. Jack and Jill ran down the hill. Both started from rest and accelerated steadily. Jack accelerated at 0.25 m/s 2 and Jill at 0.30 m/s 2. After running for 20.0 s, Jill fell down. a) How far did Jill get before she fell? 60 m b) How far had Jack traveled when Jill fell? 50 m c) How fast was Jack running when Jill fell? 5 m/s d) How long was it after Jill fell that Jack ran into her and broke his crown (to the nearest second)? 1.9 s longer 13. The graph shows the motion of a small bird flying down a long, straight, narrow cage. a) What is the bird s acceleration for the first 10 s of the trip? Nearly a straight line, so 0.5 m/s 2 b) At what time is the bird s acceleration at its maximum? Find steepest part of graph, at about s c) What is this maximum acceleration? About 1.3 m/s 2 d) At what time(s) is the bird s acceleration zero? At the top of the curve, so about 29 s e) At what time(s) is the bird s velocity zero? At time zero.

16 14. Spiderman is crawling up a building at the rate of 0.50 m/s. Seeing Spiderwoman 56 m ahead of him; he accelerates at the rate of 2.3 m/s 2. a) How fast will he be moving when he reaches Spiderwoman? 16.1 m/s b) How much time will it take to reach Spiderwoman? 6.8 s c) When he reaches Spiderwoman, Spiderman discovers she is a Black Widow and, as you know, Black Widows eat their mates! He is m from the road below. How long will it take to fall to the safety of the road, if he drops with an acceleration of g = 9.80 m/s 2? 6.4 s d) Why will Spiderman not be killed by the fall? He has spider-like senses and can whip out that web from his wrist to slow himself down Acceleration Due To Gravity Remember to use the value of a = 9.80 m/s 2 for these problems. 1. A rock is dropped from the 100 th floor of a tall building (350 m above the ground). How long does it take to fall to the ground below and with what speed will it hit the ground at? 8.45 s; 83 m/s 2. A ball is thrown straight upwards and reaches a maximum height of 95 m. With what initial velocity was it thrown? 43.2 m/s 3. A baseball is throw straight upwards at 28.0 m/s.

17 a) To what maximum height will it reach? 40 m b) How long will it remain in the air (from being thrown upwards to being caught)? 5.7 s 4. A mischievous person is on an air balloon at a height of 750 m above the ground. He sees his archenemy standing below the balloon and throws a 10.0 kg anvil straight downward with an initial velocity of 15 m/s. With what speed does it hit the unaware enemy? 122 m/s How long was it before the archenemy was hit? 10.9 s 5. A pebble is thrown vertically downward from a bridge with an initial velocity of 10.0 m/s and strikes the water in 2.0 s. a) Find the velocity with which the pebble strikes 30. m/s and b) the height of the bridge. 40. m 6. A person throws a ball upward with an initial velocity of 15.0 m/s. Calculate: a) how high it goes m b) how long the ball is in the air before it comes back to his hand s 7. A kangaroo jumps to a vertical height of 2.8 m. How long was it in the air before returning to earth? 1.5 s 8. A hammer falls out of a helicopter from a height of m. What velocity will the hammer reach just before it hits the ground if it continues to accelerate downwards? 242 m/s How long will it take to hit the ground? 24.7 s 9. A boy shoots a rock straight up with an initial velocity of 16 m/s. He quickly reloads and shoots another rock in the same way 2.0 s later. a) At what time and at what height doe the rocks meet? Pretty tricky, eh? So, the first rock takes 1.63 seconds to reach max height of 13.1 m. That means it has already fallen 0.37 seconds before the second rock is fired. The other rock is following the same pathway (and has same data). Consider the height and velocity of the first rock when the second rock is fired i.e. after it has fallen for 0.37 seconds. The first rock would be already traveling downward with a velocity of 3.63 m/s and has fallen 0.67 m (now at a height of 12.4 m off of the ground). Here's the trick. Given the new set up, the time for the rocks to meet would have to be the same AND the displacements would be related by the difference in height! So you have to get two equations and solve them as a system - a little mathematics from Math 10! Equations are (using d = v i t + 1 / 2 at 2 ): Rock x = 3.63t + 1 / 2 (9.80)t 2 watch the signs!!!! Rock 2 x = 16t + 1 / 2 (-9.80)t 2 the x represents the distance that rock 2 will go up and the 12.4 x represents the distance that rock 1 will fall before they meet.

18 Put these together and reduce to find the value of t!! t = 0.63 s from when Rock 2 is fired and they meet at a height of 8.1 m b) What is the velocity of each rock when they meet? Work from the time Rock m/s Rock m/s 10. A water balloon is dropped from the top of a tower, m off the ground. An alert archer at the base of the tower sees the balloon and shoots an arrow straight up toward the balloon 5.0 s after the balloon is dropped. The arrow's initial velocity is 40.0 m/s. Where does the arrow intercept the balloon? Draw a little picture of this. Think about the water balloon for a moment. Its initial velocity is 0 m/s but after 5.0 seconds it will have fallen m (so it is now at a height of = 77.5 m with a velocity of 49 m/s downwards). Then the arrow is fired. The arrow will go upwards but will travel some distance less than 77.5 m (because the balloon is still falling). But the time for the two objects to reach each other will be the same. Again you need two equations. One for the balloon dropping and one for the arrow traveling upwards. Plus you need to consider the effect of that 5.0 second time difference: Equations are (using d = v i t + 1 / 2 at 2 ): Balloon x = 49 t + 1 / 2 (9.80)t 2 watch the signs!!!! Arrow x = 40t + 1 / 2 (-9.80)t 2 the x represents the distance that arrow will go up and the x represents the distance that water balloon will fall before they meet. Put these together and reduce to find the value of t!!

19 t = 0.87 s (the arrow only reaches a height of 31.1 m before it encounters the balloon) Are there other ways to do Questions 9 and 10? Probably, I just did it my way! Challenge Problem 1. Sam challenges Jean to a race. Sam can run at 4.0 m/s. Jean can run at only 3.0 m/s. So Sam gives Jean a 20.0 m head start. a) How long does it take for Sam to catch Jean? 20 s b) How far from Jean s starting point will they have traveled by the time Sam catches Jean? 60 m c) How far ahead of Jean will Sam be after 35 seconds into the race? 15 m Sam d + 20 = 4.0 t Jean d = 3.0 t Challenge Problem #2: 2. Three brothers decide to have a m race. To be fair the youngest brother is given a 50.0 metre head start. The other two brothers run the full m but the eldest gives the middle brother a 10.0 second head start. The youngest can run at 2.5 m/s, the middle brother at 4.0 m/s, and the eldest at 4.5 m/s. a) At what time does the eldest brother catch the youngest brother? 25 s b) How far ahead, or behind, is the middle brother at this time? Middle is at 140 m. Youngest and eldest are both at m. This means that the middle brother is 27.5 m ahead (since he was given the 10 second head start). c) Who wins the race, and by how much? The middle brother by 4.4 seconds d) Who is the last, and by how much? Youngest was last by 15.6 seconds t Eldest d + 50 = 4.5 t Youngest d = 2.5 Middle d = 4.0 t Youngest takes 70 s to finish (this is 60 seconds to run plus the 10 second time delay)

20 seconds!) Middle takes 50 s to finish (remember he was the only runner for 10 Eldest takes 54.4 s to finish (44.4 seconds of running plus the 10 second time delay!) Extra challenge: Their father starts at the other end of the 200 m run, intending to run in the opposite direction, 5.0 seconds after the eldest son. He can run at 6.0 m/s. At what time does he pass the last of his sons? 21.9 s after the eldest starts to run Eldest d = 4.5(t+5) Dad 200-d = 6.0t I am assuming that the eldest is the last of the sons since the distance that they meet is the 98.6 m mark and the other two brothers were already farther (youngest is at 105 m while middle is at 128 m at the 21.9 s mark)

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work! 1. A student holds her 1.5-kg psychology textbook out of a second floor classroom window until her arm is tired; then she releases

More information

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4. Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

Web review - Ch 3 motion in two dimensions practice test

Web review - Ch 3 motion in two dimensions practice test Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity - to inappropriately interchange quantities such as position, velocity, and

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015 Why are celestial motions and forces important? They explain the world around

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Problem Set 1 Solutions

Problem Set 1 Solutions Problem Set 1 Solutions Chapter 1: Representing Motion Questions: 6, 10, 1, 15 Exercises & Problems: 7, 10, 14, 17, 24, 4, 8, 44, 5 Q1.6: Give an example of a trip you might take in your car for which

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2.

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2. ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

EDUH 1017 - SPORTS MECHANICS

EDUH 1017 - SPORTS MECHANICS 4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

More information

LAB 6: GRAVITATIONAL AND PASSIVE FORCES

LAB 6: GRAVITATIONAL AND PASSIVE FORCES 55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

More information

Freely Falling Objects

Freely Falling Objects Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding

More information

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes: Motion Graphs 1 Name Motion Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes graphs help make motion easier to picture, and therefore understand. Remember: Motion

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Friction and Gravity. Friction. Section 2. The Causes of Friction

Friction and Gravity. Friction. Section 2. The Causes of Friction Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

SCALAR VS. VECTOR QUANTITIES

SCALAR VS. VECTOR QUANTITIES SCIENCE 1206 MOTION - Unit 3 Slideshow 2 SPEED CALCULATIONS NAME: TOPICS OUTLINE SCALAR VS. VECTOR SCALAR QUANTITIES DISTANCE TYPES OF SPEED SPEED CALCULATIONS DISTANCE-TIME GRAPHS SPEED-TIME GRAPHS SCALAR

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

ACCELERATION DUE TO GRAVITY

ACCELERATION DUE TO GRAVITY EXPERIMENT 1 PHYSICS 107 ACCELERATION DUE TO GRAVITY Skills you will learn or practice: Calculate velocity and acceleration from experimental measurements of x vs t (spark positions) Find average velocities

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the

More information

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument III. Applications of Force and Motion Concepts Concept Review Conflicting Contentions 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument Qualitative Reasoning 1. Dropping Balls 2. Spinning Bug

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Speed (a scalar quantity) is the distance travelled every second.

Speed (a scalar quantity) is the distance travelled every second. SCALAR and VECTOR QUANTITIES The following are some of the quantities you will meet in the Intermediate Physics course: DISTANCE, DISPLACEMENT, SPEED, VELOCITY, TIME, FORCE. Quantities can be divided into

More information

SPEED, VELOCITY, AND ACCELERATION

SPEED, VELOCITY, AND ACCELERATION reflect Look at the picture of people running across a field. What words come to mind? Maybe you think about the word speed to describe how fast the people are running. You might think of the word acceleration

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Midterm Exam 1 October 2, 2012

Midterm Exam 1 October 2, 2012 Midterm Exam 1 October 2, 2012 Name: Instructions 1. This examination is closed book and closed notes. All your belongings except a pen or pencil and a calculator should be put away and your bookbag should

More information

Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I

WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I WWW.MIAMI-BEST-MATH-TUTOR.COM PAGE 1 OF 10 WWW.MIAMI-BEST-MATH-TUTOR.COM E-MAIL: MIAMIMATHTUTOR@GMAIL.COM CONTACT NUMBER: (786)556-4839 PHYSICS I PROJECTILE MOTION 4.1 1. A physics book slides off a horizontal

More information

Practice TEST 2. Explain your reasoning

Practice TEST 2. Explain your reasoning Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet

Contents. Stage 7. Stage 8. Stage 9. Contents. Key: Enquiry / Extension / Review BOLD PAGE NO. = in this booklet Contents Contents Stage 7 1 1.1 Introduction to forces 8 1.2 Balanced forces 10 1.3 Friction 12 1.4 Gravity 14 1.5 Enquiry: Questions, evidence and explanations 16 1.6 Air resistance 18 1.7 Enquiry: Planning

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics. The following( is applicable to this entire document copies for student distribution for exam preparation explicitly

More information

Lift vs. Gravity Questions:

Lift vs. Gravity Questions: LIFT vs GRAVITY Sir Isaac Newton, an English scientist, observed the force of gravity when he was sitting under a tree and an apple fell on his head! It is a strong force that pulls everything down toward

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton Position is a Vector Compare A A ball is 12 meters North of the Sun God to A A ball is 10 meters from here A vector has both a direction

More information

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A6 of challenge: C A6 Mathematical goals Starting points Materials required Time needed Interpreting distance time graphs To enable learners to: interpret and construct distance time graphs, including:

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Determining the Acceleration Due to Gravity

Determining the Acceleration Due to Gravity Chabot College Physics Lab Scott Hildreth Determining the Acceleration Due to Gravity Introduction In this experiment, you ll determine the acceleration due to earth s gravitational force with three different

More information

Work-Energy Bar Charts

Work-Energy Bar Charts Name: Work-Energy Bar Charts Read from Lesson 2 of the Work, Energy and Power chapter at The Physics Classroom: http://www.physicsclassroom.com/class/energy/u5l2c.html MOP Connection: Work and Energy:

More information

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com Class XI Physics Ch. 4: Motion in a Plane NCERT Solutions Page 85 Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density,

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

More information

Lesson 2.15: Physical Science Speed, Velocity & Acceleration

Lesson 2.15: Physical Science Speed, Velocity & Acceleration Weekly Focus: Reading for Comprehension Weekly Skill: Numeracy Skills in Science Lesson Summary: This week students will continue reading for comprehension with reading passages on speed, velocity, and

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

Speed, Velocity and Acceleration Lab

Speed, Velocity and Acceleration Lab Speed, Velocity and Acceleration Lab Name In this lab, you will compare and learn the differences between speed, velocity, and acceleration. You will have two days to complete the lab. There will be some

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h).

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Revised Pages PART ONE Mechanics CHAPTER Motion Along a Line 2 Despite its enormous mass (425 to 9 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h). Since the top speed

More information

Acceleration of Gravity Lab Basic Version

Acceleration of Gravity Lab Basic Version Acceleration of Gravity Lab Basic Version In this lab you will explore the motion of falling objects. As an object begins to fall, it moves faster and faster (its velocity increases) due to the acceleration

More information

Experiment 2: Conservation of Momentum

Experiment 2: Conservation of Momentum Experiment 2: Conservation of Momentum Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Use the equations

More information

Tutorial: Creating Platform Games

Tutorial: Creating Platform Games Tutorial: Creating Platform Games Copyright 2003, Mark Overmars Last changed: March 30, 2003 Uses: version 5.0, advanced mode Level: Intermediate Platform games are very common, in particular on devices

More information

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s

AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s AP Physics Circular Motion Practice Test B,B,B,A,D,D,C,B,D,B,E,E,E, 14. 6.6m/s, 0.4 N, 1.5 m, 6.3m/s, 15. 12.9 m/s, 22.9 m/s Answer the multiple choice questions (2 Points Each) on this sheet with capital

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

More information

Lateral Acceleration. Chris Garner

Lateral Acceleration. Chris Garner Chris Garner Forward Acceleration Forward acceleration is easy to quantify and understand. Forward acceleration is simply the rate of change in speed. In car terms, the quicker the car accelerates, the

More information

3 Accelerated Motion. Practice Problems. 3.1 Acceleration pages 57 64

3 Accelerated Motion. Practice Problems. 3.1 Acceleration pages 57 64 CHAPTER 3 Accelerated Motion Practice Problems 3.1 Acceleration pages 57 64 page 61 1. A dog runs into a room and sees a cat at the other end of the room. The dog instantly stops running but slides along

More information

Force Concept Inventory

Force Concept Inventory Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

More information

YMCA Basketball Games and Skill Drills for 3 5 Year Olds

YMCA Basketball Games and Skill Drills for 3 5 Year Olds YMCA Basketball Games and s for 3 5 Year Olds Tips ( s) Variations Page 2 Dribbling Game 10 Players will learn that they must be able to dribble to attack the basket (target) to score in basketball. The

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

2 ONE- DIMENSIONAL MOTION

2 ONE- DIMENSIONAL MOTION 2 ONE- DIMENSIONAL MOTION Chapter 2 One-Dimensional Motion Objectives After studying this chapter you should be able to derive and use formulae involving constant acceleration; be able to understand the

More information