Lecture 9 Cellular Respiration NSCC BIOL211

Size: px
Start display at page:

Download "Lecture 9 Cellular Respiration NSCC BIOL211"

Transcription

1 Lecture 9 Cellular Respiration NSCC BIOL211 1

2 First watch this video. Seriously. NSCC BIOL211 2

3 Cellular respiration Redox reactions Glycolysis Pyruvate oxidation In this lecture Krebs Cycle Electron Transport Chain NSCC BIOL211 3

4 Why do we do respiration? Cellular respiration provides most of our ATP The components of our diet provides the reactants for cellular respiration Glucose is what we ll study today Lipids and protein breakdown will be briefly covered, and studied more in depth in another course NSCC BIOL211 4

5 Biochemical pathways are: Exergonic and endergonic reactions Oxidation and reduction reactions Enzymatic reactions NSCC BIOL211 5

6 The Big Picture NSCC BIOL211 6

7 From food to ATP Amylase in saliva starts to break down starches to disaccharides Stomach acid breaks apart large structures such as cells and intercellular structures Amylase in the small intestine completes the breakdown of all carbohydrates to disaccharides Maltases, lactases, and sucrases break down disaccharides into monosaccharides Glucose is brought to all the cells in the body through the circulatory system NSCC BIOL211 7

8 Energy production sites in the cell Glucose is brought inside the cell by cotransport with sodium The mitochondria are where ATP is produced NSCC BIOL211 8

9 Electron energy levels An electron loses potential energy when it shifts to a more electronegative atom C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy Here, electrons are transferred from carbon and hydrogen to oxygen The electrons in this reaction lose a LOT of potential energy Carbohydrates and fats are high-energy foods because they have a lot of electrons associated with hydrogen NSCC BIOL211 9

10 Free energy, G Figure 9.5 Free energy, G H 2 1 / 2 O 2 2 H (from food via NADH) Controlled release of 2 H + 2 e energy for synthesis of ATP ATP 1 / 2 O 2 Explosive release of heat and light energy ATP ATP 2 e 2 H + 1 / 2 O 2 H 2 O H 2 O (a) Uncontrolled reaction (b) Cellular respiration NSCC BIOL211 10

11 The chemical reactions in respiration The chemistry definition: Oxidation and reduction OIL RIG Oxidation is losing Reduction is gaining Oxygen is highly electronegative What is being lost and gained? Electrons! Electrons are usually lost to oxygen Oxidation and reduction reactions often occur in a pair, and together are called redox reactions NSCC BIOL211 11

12 The chemical reactions in respiration The biology definition: Oxidation and reduction Losing a hydrogen atom Gaining a hydrogen atom In biochemical reactions, hydrogen is what usually gets swapped around Hydrogen almost always bonds to an atom that is more electronegative (C, O, N, P), and so loses its electron NSCC BIOL211 12

13 Redox Reactions NSCC BIOL211 13

14 The chemical reactions in respiration Redox reactions Phosphorylation/dephosphorylation Carried out by kinases and phosphatases Phosphorylation increases chemical potential energy and primes the molecule for work NSCC BIOL211 14

15 New players in the enzyme game NAD + and NADH FAD and FADH 2 NAD + is derived from niacin NAD + is a coenzyme FAD is derived from riboflavin NAD+ shuttles electrons through the various stages of cellular respiration NSCC BIOL211 15

16 NAD + and FAD NAD + reduction NADH Reduced form Oxidized form oxidation NAD+ accepts electrons and becomes NADH NAD+ is reduced into NADH NADH is a reducing agent, and is recycled back to NAD + through oxidation Each NADH (the reduced form of NAD + ) represents stored energy that is tapped to synthesize ATP. Each NADH produces 3 ATPs in the e- transport chain NSCC BIOL211 16

17 What is cellular respiration? Glucose Energy - 686kcal/mol C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy Cellular respiration 1 molecule of glucose produces 28 ATPs 38 ATP Heat Cellular respiration is the step-by-step release and harness of the chemical potential energy in glucose NSCC BIOL211 17

18 Redox Reactions in Cellular Respiration During cellular respiration, the fuel (such as glucose) is oxidized, and O 2 is reduced becomes oxidized becomes reduced NSCC BIOL211 18

19 Two types of cellular respiration: The breakdown of organic molecules is always exergonic Aerobic respiration takes place in the presence of oxygen Anaerobic respiration takes place in the absence of oxygen Fermentation is a type of anaerobic respiration where sugars are partially degraded Consumes compounds other than oxygen Cellular respiration includes both aerobic and anaerobic respiration but is often used to refer to aerobic respiration NSCC BIOL211 19

20 NSCC BIOL211 20

21 The stages of aerobic respiration Breaks glucose in half Glycolysis Consumes two ATP Generates 4 ATP Net 2 ATP Rearranges the halfglucose molecule Citric Acid Cycle* Generates 2 ATP Electrons from glucose are passed around Electron Transport Chain Generates 34 ATP *AKA the Krebs cycle and the TCA cycle NSCC BIOL211 21

22 The Big Picture NSCC BIOL211 22

23 Figure Glycolysis Electrons carried via NADH Glycolysis Glucose Pyruvate CYTOSOL MITOCHONDRION ATP Substrate-level phosphorylation NSCC BIOL211 23

24 Glycolysis The players: Glucose Pyruvate ADP/ATP Enzymes The processes: Substrate-level phosphorylation The locations Cytoplasm The production of ATP from ADP by direct transfer of a phosphate group from a phosphorylated protein NSCC BIOL211 24

25 Glycolysis Beginning structure: End structures: - Breaking down of glucose - Can be done with or without oxygen glyco = glucose lysis = breaking Broken down into two stages: The investment phase (uses 2 ATP) The payoff phase (produces 2 ATP) apart You have to spend money to make money NSCC BIOL211 25

26 Glycolysis NSCC BIOL211 26

27 Glycolysis NSCC BIOL211 27

28 Glycolysis NSCC BIOL211 28

29 Glycolysis NSCC BIOL211 29

30 Glycolysis NSCC BIOL211 30

31 Glycolysis NSCC BIOL211 31

32 Glycolysis NSCC BIOL211 32

33 Glycolysis NSCC BIOL211 33

34 Glycolysis NSCC BIOL211 34

35 Glycolysis NSCC BIOL211 35

36 Glycolysis Begin: Glucose NAD + ADP End: 2 pyruvate 2 NADH 2 ATP Most of glycose s original energy is still present in pyruvate! NSCC BIOL211 36

37 Glycolysis In the presence of O 2, pyruvate enters the mitochondrion where the oxidation of glucose is completed during TCA cycle Without O 2, pyruvate undergoes fermentation into either ethanol or lactic acid NSCC BIOL211 37

38 Glycolysis NSCC BIOL211 38

39 Pyruvate Oxidation Glycolysis feeds into TCA cycle ONLY when oxygen is present!! NSCC BIOL211 39

40 Pyruvate Oxidation Before pyruvate can be fed into TCA cycle, it must become acetyl-coa (acetyl-coenzyme A) It does this through pyruvate oxidation Produces one NADH from NAD+ Three-carbon pyruvate is converted into twocarbons + acetyl-coa Think of acetyl- CoA as a transporter for the carbon atoms from pyruvate NSCC BIOL211 40

41 Pyruvate Oxidation NSCC BIOL211 41

42 Pyruvate Oxidation Acetyl-CoA couples with oxaloacetate, the first molecule in TCA cycle Acetyl-CoA + oxaloacetate = citrate NSCC BIOL211 42

43 The Citric Acid Cycle The players: Acetyl-CoA Oxaloacetate Plus many more carbon skeleton intermediates Enzymes The processes: Hydrolysis Redox reactions The locations: Mitochondrial matrix NSCC BIOL211 43

44 The Citric Acid Cycle Begin: Oxaloacetate 1 ADP 3 NAD+ 1 FAD End: Oxaloacetate 1 ATP 3 NADH 1 FADH 2 The citric acid cycle, also called the Krebs cycle, completes the break down of pyruvate to CO 2 The citric acid cycle has eight steps, each catalyzed by a specific enzyme NSCC BIOL211 44

45 The Citric Acid Cycle NSCC BIOL211 45

46 The Citric Acid Cycle Step 1 and 2: Overview NSCC BIOL211 46

47 The Citric Acid Cycle Step 1 and 2: In detail CoA is recycled here to go back to pyruvate oxidation NSCC BIOL211 47

48 The Citric Acid Cycle Step 3 and 4: In detail and overview NSCC BIOL211 48

49 The Citric Acid Cycle Step 5 and 6: Overview NSCC BIOL211 49

50 The Citric Acid Cycle Step 5 and 6: In detail NSCC BIOL211 50

51 The Citric Acid Cycle Step 7 and 8: Overview NSCC BIOL211 51

52 The Citric Acid Cycle Step 7 and 8: In detail NSCC BIOL211 52

53 The Citric Acid Cycle The citric acid cycle is the entry point for other catabolic pathways Acetyl-CoA can be derived from carbohydrates, proteins, and fats NSCC BIOL211 53

54 The Citric Acid Cycle This is for one pyruvate. Remember, one glucose molecule produces two pyruvates! Begin: Acetyl-CoA Oxaloacetate 3NAD+ 2 FAD 1ADP The whole point of TCA cycle is to produce NADH and FADH 2 End: 3 CO 2 s Oxaloacetate 3 NADH 2 FADH 2 1 ATP NSCC BIOL211 54

55 The Citric Acid Cycle NSCC BIOL211 55

56 The electron transport chain The whole cellular process is about producing ATP. Why do we care about NADH and FADH 2? These molecules then get oxidized in the electron transport chain Every NADH will produce 3 ATP Every FADH 2 will produce 2 ATP NSCC BIOL211 56

57 The electron transport chain Begin: ADP 10 NADH 2 FADH 2 End: ATP 10 NAD+ 2 FAD Electrons are passed along at lower and lower energy levels to release their energy The electron transport chain breaks the large free-energy drop from food to O 2 into smaller steps that release energy in manageable amounts NSCC BIOL211 57

58 The electron transport chain The players: FADH 2, NADH, ADP ATP Synthase Cytochromes and membrane proteins The processes: Chemiosmosis The location: Intermembrane space of the mitochondria NSCC BIOL211 58

59 The electron transport chain The electron transport chain is a series of proteins that pass along electrons Electrons come from NADH and FADH 2 Proteins are embedded in the matrix membrane Each time an electron is passed, it releases energy That energy is used to drive protons across the membrane into the intermembrane space This creates an electrochemical gradient NSCC BIOL211 59

60 Energy increases The electron transport chain NADH NAD + + H + + 2e - CoQ Release of energy CoQ, CytC, and CytB are all membrane proteins on the inner matrix membrane CytC Release of energy CytB Release of energy O 2 NSCC BIOL211 60

61 The electron transport chain FADH 2 s electrons are lower energy than NADH, and so enter the electron transport chain at a protein further along in the chain The transport proteins alternate reduced and oxidized states as they accept and donate electrons Oxygen accepts those now very-low energy electrons. Oxygen is the terminal electron acceptor NSCC BIOL211 61

62 The electron transport chain The release of energy is used to pump H+ across the matrix membrane into the intermembrane space NSCC BIOL211 62

63 The electron transport chain H+ are pumped against their gradient using the energy released from passing electrons to lower and lower energy states This creates an electrochemical gradient We can then couple the potential energy in the electrochemical gradient to another biochemical reaction NSCC BIOL211 63

64 The electron transport chain A bigger picture: NSCC BIOL211 64

65 The electron transport chain What is that electrochemical gradient used for? To create ATP! How is that done? Through a protein called ATP synthase ATP synthase translates the potential energy in the electrochemical gradient into the potential energy in the phosphate bonds of ATP The flow of H+ with its electrochemical gradient is an exergonic reaction ATP synthase couples an exergonic reaction with an endergonic reaction NSCC BIOL211 65

66 The electron transport chain ATP synthase is a turbine that connects the flow of protons to ADP ATP phosphorylation This is called chemiosmosis Electrochemical energy Kinetic energy Chemical energy NSCC BIOL211 66

67 The electron transport chain As the turbine turns with the current of protons flowing past, it phosphorylates ADP into ATP NSCC BIOL211 67

68 The electron transport chain ATP Synthase: another view NSCC BIOL211 68

69 The electron transport chain All together: NSCC BIOL211 69

70 The electron transport chain The energy stored in a H + gradient across a membrane couples the redox reactions of the electron transport chain to ATP synthesis The H + gradient is referred to as a proton-motive force, emphasizing its capacity to do work NSCC BIOL211 70

71 Energy flows in this direction: glucose NADH electron transport chain proton-motive force ATP NSCC BIOL211 71

72 What happens without oxygen? NSCC BIOL211 72

73 Fermentation Anaerobic respiration uses an electron transport chain with a final electron acceptor other than O 2, for example sulfate Produces much less energy than aerobic respiration Only source of ATP is substrate-level phosphorylation NSCC BIOL211 73

74 Fermentation Two common types of fermentation: Lactic acid fermentation Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt Human muscle cells use lactic acid fermentation to generate ATP when O 2 is scarce Alcohol fermentation Alcohol fermentation by yeast is used in brewing, winemaking, and baking NSCC BIOL211 74

75 Alcohol Fermentation Pyruvate is converted to ethanol in two steps NADH produced in glycolysis is oxidized to NAD+ Glucose is not conpletely digested NSCC BIOL211 75

76 Lactic Acid Fermentation Pyruvate is converted to lactate in one step NADH produced during glycolysis is oxidized to NAD+ NSCC BIOL211 76

77 Comparing Aerobic and Anaerobic Respiration Aerobic Respiration Glycolysis Yes Yes Krebs Cycle Yes No Electron Transport Chain Yes Anaerobic Respiration ATP Production 32 per glucose 2 per glucose No NADH production Yes Yes FADH 2 production Yes No Terminal electron acceptor O 2 Pyruvate or acetaldehyde NSCC BIOL211 77

78 Who uses what pathway? Obligate anaerobes carry out fermentation or anaerobic respiration and cannot survive in the presence of O 2 Yeast and many bacteria are facultative anaerobes, meaning that they can survive using either fermentation or cellular respiration We require oxygen to live, and are obligate aerobes In a facultative anaerobe, pyruvate is a fork in the metabolic road that leads to two alternative catabolic routes NSCC BIOL211 78

79 Figure 9.18 Glucose CYTOSOL Glycolysis Pyruvate No O 2 present: Fermentation O 2 present: Aerobic cellular respiration Ethanol, lactate, or other products Acetyl CoA MITOCHONDRION Citric acid cycle

80 Catabolism of other biomolecules Proteins must be digested to amino acids; amino groups can feed glycolysis or the citric acid cycle Fats are digested to glycerol (used in glycolysis) and fatty acids (used in generating acetyl CoA) Fatty acids are broken down by beta oxidation and yield acetyl CoA An oxidized gram of fat produces more than twice as much ATP as an oxidized gram of carbohydrate NSCC BIOL211 80

81 Controlling Respiration ATP and citrate inhibit phosphofructokinase AMP is a positive allosteric regulator of phosphofructokinase If you have a lot of ATP or citrate (that means a lot of energy) glycolysis is shut down If you have a lot of AMP (very little energy is present) glycolysis is stimulated If ATP concentration begins to drop, respiration speeds up; when there is plenty of ATP, respiration slows down NSCC BIOL211 81

82 The Evolutionary Significance of Glycolysis Ancient prokaryotes are thought to have used glycolysis long before there was oxygen in the atmosphere Very little O 2 was available in the atmosphere until about 2.7 billion years ago, so early prokaryotes likely used only glycolysis to generate ATP Glycolysis is a very ancient process NSCC BIOL211 82

83 Vocabulary Glycolysis Krebs/TCA cycle Redox reactions Terminal electron acceptor Chemiosmosis Oxidative phosphorylation Proton-motive force Fermentation NSCC BIOL211 83

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch23_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following statements concerning digestion are correct except A) The major physical

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

Lactic Acid Dehydrogenase

Lactic Acid Dehydrogenase Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu Electron Transport System May 16, 2014 Hagop Atamian hatamian@ucdavis.edu What did We learn so far? Glucose is converted to pyruvate in glycolysis. The process generates two ATPs. Pyruvate is taken into

More information

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Chem 306 Chapter 21 Bioenergetics Lecture Outline III Chem 306 Chapter 21 Bioenergetics Lecture Outline III I. HOW IS ATP GENERATED IN THE FINAL STAGE CATABOLISM? A. OVERVIEW 1. At the end of the citric acid cycle, all six carbons of glucose have been oxidized

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8 How ells Harvest Energy hapter 7 & 8 Evolution of Metabolism A hypothetical timeline for the evolution of metabolism - all in prokaryotic cells!: 1. ability to store chemical energy in ATP 2. evolution

More information

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary)

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary) Electron transport chain Final stage of aerobic oxidation! Also known as: -oxidative phosphorylation(when coupled to ATP synthase) -respiration (when coupled to ATP synthase) Purpose: -Recycle reduced

More information

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes

More information

Is ATP worth the investment?

Is ATP worth the investment? Is ATP worth the investment? ATP (adenosine tri-phosphate) can be thought of as the currency of the cell. Most cellular metabolic processes cost a certain amount of ATP in order to happen. Furthermore,

More information

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. AP bio fall 2014 final exam prep Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the first law of thermodynamics, a. the energy of a system

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org Chapter 4 Photosynthesis and Cellular Respiration Worksheets (Opening image copyright by Derek Ramsey, http://en.wikipedia.org/wiki/file:monarch_butterfly_ Danaus_plexippus_Feeding_Down_3008px.jpg, and

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Production of acetyl-coa (activated acetate) Page: 603 Difficulty: 2 Ans: A Which of the following is not true of the reaction catalyzed by

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

21.8 The Citric Acid Cycle

21.8 The Citric Acid Cycle 21.8 The Citric Acid Cycle The carbon atoms from the first two stages of catabolism are carried into the third stage as acetyl groups bonded to coenzyme A. Like the phosphoryl groups in ATP molecules,

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Cellular Respiration Text, Diagrams, Assessments, and Link to Standards Focus Questions 1) What is cellular respiration? 2) How is cellular respiration connected to breathing? 3) If

More information

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action Chapter 5 Microbial Metabolism Metabolism is the sum of all chemical reactions within a living organism, including anabolic (biosynthetic) reactions and catabolic (degradative) reactions. Anabolism is

More information

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale CELLULAR RESPIRATION Chapter 19 & 20 Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale 1. Cellular respiration (energy capture) The enzymatic breakdown of food stuffs in the presence

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 3 Photosynthesis and Cellular Respiration Copyright 2001, BioMEDIA ASSOCIATES www.ebiomedia.com

More information

Metabolism Poster Questions

Metabolism Poster Questions Metabolism Poster Questions Answer the following questions concerning respiration. 1. Consider the mitochondrial electron transport chain. a. How many hydrogen ions can be pumped for every NADH? b. How

More information

CITRIC ACID (KREB S, TCA) CYCLE

CITRIC ACID (KREB S, TCA) CYCLE ITRI AID (KREB S, TA) YLE Date: September 2, 2005 * Time: 10:40 am 11:30 am * Room: G202 Biomolecular Building Lecturer: Steve haney 515A Mary Ellen Jones Building stephen_chaney@med.unc.edu 9663286 *Please

More information

Cellular Respiration. Chapter Outline. Before You Begin

Cellular Respiration. Chapter Outline. Before You Begin 8 Cellular Respiration Triathlete racing past photosynthesizing trees and vegetation. A triathlete racing a bike, a bacterium with undulating flagella, an ocelot climbing a tree, or a snail moving slowly

More information

Regulation of the Citric Acid Cycle

Regulation of the Citric Acid Cycle Regulation of the itric Acid ycle I. hanges in Free Energy February 17, 2003 Bryant Miles kj/mol 40 20 0 20 40 60 80 Reaction DGo' DG TA Free Energy hanges 1 2 3 4 5 6 7 8 9 1.) itrate Synthase 2.) Aconitase

More information

Biology for Science Majors

Biology for Science Majors Biology for Science Majors Lab 10 AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it? Cellular Energy: ATP & Enzymes What is it? Where do organism s get it? How do they use it? Where does Energy come from? Ultimately, from the sun. It is transferred between organisms in the earth s lithosphere,

More information

Bioenergetics. Free Energy Change

Bioenergetics. Free Energy Change Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information

More information

Electron Transport Generates a Proton Gradient Across the Membrane

Electron Transport Generates a Proton Gradient Across the Membrane Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in

More information

1. The diagram below represents a biological process

1. The diagram below represents a biological process 1. The diagram below represents a biological process 5. The chart below indicates the elements contained in four different molecules and the number of atoms of each element in those molecules. Which set

More information

Electron Transport and Oxidative Phosphorylation

Electron Transport and Oxidative Phosphorylation CHM333 LECTURES 37 & 38: 4/27 29/13 SPRING 2013 Professor Christine Hrycyna Electron Transport and Oxidative Phosphorylation Final stages of aerobic oxidation of biomolecules in eukaryotes occur in the

More information

The chemical energy used for most cell processes is carried by ATP.

The chemical energy used for most cell processes is carried by ATP. 4.1 CHEMICAL ENERGY AND ATP Study Guide KEY CONCEPT All cells need chemical energy. VOCABULARY ATP ADP chemosynthesis MAIN IDEA: The chemical energy used for most cell processes is carried by ATP. 1. What

More information

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Cellular Energy. 1. Photosynthesis is carried out by which of the following? Cellular Energy 1. Photosynthesis is carried out by which of the following? A. plants, but not animals B. animals, but not plants C. bacteria, but neither animals nor plants D. all living organisms 2.

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: Section 10 Multiple Choice 1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: A) acyl-carnitines readily cross the mitochondrial inner membrane, but

More information

Unit 5 Photosynthesis and Cellular Respiration

Unit 5 Photosynthesis and Cellular Respiration Unit 5 Photosynthesis and Cellular Respiration Advanced Concepts What is the abbreviated name of this molecule? What is its purpose? What are the three parts of this molecule? Label each part with the

More information

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle Chapter 14 Glycolysis Requires mitochondria and O 2 Glucose glycolysis anaerobic respiration 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) pyruvate dehydrogenase acetyl-coa TCA Cycle

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage? Energy Transport Study Island 1. During the process of photosynthesis, plants use energy from the Sun to convert carbon dioxide and water into glucose and oxygen. These products are, in turn, used by the

More information

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose Energy in a Cell Reinforcement and Study Guide Section.1 The Need for Energy In your textbook, read about cell energy. Use each of the terms below just once to complete the passage. energy phosphate adenine

More information

pathway that involves taking in heat from the environment at each step. C.

pathway that involves taking in heat from the environment at each step. C. Study Island Cell Energy Keystone Review 1. Cells obtain energy by either capturing light energy through photosynthesis or by breaking down carbohydrates through cellular respiration. In both photosynthesis

More information

Carbon Hydrogen Oxygen Nitrogen

Carbon Hydrogen Oxygen Nitrogen Concept 1 - Thinking Practice 1. If the following molecules were to undergo a dehydration synthesis reaction, what molecules would result? Circle the parts of each amino acid that will interact and draw

More information

Chapter 15 Lecture Notes: Metabolism

Chapter 15 Lecture Notes: Metabolism Chapter 15 Lecture Notes: Metabolism Educational Goals 1. Define the terms metabolism, metabolic pathway, catabolism, and anabolism. 2. Understand how ATP is formed from ADP and inorganic phosphate (P

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES = substances that... biological reactions 1. Provide an alternative reaction route which has a lower... energy 2. Reactions catalysed by enzymes occur under mild conditions + good yield + fast 3. Enzymes

More information

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d.

1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. 1. A covalent bond between two atoms represents what kind of energy? a. Kinetic energy b. Potential energy c. Mechanical energy d. Solar energy A. Answer a is incorrect. Kinetic energy is the energy of

More information

Cellular Respiration

Cellular Respiration CONCEPTUAL UFE SCIENCE Cellular Respiration Introduction Cellular respiration is the oxidative, chemical attack on energy-rich molecules to provide useful energy for the cell. Enzymes catalyze the oxidation

More information

Biology I. Chapter 8/9

Biology I. Chapter 8/9 Biology I Chapter 8/9 NOTEBOOK #1 Interest Grabber Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend all of the money, but then you decide to open a bank

More information

Integration of Metabolism

Integration of Metabolism I. Central Themes of Metabolism 1. ATP is the universal energy carrier. Integration of Metabolism Bryant Miles 2. ATP is generated by the oxidation of metabolic fuels Glucose Fatty Acids Amino Acids 3.

More information

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions Chapter 19a Oxidative Phosphorylation and Photophosphorylation Multiple Choice Questions 1. Electron-transfer reactions in mitochondria Page: 707 Difficulty: 1 Ans: E Almost all of the oxygen (O 2 ) one

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle Citric Acid Cycle Cycle Overview Metabolic Sources of Acetyl-Coenzyme A Enzymes of the Citric Acid Cycle Regulation of the Citric Acid Cycle The Amphibolic Nature of the Citric Acid Cycle Cycle Overview

More information

The Citric Acid Cycle

The Citric Acid Cycle The itric Acid ycle February 14, 2003 Bryant Miles I. itrate Synthase + 3 SoA The first reaction of the citric acid cycle is the condensation of acetyloa and oxaloacetate to form citrate and oas. The enzyme

More information

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction:

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction: Glycolysis Glucose is a valuable molecule. It can be used to generate energy (in red blood cells and in brain under normal conditions, glucose is the sole energy source), and it can be used to generate

More information

Bioenergetics Module A Anchor 3

Bioenergetics Module A Anchor 3 Bioenergetics Module A Anchor 3 Key Concepts: - ATP can easily release and store energy by breaking and re-forming the bonds between its phosphate groups. This characteristic of ATP makes it exceptionally

More information

Work and Energy in Muscles

Work and Energy in Muscles Work and Energy in Muscles Why can't I sprint forever? I'll start this section with that silly question. What lies behind the undisputable observation that we must reduce speed if we want to run longer

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Cellular Respiration: Practice Questions #1

Cellular Respiration: Practice Questions #1 Cellular Respiration: Practice Questions #1 1. Which statement best describes one of the events taking place in the chemical reaction? A. Energy is being stored as a result of aerobic respiration. B. Fermentation

More information

The Aerobic Fate of Pyruvate

The Aerobic Fate of Pyruvate The Aerobic Fate of yruvate February 12, 2003 Bryant Miles I could tell that some of you were not impressed by the mere 2 ATs produced per glucose by glycolysis. The 2 AT s produced are only a small fraction

More information

Citric Acid Cycle Review Activity

Citric Acid Cycle Review Activity Citric Acid Cycle Review Activity Goals Students will be able to appreciate the details of steps within the Kreb s Cycle. Students will be able to understand the steps of the Kreb s Cycle at functional

More information

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration Respiration Worksheet Respiration is the controlled release of energy from food The food involved in respiration is usually Internal respiration is controlled by which allow energy to be released in The

More information