REMARK. A sequence has at most one limit.

Size: px
Start display at page:

Download "REMARK. A sequence has at most one limit."

Transcription

1 CHAPTER 2 : SQUENCES IN R 2.1 LIMITS OF SEQUENCES DEFINITION. A sequence of real numbers {x n } is said to converge to a real number a R if and only if for every ǫ > 0 there is an N(ǫ) N such that n N(ǫ) implies x n a < ǫ. We will use the following notations interchangeably: (1) {x n } converges to a ; (2) x n converges to a ; (3) a = lim x n ; (4) x n a as n ; (5) the limit of {x n } exists and equals to a. Example. 1 n 0. Example. {( 1) n } does not have a limit REMARK. A sequence has at most one limit. DEFINITION. By a subsequence of a sequence {x n }, we shall mean a sequence of the form {x nk } k N where n k N and n 1 < n 2 < n 3 <.... Typeset by AMS-TEX 1

2 REMARK. If {x n } converges to a limit a amd {x nk } is any subsequence of {x n }, then x nk converges to a as k. DEFINITION. Let {x n } be a sequence of real numbers. (1) {x n } is said to be bounded above if and only if there is an M R such that x n M for all n N. (2) {x n } is said to be bounded below if and only if there is an m R such that x n m for all n N. (3) {x n } is said to be bounded if and only if it is bounded both below and above. Theorem. Every convergent sequence is bounded 2.2 LIMIT THEOREMS Theorem. (Squeeze Theorem) Suppose that {x n }, {y n } and {w n } are real sequences (1) If x n a and y n a as n and if there exists an N 0 N such that x n w n y n for n N 0, then w n a as n. (2) If x n 0 as n and {y n } is bounded, then x n y n 0 as n.

3 Example. Find lim 2 n cos(n 3 n 2 + n 13). Theorem. Let E R. If E has a finite supremum (respectively a finite infimum), then there is a sequence {x n } E such that x n sup E (respectively x n inf E) as n. Theorem. Suppose that {x n } and {y n } are real sequences and a R. If {x n } and {y n } are convergent, then (1) lim (x n + y n ) = lim x n + lim y n. (2) lim (ax n) = a( lim x n). (3) lim (x ny n ) = ( lim x n)( lim y n). (4) If y n 0 and lim y n 0 then lim x n y n = lim x n lim y n.

4 Example. lim n 3 +n n 3. Definition. Let {x n } be a sequence of real numbers. (1) {x n } is said to diverge to + (notation: x n + as n or lim x n = + ) if and only if for each M R there is an N N such that n N implies x n > M. (2) {x n } is said to diverge to (notation: x n as n or lim x n = ) if and only if for each M R there is an N N such that n N implies x n < M. Theorem. Suppose that {x n } and {y n } are real sequences such that lim x n = + (respectively lim x n = ). (1) If y n is bounded below (respectively, y n is bounded above), then lim (x n+y n ) = + (respectively, lim (x n+y n ) = ). (2) If a > 0, then lim (ax n) = + (respectively lim (ax n) = ). (3) If y n > M 0 for some M 0 > 0 and for all n N, then lim (x ny n ) = + (respectively, lim (x ny n ) = ).

5 (4) If y n is bounded and x n 0,then lim y n x n = 0. We will adopt the conventions (1) x + =, x =, x R. (2) x =, x ( ) =, x > 0. (3) x =, x ( ) =, x < 0. (4) + =, =. (5) = ( ) ( ) =. (6) ( ) = ( ) =. Corollary. Let {x n }, {y n } be real sequences and a, x, y be extended real numbers. If lim x n = x and lim y n = y. then lim (x n + y n ) = x + y (if x + y is not ), and lim ax n = ax, lim (x ny n ) = xy (if the right hand side is not 0 (± )).

6 Theorem. [Comparison theorem]. Suppose that {x n } ana {y n } are real sequences. If there is an N 0 N such that x n y n for all n N 0, then lim x n lim y n. In particular if x n [a, b] and lim x n = c then c [a, b]. 2.3 BOLZANO-WEIERSTRASS THEOREM DEFINITION. Let {x n } n N be a sequence of real numbers. (1) {x n } n N is said to be increasing (respectively, strictly increasing) if and only if x 1 x 2, (respectively, x 1 < x 2 < ). (2) {x n } n N is said to be decreasing (respectively, strictly decreasing) if and only if x 1 x 2,(respectively, x 1 > x 2 > ). (3) {x n } n N is said to be monotone if and only if it is either increasing or decreasing. Theorem. (Monotone Convergent Theorem) If {x n } n N is increasing and bounded above, or is decreasing and bounded below, then {x n } n N has a finite limit.

7 Example. If a < 1 then a n 0 as n. Example. If a > 0 then a 1 n 1 as n. DEFINITION. A sequence of sets {I n } n N is said to be nested if and only if I 1 I 2 Thorem. [Nested Intervals Property] If {I n } n N is a nested sequence of nonempty closed bounded intervals, then E = n N is nonempty. Moreover if the lenghts of these intervals satisfy I n 0 as, then E contains exactly one point. REMARK. The nested property might not hold if closed is omitted. REMARK. The nested property might not hold if bounded is omitted. Theorem. [Bolzano-Weierstrass Theorem] Every bounded sequence of real numbers has a convergent subsequence. I n

8 2.4 CAUCHY SEQUENCES DEFINITION. A sequence of points x n R is said to be Cauchy if and only if for every ǫ > 0 there is an N(ǫ) N such that n, m N(ǫ) imply x n x m < ǫ. Remark Cauchy. If {x n } is convergent, then {x n } is Theorem. [Cauchy] Let {x n } be a sequence of real numbers, then {x n } is Cauchy if and only if {x n } converges (to some point in R). Example Any real sequence {x n } that satisfies is convergent. x n x n+1 < 1 2 n, n N Remark A sequence that satisfies x n x n+1 0 is not necessarily Cauchy 2.5 LIMITS SUPREMUM AND INFIMUM

9 DEFINITION. Let {x n } be a real sequence. Then the limit supremum of {x n } is the extended real number lim sup x n := lim (sup x k ), k n and the limit infimum {x n } is the extended real number lim inf x n := lim ( inf k n x k). Let S n = {x n, } and let s n = sups n, t n = inf S n, then limsup x n = lim s n (decreasing limit) and liminf x n = lim t n (increasing limit). Remark. (1) If a < limsup x n, then there is a infinite subsequence x nk of x n such that a < x nk for all k. (2) If a > limsup x n then there is N(a) N such that a > x n for all n N(a). (3) If a > liminf x n, then there is a infinite subsequence x nk of x n such that a > x nk for all k. (4) If a < liminf x n then there is N(a) N such that a < x n for all n N(a).

10 Proof of (1). Since limsup x n is the decreasing limit of s n, we have a < s n for all n. We can apply the approximation property of supremum to s 1 and a to get x n1 such that a < x n1, and then do it again for s n1 anda to get x n2 and so on. Proof of (2). Since limsup x n is the decreasing limit of s n, there is N(a) such that s N(a) < a, then x n < a for all n > N(a). Example.x n = ( 1) n. Example.x n = n. Theorem. Let {x n } be a real squence, s = limsup, and t = liminf. Then there are subsequences {x nk } k N and {x lj } j N such that x nk s as k and x lj t as j. Theorem. Let {x n } be a real squence and x be an exrended real number. Then lim x n = x as n if and only if limsup = x = liminf x n. Theorem. Let {x n } be a real sequence. Then the limsup x n (respectively, liminf x n ) is the largest value (respectively, smallest value) to which some sub-

11 sequence of {x n } converges. Namely,if x nj j, then x as. lim sup x n x liminf x n Remark. If {x n } is any real sequence, then lim sup x n liminf x n. Remark. A real sequence {x n } is bounded above if and only if limsup x n <, and is bounded below if and only if liminf x n >. Theorem. If x n y n for large n, then lim sup x n limsup y n, and liminf x n liminf y n.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

Mathematics for Econometrics, Fourth Edition

Mathematics for Econometrics, Fourth Edition Mathematics for Econometrics, Fourth Edition Phoebus J. Dhrymes 1 July 2012 1 c Phoebus J. Dhrymes, 2012. Preliminary material; not to be cited or disseminated without the author s permission. 2 Contents

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Mathematical Methods of Engineering Analysis

Mathematical Methods of Engineering Analysis Mathematical Methods of Engineering Analysis Erhan Çinlar Robert J. Vanderbei February 2, 2000 Contents Sets and Functions 1 1 Sets................................... 1 Subsets.............................

More information

x a x 2 (1 + x 2 ) n.

x a x 2 (1 + x 2 ) n. Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics

No: 10 04. Bilkent University. Monotonic Extension. Farhad Husseinov. Discussion Papers. Department of Economics No: 10 04 Bilkent University Monotonic Extension Farhad Husseinov Discussion Papers Department of Economics The Discussion Papers of the Department of Economics are intended to make the initial results

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

THE BANACH CONTRACTION PRINCIPLE. Contents

THE BANACH CONTRACTION PRINCIPLE. Contents THE BANACH CONTRACTION PRINCIPLE ALEX PONIECKI Abstract. This paper will study contractions of metric spaces. To do this, we will mainly use tools from topology. We will give some examples of contractions,

More information

1 Norms and Vector Spaces

1 Norms and Vector Spaces 008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete

More information

So let us begin our quest to find the holy grail of real analysis.

So let us begin our quest to find the holy grail of real analysis. 1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers

More information

10.2 Series and Convergence

10.2 Series and Convergence 10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

Lecture Notes on Measure Theory and Functional Analysis

Lecture Notes on Measure Theory and Functional Analysis Lecture Notes on Measure Theory and Functional Analysis P. Cannarsa & T. D Aprile Dipartimento di Matematica Università di Roma Tor Vergata cannarsa@mat.uniroma2.it daprile@mat.uniroma2.it aa 2006/07 Contents

More information

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +... 6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

An Introduction to Real Analysis. John K. Hunter. Department of Mathematics, University of California at Davis

An Introduction to Real Analysis. John K. Hunter. Department of Mathematics, University of California at Davis An Introduction to Real Analysis John K. Hunter Department of Mathematics, University of California at Davis Abstract. These are some notes on introductory real analysis. They cover the properties of the

More information

BANACH AND HILBERT SPACE REVIEW

BANACH AND HILBERT SPACE REVIEW BANACH AND HILBET SPACE EVIEW CHISTOPHE HEIL These notes will briefly review some basic concepts related to the theory of Banach and Hilbert spaces. We are not trying to give a complete development, but

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Math 104: Introduction to Analysis

Math 104: Introduction to Analysis Math 104: Introduction to Analysis Evan Chen UC Berkeley Notes for the course MATH 104, instructed by Charles Pugh. 1 1 August 29, 2013 Hard: #22 in Chapter 1. Consider a pile of sand principle. You wish

More information

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS

INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS INDISTINGUISHABILITY OF ABSOLUTELY CONTINUOUS AND SINGULAR DISTRIBUTIONS STEVEN P. LALLEY AND ANDREW NOBEL Abstract. It is shown that there are no consistent decision rules for the hypothesis testing problem

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Extension of measure

Extension of measure 1 Extension of measure Sayan Mukherjee Dynkin s π λ theorem We will soon need to define probability measures on infinite and possible uncountable sets, like the power set of the naturals. This is hard.

More information

Differentiating under an integral sign

Differentiating under an integral sign CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg

Metric Spaces. Lecture Notes and Exercises, Fall 2015. M.van den Berg Metric Spaces Lecture Notes and Exercises, Fall 2015 M.van den Berg School of Mathematics University of Bristol BS8 1TW Bristol, UK mamvdb@bristol.ac.uk 1 Definition of a metric space. Let X be a set,

More information

AFM Ch.12 - Practice Test

AFM Ch.12 - Practice Test AFM Ch.2 - Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question.. Form a sequence that has two arithmetic means between 3 and 89. a. 3, 33, 43, 89

More information

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup

0 <β 1 let u(x) u(y) kuk u := sup u(x) and [u] β := sup 456 BRUCE K. DRIVER 24. Hölder Spaces Notation 24.1. Let Ω be an open subset of R d,bc(ω) and BC( Ω) be the bounded continuous functions on Ω and Ω respectively. By identifying f BC( Ω) with f Ω BC(Ω),

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d). 1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

Probability Generating Functions

Probability Generating Functions page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence

More information

1 The Brownian bridge construction

1 The Brownian bridge construction The Brownian bridge construction The Brownian bridge construction is a way to build a Brownian motion path by successively adding finer scale detail. This construction leads to a relatively easy proof

More information

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm

Kevin James. MTHSC 412 Section 2.4 Prime Factors and Greatest Comm MTHSC 412 Section 2.4 Prime Factors and Greatest Common Divisor Greatest Common Divisor Definition Suppose that a, b Z. Then we say that d Z is a greatest common divisor (gcd) of a and b if the following

More information

Fuzzy Differential Systems and the New Concept of Stability

Fuzzy Differential Systems and the New Concept of Stability Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

University of Miskolc

University of Miskolc University of Miskolc The Faculty of Mechanical Engineering and Information Science The role of the maximum operator in the theory of measurability and some applications PhD Thesis by Nutefe Kwami Agbeko

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

Invariant Option Pricing & Minimax Duality of American and Bermudan Options

Invariant Option Pricing & Minimax Duality of American and Bermudan Options Invariant Option Pricing & Minimax Duality of American and Bermudan Options Farshid Jamshidian NIB Capital Bank N.V. FELAB, Applied Math Dept., Univ. of Twente April 2005, version 1.0 Invariant Option

More information

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper.

FIRST YEAR CALCULUS. Chapter 7 CONTINUITY. It is a parabola, and we can draw this parabola without lifting our pencil from the paper. FIRST YEAR CALCULUS WWLCHENW L c WWWL W L Chen, 1982, 2008. 2006. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It It is is

More information

One side James Compactness Theorem

One side James Compactness Theorem One side James Compactness Theorem 1 1 Department of Mathematics University of Murcia Topological Methods in Analysis and Optimization. On the occasion of the 70th birthday of Prof. Petar Kenderov A birthday

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

I. Pointwise convergence

I. Pointwise convergence MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.

More information

Continuity of the Perron Root

Continuity of the Perron Root Linear and Multilinear Algebra http://dx.doi.org/10.1080/03081087.2014.934233 ArXiv: 1407.7564 (http://arxiv.org/abs/1407.7564) Continuity of the Perron Root Carl D. Meyer Department of Mathematics, North

More information

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand

Notes V General Equilibrium: Positive Theory. 1 Walrasian Equilibrium and Excess Demand Notes V General Equilibrium: Positive Theory In this lecture we go on considering a general equilibrium model of a private ownership economy. In contrast to the Notes IV, we focus on positive issues such

More information

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space

and s n (x) f(x) for all x and s.t. s n is measurable if f is. REAL ANALYSIS Measures. A (positive) measure on a measurable space RAL ANALYSIS A survey of MA 641-643, UAB 1999-2000 M. Griesemer Throughout these notes m denotes Lebesgue measure. 1. Abstract Integration σ-algebras. A σ-algebra in X is a non-empty collection of subsets

More information

Math 4310 Handout - Quotient Vector Spaces

Math 4310 Handout - Quotient Vector Spaces Math 4310 Handout - Quotient Vector Spaces Dan Collins The textbook defines a subspace of a vector space in Chapter 4, but it avoids ever discussing the notion of a quotient space. This is understandable

More information

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line

The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line The Henstock-Kurzweil-Stieltjes type integral for real functions on a fractal subset of the real line D. Bongiorno, G. Corrao Dipartimento di Ingegneria lettrica, lettronica e delle Telecomunicazioni,

More information

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying

MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS. denote the family of probability density functions g on X satisfying MINIMIZATION OF ENTROPY FUNCTIONALS UNDER MOMENT CONSTRAINTS I. Csiszár (Budapest) Given a σ-finite measure space (X, X, µ) and a d-tuple ϕ = (ϕ 1,..., ϕ d ) of measurable functions on X, for a = (a 1,...,

More information

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra

How To Find Out How To Calculate A Premeasure On A Set Of Two-Dimensional Algebra 54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.

MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column

More information

Rate of growth of D-frequently hypercyclic functions

Rate of growth of D-frequently hypercyclic functions Rate of growth of D-frequently hypercyclic functions A. Bonilla Departamento de Análisis Matemático Universidad de La Laguna Hypercyclic Definition A (linear and continuous) operator T in a topological

More information

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction

Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES. 1. Introduction F A S C I C U L I M A T H E M A T I C I Nr 51 2013 Bipan Hazarika ON ACCELERATION CONVERGENCE OF MULTIPLE SEQUENCES Abstract. In this article the notion of acceleration convergence of double sequences

More information

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results

Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Proceedings of Symposia in Applied Mathematics Volume 00, 1997 Non-Arbitrage and the Fundamental Theorem of Asset Pricing: Summary of Main Results Freddy Delbaen and Walter Schachermayer Abstract. The

More information

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich

MEASURE AND INTEGRATION. Dietmar A. Salamon ETH Zürich MEASURE AND INTEGRATION Dietmar A. Salamon ETH Zürich 12 May 2016 ii Preface This book is based on notes for the lecture course Measure and Integration held at ETH Zürich in the spring semester 2014. Prerequisites

More information

On Lexicographic (Dictionary) Preference

On Lexicographic (Dictionary) Preference MICROECONOMICS LECTURE SUPPLEMENTS Hajime Miyazaki File Name: lexico95.usc/lexico99.dok DEPARTMENT OF ECONOMICS OHIO STATE UNIVERSITY Fall 993/994/995 Miyazaki.@osu.edu On Lexicographic (Dictionary) Preference

More information

Sequences and Series

Sequences and Series Sequences and Series Consider the following sum: 2 + 4 + 8 + 6 + + 2 i + The dots at the end indicate that the sum goes on forever. Does this make sense? Can we assign a numerical value to an infinite

More information

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction

ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE. 1. Introduction ON COMPLETELY CONTINUOUS INTEGRATION OPERATORS OF A VECTOR MEASURE J.M. CALABUIG, J. RODRÍGUEZ, AND E.A. SÁNCHEZ-PÉREZ Abstract. Let m be a vector measure taking values in a Banach space X. We prove that

More information

A FIRST COURSE IN OPTIMIZATION THEORY

A FIRST COURSE IN OPTIMIZATION THEORY A FIRST COURSE IN OPTIMIZATION THEORY RANGARAJAN K. SUNDARAM New York University CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements page xiii xvii 1 Mathematical Preliminaries 1 1.1 Notation

More information

Low upper bound of ideals, coding into rich Π 0 1 classes

Low upper bound of ideals, coding into rich Π 0 1 classes Low upper bound of ideals, coding into rich Π 0 1 classes Antonín Kučera the main part is a joint project with T. Slaman Charles University, Prague September 2007, Chicago The main result There is a low

More information

Properties of BMO functions whose reciprocals are also BMO

Properties of BMO functions whose reciprocals are also BMO Properties of BMO functions whose reciprocals are also BMO R. L. Johnson and C. J. Neugebauer The main result says that a non-negative BMO-function w, whose reciprocal is also in BMO, belongs to p> A p,and

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance

When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance Mor Armony 1 Itay Gurvich 2 Submitted July 28, 2006; Revised August 31, 2007 Abstract We study cross-selling operations

More information

We study cross-selling operations in call centers. The following questions are addressed: How many

We study cross-selling operations in call centers. The following questions are addressed: How many MANUFACTURING & SERVICE OPERATIONS MANAGEMENT Vol. 12, No. 3, Summer 2010, pp. 470 488 issn 1523-4614 eissn 1526-5498 10 1203 0470 informs doi 10.1287/msom.1090.0281 2010 INFORMS When Promotions Meet Operations:

More information

Discernibility Thresholds and Approximate Dependency in Analysis of Decision Tables

Discernibility Thresholds and Approximate Dependency in Analysis of Decision Tables Discernibility Thresholds and Approximate Dependency in Analysis of Decision Tables Yu-Ru Syau¹, En-Bing Lin²*, Lixing Jia³ ¹Department of Information Management, National Formosa University, Yunlin, 63201,

More information

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors.

The Prime Numbers. Definition. A prime number is a positive integer with exactly two positive divisors. The Prime Numbers Before starting our study of primes, we record the following important lemma. Recall that integers a, b are said to be relatively prime if gcd(a, b) = 1. Lemma (Euclid s Lemma). If gcd(a,

More information

Finite covers of a hyperbolic 3-manifold and virtual fibers.

Finite covers of a hyperbolic 3-manifold and virtual fibers. Claire Renard Institut de Mathématiques de Toulouse November 2nd 2011 Some conjectures. Let M be a hyperbolic 3-manifold, connected, closed and oriented. Theorem (Kahn, Markovic) The fundamental group

More information

A domain of spacetime intervals in general relativity

A domain of spacetime intervals in general relativity A domain of spacetime intervals in general relativity Keye Martin Department of Mathematics Tulane University New Orleans, LA 70118 United States of America martin@math.tulane.edu Prakash Panangaden School

More information

Solutions of Equations in One Variable. Fixed-Point Iteration II

Solutions of Equations in One Variable. Fixed-Point Iteration II Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Chapter 5. Banach Spaces

Chapter 5. Banach Spaces 9 Chapter 5 Banach Spaces Many linear equations may be formulated in terms of a suitable linear operator acting on a Banach space. In this chapter, we study Banach spaces and linear operators acting on

More information

6 Commutators and the derived series. [x,y] = xyx 1 y 1.

6 Commutators and the derived series. [x,y] = xyx 1 y 1. 6 Commutators and the derived series Definition. Let G be a group, and let x,y G. The commutator of x and y is [x,y] = xyx 1 y 1. Note that [x,y] = e if and only if xy = yx (since x 1 y 1 = (yx) 1 ). Proposition

More information

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES

INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. We study and characterize the integral multilinear operators on a product of C(K) spaces in terms of the

More information

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra

U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009. Notes on Algebra U.C. Berkeley CS276: Cryptography Handout 0.1 Luca Trevisan January, 2009 Notes on Algebra These notes contain as little theory as possible, and most results are stated without proof. Any introductory

More information

Notes on Determinant

Notes on Determinant ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 9-18/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality

Corollary. (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality Corollary For equidistant knots, i.e., u i = a + i (b-a)/n, we obtain with (f є C n+1 [a,b]). Proof: This follows directly from the preceding theorem using the inequality 120202: ESM4A - Numerical Methods

More information

Random graphs with a given degree sequence

Random graphs with a given degree sequence Sourav Chatterjee (NYU) Persi Diaconis (Stanford) Allan Sly (Microsoft) Let G be an undirected simple graph on n vertices. Let d 1,..., d n be the degrees of the vertices of G arranged in descending order.

More information

Separation Properties for Locally Convex Cones

Separation Properties for Locally Convex Cones Journal of Convex Analysis Volume 9 (2002), No. 1, 301 307 Separation Properties for Locally Convex Cones Walter Roth Department of Mathematics, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam

More information

Iterative Methods for Solving Linear Systems

Iterative Methods for Solving Linear Systems Chapter 5 Iterative Methods for Solving Linear Systems 5.1 Convergence of Sequences of Vectors and Matrices In Chapter 2 we have discussed some of the main methods for solving systems of linear equations.

More information

How To Understand The Theory Of Hyperreals

How To Understand The Theory Of Hyperreals Ultraproducts and Applications I Brent Cody Virginia Commonwealth University September 2, 2013 Outline Background of the Hyperreals Filters and Ultrafilters Construction of the Hyperreals The Transfer

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence October 18 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets.

MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. MATH 304 Linear Algebra Lecture 20: Inner product spaces. Orthogonal sets. Norm The notion of norm generalizes the notion of length of a vector in R n. Definition. Let V be a vector space. A function α

More information

Numeraire-invariant option pricing

Numeraire-invariant option pricing Numeraire-invariant option pricing Farshid Jamshidian NIB Capital Bank N.V. FELAB, University of Twente Nov-04 Numeraire-invariant option pricing p.1/20 A conceptual definition of an option An Option can

More information

Gambling and Data Compression

Gambling and Data Compression Gambling and Data Compression Gambling. Horse Race Definition The wealth relative S(X) = b(x)o(x) is the factor by which the gambler s wealth grows if horse X wins the race, where b(x) is the fraction

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance

When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance When Promotions Meet Operations: Cross-Selling and Its Effect on Call-Center Performance Mor Armony 1 Itay Gurvich 2 July 27, 2006 Abstract We study cross-selling operations in call centers. The following

More information

SMALL POLYNOMIALS WITH INTEGER COEFFICIENTS

SMALL POLYNOMIALS WITH INTEGER COEFFICIENTS SMALL POLYNOMIALS WITH INTGR COFFICINTS IGOR. PRITSKR Abstract. We study the problem of minimizing the supremum norm, on a segment of the real line or on a compact set in the plane, by polynomials with

More information