# Solutions of Equations in One Variable. Fixed-Point Iteration II

Save this PDF as:

Size: px
Start display at page:

Download "Solutions of Equations in One Variable. Fixed-Point Iteration II"

## Transcription

1 Solutions of Equations in One Variable Fixed-Point Iteration II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011 Brooks/Cole, Cengage Learning

2 Outline 1 Functional (Fixed-Point) Iteration Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 2 / 54

3 Outline 1 Functional (Fixed-Point) Iteration 2 Convergence Criteria for the Fixed-Point Method Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 2 / 54

4 Outline 1 Functional (Fixed-Point) Iteration 2 Convergence Criteria for the Fixed-Point Method 3 Sample Problem: f (x) = x 3 + 4x 2 10 = 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 2 / 54

5 Outline 1 Functional (Fixed-Point) Iteration 2 Convergence Criteria for the Fixed-Point Method 3 Sample Problem: f (x) = x 3 + 4x 2 10 = 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 3 / 54

6 Functional (Fixed-Point) Iteration Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 4 / 54

7 Functional (Fixed-Point) Iteration Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration. Basic Approach To approximate the fixed point of a function g, we choose an initial approximation p 0 and generate the sequence {p n } n=0 by letting p n = g(p n 1 ), for each n 1. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 4 / 54

8 Functional (Fixed-Point) Iteration Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration. Basic Approach To approximate the fixed point of a function g, we choose an initial approximation p 0 and generate the sequence {p n } n=0 by letting p n = g(p n 1 ), for each n 1. If the sequence converges to p and g is continuous, then ( ) p = lim p n = lim g(p n 1 ) = g lim p n 1 = g(p), n n n and a solution to x = g(x) is obtained. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 4 / 54

9 Functional (Fixed-Point) Iteration Now that we have established a condition for which g(x) has a unique fixed point in I, there remains the problem of how to find it. The technique employed is known as fixed-point iteration. Basic Approach To approximate the fixed point of a function g, we choose an initial approximation p 0 and generate the sequence {p n } n=0 by letting p n = g(p n 1 ), for each n 1. If the sequence converges to p and g is continuous, then ( ) p = lim p n = lim g(p n 1 ) = g lim p n 1 = g(p), n n n and a solution to x = g(x) is obtained. This technique is called fixed-point, or functional iteration. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 4 / 54

10 Functional (Fixed-Point) Iteration y p 2 5 g(p 1 ) p 3 5 g(p 2 ) p 1 5 g(p 0 ) (p 1, p 1 ) (p 1, p 2 ) (p 2, p 2 ) y 5 x (p 0, p 1 ) y p 3 5 g(p 2 ) p 2 5 g(p 1 ) p 1 5 g(p 0 ) (p 0, p 1 ) y 5 x (p 2, p 3 ) y 5 g(x) (p 2, p 2 ) (p 1, p 1 ) y 5 g(x) p 1 p 3 p 2 p 0 x p 0 p 1 p 2 x (a) (b) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 5 / 54

11 Functional (Fixed-Point) Iteration Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

12 Functional (Fixed-Point) Iteration Fixed-Point Algorithm To find the fixed point of g in an interval [a, b], given the equation x = g(x) with an initial guess p 0 [a, b]: Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

13 Functional (Fixed-Point) Iteration Fixed-Point Algorithm To find the fixed point of g in an interval [a, b], given the equation x = g(x) with an initial guess p 0 [a, b]: 1. n = 1; Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

14 Functional (Fixed-Point) Iteration Fixed-Point Algorithm To find the fixed point of g in an interval [a, b], given the equation x = g(x) with an initial guess p 0 [a, b]: 1. n = 1; 2. p n = g(p n 1 ); Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

15 Functional (Fixed-Point) Iteration Fixed-Point Algorithm To find the fixed point of g in an interval [a, b], given the equation x = g(x) with an initial guess p 0 [a, b]: 1. n = 1; 2. p n = g(p n 1 ); 3. If p n p n 1 < ɛ then 5; Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

16 Functional (Fixed-Point) Iteration Fixed-Point Algorithm To find the fixed point of g in an interval [a, b], given the equation x = g(x) with an initial guess p 0 [a, b]: 1. n = 1; 2. p n = g(p n 1 ); 3. If p n p n 1 < ɛ then 5; 4. n n + 1; go to 2. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

17 Functional (Fixed-Point) Iteration Fixed-Point Algorithm To find the fixed point of g in an interval [a, b], given the equation x = g(x) with an initial guess p 0 [a, b]: 1. n = 1; 2. p n = g(p n 1 ); 3. If p n p n 1 < ɛ then 5; 4. n n + 1; go to End of Procedure. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 6 / 54

18 A Single Nonlinear Equation Example 1 The equation x 3 + 4x 2 10 = 0 has a unique root in [1, 2]. Its value is approximately Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 7 / 54

19 f (x) = x 3 + 4x 2 10 = 0 on [1, 2] y 14 y = f(x) = x 3 + 4x x 5 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 8 / 54

20 f (x) = x 3 + 4x 2 10 = 0 on [1, 2] Possible Choices for g(x) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 9 / 54

21 f (x) = x 3 + 4x 2 10 = 0 on [1, 2] Possible Choices for g(x) There are many ways to change the equation to the fixed-point form x = g(x) using simple algebraic manipulation. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 9 / 54

22 f (x) = x 3 + 4x 2 10 = 0 on [1, 2] Possible Choices for g(x) There are many ways to change the equation to the fixed-point form x = g(x) using simple algebraic manipulation. For example, to obtain the function g described in part (c), we can manipulate the equation x 3 + 4x 2 10 = 0 as follows: 4x 2 = 10 x 3, so x 2 = 1 4 (10 x 3 ), and x = ± 1 2 (10 x 3 ) 1/2. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 9 / 54

23 f (x) = x 3 + 4x 2 10 = 0 on [1, 2] Possible Choices for g(x) There are many ways to change the equation to the fixed-point form x = g(x) using simple algebraic manipulation. For example, to obtain the function g described in part (c), we can manipulate the equation x 3 + 4x 2 10 = 0 as follows: 4x 2 = 10 x 3, so x 2 = 1 4 (10 x 3 ), and x = ± 1 2 (10 x 3 ) 1/2. We will consider 5 such rearrangements and, later in this section, provide a brief analysis as to why some do and some not converge to p = Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 9 / 54

24 Solving f (x) = x 3 + 4x 2 10 = 0 5 Possible Transpositions to x = g(x) x = g 1 (x) = x x 3 4x x = g 2 (x) = x = g 3 (x) = x 4x 10 x 3 x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 10 / 54

25 Numerical Results for f (x) = x 3 + 4x 2 10 = 0 n g 1 g 2 g 3 g 4 g ( 8.65) 1/ Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 11 / 54

26 Solving f (x) = x 3 + 4x 2 10 = 0 x = g(x) with x 0 = 1.5 x = g 1 (x) = x x 3 4x Does not Converge x = g 2 (x) = x = g 3 (x) = x 4x Does not Converge 10 x 3 Converges after 31 Iterations x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Converges after 12 Iterations Converges after 5 Iterations Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 12 / 54

27 Outline 1 Functional (Fixed-Point) Iteration 2 Convergence Criteria for the Fixed-Point Method 3 Sample Problem: f (x) = x 3 + 4x 2 10 = 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 13 / 54

28 Functional (Fixed-Point) Iteration A Crucial Question How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem? Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 14 / 54

29 Functional (Fixed-Point) Iteration A Crucial Question How can we find a fixed-point problem that produces a sequence that reliably and rapidly converges to a solution to a given root-finding problem? The following theorem and its corollary give us some clues concerning the paths we should pursue and, perhaps more importantly, some we should reject. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 14 / 54

30 Functional (Fixed-Point) Iteration Convergence Result Let g C[a, b] with g(x) [a, b] for all x [a, b]. Let g (x) exist on (a, b) with g (x) k < 1, x [a, b]. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 15 / 54

31 Functional (Fixed-Point) Iteration Convergence Result Let g C[a, b] with g(x) [a, b] for all x [a, b]. Let g (x) exist on (a, b) with g (x) k < 1, x [a, b]. If p 0 is any point in [a, b] then the sequence defined by p n = g(p n 1 ), n 1, will converge to the unique fixed point p in [a, b]. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 15 / 54

32 Functional (Fixed-Point) Iteration Proof of the Convergence Result Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 16 / 54

33 Functional (Fixed-Point) Iteration Proof of the Convergence Result By the Uniquenes Theorem, a unique fixed point exists in [a, b]. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 16 / 54

34 Functional (Fixed-Point) Iteration Proof of the Convergence Result By the Uniquenes Theorem, a unique fixed point exists in [a, b]. Since g maps [a, b] into itself, the sequence {p n } n=0 is defined for all n 0 and p n [a, b] for all n. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 16 / 54

35 Functional (Fixed-Point) Iteration Proof of the Convergence Result By the Uniquenes Theorem, a unique fixed point exists in [a, b]. Since g maps [a, b] into itself, the sequence {p n } n=0 is defined for all n 0 and p n [a, b] for all n. Using the Mean Value Theorem MVT and the assumption that g (x) k < 1, x [a, b], we write p n p = g(p n 1 ) g(p) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 16 / 54

36 Functional (Fixed-Point) Iteration Proof of the Convergence Result By the Uniquenes Theorem, a unique fixed point exists in [a, b]. Since g maps [a, b] into itself, the sequence {p n } n=0 is defined for all n 0 and p n [a, b] for all n. Using the Mean Value Theorem MVT and the assumption that g (x) k < 1, x [a, b], we write p n p = g(p n 1 ) g(p) g (ξ) p n 1 p Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 16 / 54

37 Functional (Fixed-Point) Iteration Proof of the Convergence Result By the Uniquenes Theorem, a unique fixed point exists in [a, b]. Since g maps [a, b] into itself, the sequence {p n } n=0 is defined for all n 0 and p n [a, b] for all n. Using the Mean Value Theorem MVT and the assumption that g (x) k < 1, x [a, b], we write where ξ (a, b). p n p = g(p n 1 ) g(p) g (ξ) p n 1 p k p n 1 p Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 16 / 54

38 Functional (Fixed-Point) Iteration Proof of the Convergence Result (Cont d) Applying the inequality of the hypothesis inductively gives Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 17 / 54

39 Functional (Fixed-Point) Iteration Proof of the Convergence Result (Cont d) Applying the inequality of the hypothesis inductively gives p n p k p n 1 p Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 17 / 54

40 Functional (Fixed-Point) Iteration Proof of the Convergence Result (Cont d) Applying the inequality of the hypothesis inductively gives p n p k p n 1 p k 2 p n 2 p Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 17 / 54

41 Functional (Fixed-Point) Iteration Proof of the Convergence Result (Cont d) Applying the inequality of the hypothesis inductively gives p n p k p n 1 p k 2 p n 2 p k n p 0 p Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 17 / 54

42 Functional (Fixed-Point) Iteration Proof of the Convergence Result (Cont d) Applying the inequality of the hypothesis inductively gives Since k < 1, and {p n } n=0 converges to p. p n p k p n 1 p k 2 p n 2 p k n p 0 p lim p n p lim k n p 0 p = 0, n n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 17 / 54

43 Functional (Fixed-Point) Iteration Corrollary to the Convergence Result If g satisfies the hypothesis of the Theorem, then p n p k n 1 k p 1 p 0. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 18 / 54

44 Functional (Fixed-Point) Iteration Corrollary to the Convergence Result If g satisfies the hypothesis of the Theorem, then p n p k n 1 k p 1 p 0. Proof of Corollary (1 of 3) For n 1, the procedure used in the proof of the theorem implies that p n+1 p n = g(p n ) g(p n 1 ) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 18 / 54

45 Functional (Fixed-Point) Iteration Corrollary to the Convergence Result If g satisfies the hypothesis of the Theorem, then p n p k n 1 k p 1 p 0. Proof of Corollary (1 of 3) For n 1, the procedure used in the proof of the theorem implies that p n+1 p n = g(p n ) g(p n 1 ) k p n p n 1 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 18 / 54

46 Functional (Fixed-Point) Iteration Corrollary to the Convergence Result If g satisfies the hypothesis of the Theorem, then p n p k n 1 k p 1 p 0. Proof of Corollary (1 of 3) For n 1, the procedure used in the proof of the theorem implies that p n+1 p n = g(p n ) g(p n 1 ) k p n p n 1 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 18 / 54

47 Functional (Fixed-Point) Iteration Corrollary to the Convergence Result If g satisfies the hypothesis of the Theorem, then p n p k n 1 k p 1 p 0. Proof of Corollary (1 of 3) For n 1, the procedure used in the proof of the theorem implies that p n+1 p n = g(p n ) g(p n 1 ) k p n p n 1 k n p 1 p 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 18 / 54

48 Functional (Fixed-Point) Iteration Proof of Corollary (2 of 3) p n+1 p n k n p 1 p 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 19 / 54

49 Functional (Fixed-Point) Iteration p n+1 p n k n p 1 p 0 Proof of Corollary (2 of 3) Thus, for m > n 1, p m p n = p m p m 1 + p m 1 p m p n+1 p n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 19 / 54

50 Functional (Fixed-Point) Iteration p n+1 p n k n p 1 p 0 Proof of Corollary (2 of 3) Thus, for m > n 1, p m p n = p m p m 1 + p m 1 p m p n+1 p n p m p m 1 + p m 1 p m p n+1 p n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 19 / 54

51 Functional (Fixed-Point) Iteration p n+1 p n k n p 1 p 0 Proof of Corollary (2 of 3) Thus, for m > n 1, p m p n = p m p m 1 + p m 1 p m p n+1 p n p m p m 1 + p m 1 p m p n+1 p n k m 1 p 1 p 0 + k m 2 p 1 p k n p 1 p 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 19 / 54

52 Functional (Fixed-Point) Iteration p n+1 p n k n p 1 p 0 Proof of Corollary (2 of 3) Thus, for m > n 1, p m p n = p m p m 1 + p m 1 p m p n+1 p n p m p m 1 + p m 1 p m p n+1 p n k m 1 p 1 p 0 + k m 2 p 1 p k n p 1 p 0 k n 1 + k + k k m n 1) p 1 p 0. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 19 / 54

53 Functional (Fixed-Point) Iteration p m p n k n ( 1 + k + k k m n 1) p 1 p 0. Proof of Corollary (3 of 3) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 20 / 54

54 Functional (Fixed-Point) Iteration p m p n k n ( 1 + k + k k m n 1) p 1 p 0. Proof of Corollary (3 of 3) However, since lim m p m = p, we obtain p p n = lim m p m p n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 20 / 54

55 Functional (Fixed-Point) Iteration p m p n k n ( 1 + k + k k m n 1) p 1 p 0. Proof of Corollary (3 of 3) However, since lim m p m = p, we obtain p p n = lim m p n m k n p 1 p 0 i=1 k i Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 20 / 54

56 Functional (Fixed-Point) Iteration p m p n k n ( 1 + k + k k m n 1) p 1 p 0. Proof of Corollary (3 of 3) However, since lim m p m = p, we obtain p p n = lim m p n m k n p 1 p 0 = i=1 k i k n 1 k p 1 p 0. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 20 / 54

57 Functional (Fixed-Point) Iteration Example: g(x) = g(x) = 3 x Consider the iteration function g(x) = 3 x over the interval [ 1 3, 1] starting with p 0 = 1 3. Determine a lower bound for the number of iterations n required so that p n p < 10 5? Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 21 / 54

58 Functional (Fixed-Point) Iteration Example: g(x) = g(x) = 3 x Consider the iteration function g(x) = 3 x over the interval [ 1 3, 1] starting with p 0 = 1 3. Determine a lower bound for the number of iterations n required so that p n p < 10 5? Determine the Parameters of the Problem Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 21 / 54

59 Functional (Fixed-Point) Iteration Example: g(x) = g(x) = 3 x Consider the iteration function g(x) = 3 x over the interval [ 1 3, 1] starting with p 0 = 1 3. Determine a lower bound for the number of iterations n required so that p n p < 10 5? Determine the Parameters of the Problem Note that p 1 = g(p 0 ) = = and, since g (x) = 3 x ln 3, we obtain the bound g (x) ln = k. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 21 / 54

60 Functional (Fixed-Point) Iteration Use the Corollary Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 22 / 54

61 Functional (Fixed-Point) Iteration Use the Corollary Therefore, we have p n p k n 1 k p 0 p 1 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 22 / 54

62 Functional (Fixed-Point) Iteration Use the Corollary Therefore, we have p n p k n 1 k p 0 p n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 22 / 54

63 Functional (Fixed-Point) Iteration Use the Corollary Therefore, we have p n p k n 1 k p 0 p n n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 22 / 54

64 Functional (Fixed-Point) Iteration Use the Corollary Therefore, we have p n p k n 1 k p 0 p n n We require that n < 10 5 or n > Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 22 / 54

65 Footnote on the Estimate Obtained Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 23 / 54

66 Footnote on the Estimate Obtained It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 23 / 54

67 Footnote on the Estimate Obtained It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound. In the previous example, only 21 iterations are required in practice, i.e. p 21 = is accurate to Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 23 / 54

68 Footnote on the Estimate Obtained It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound. In the previous example, only 21 iterations are required in practice, i.e. p 21 = is accurate to The reason, in this case, is that we used g (1) = whereas g ( ) = Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 23 / 54

69 Footnote on the Estimate Obtained It is important to realise that the estimate for the number of iterations required given by the theorem is an upper bound. In the previous example, only 21 iterations are required in practice, i.e. p 21 = is accurate to The reason, in this case, is that we used g (1) = whereas g ( ) = If one had used k = (were it available) to compute the bound, one would obtain N = 23 which is a more accurate estimate. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 23 / 54

70 Outline 1 Functional (Fixed-Point) Iteration 2 Convergence Criteria for the Fixed-Point Method 3 Sample Problem: f (x) = x 3 + 4x 2 10 = 0 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 24 / 54

71 A Single Nonlinear Equation Example 2 We return to Example 1 and the equation x 3 + 4x 2 10 = 0 which has a unique root in [1, 2]. Its value is approximately Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 25 / 54

72 f (x) = x 3 + 4x 2 10 = 0 on [1, 2] y 14 y = f(x) = x 3 + 4x x 5 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 26 / 54

73 Solving f (x) = x 3 + 4x 2 10 = 0 Earlier, we listed 5 possible transpositions to x = g(x) x = g 1 (x) = x x 3 4x x = g 2 (x) = x = g 3 (x) = x 4x 10 x 3 x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 27 / 54

74 Solving f (x) = x 3 + 4x 2 10 = 0 Results Observed for x = g(x) with x 0 = 1.5 x = g 1 (x) = x x 3 4x x = g 2 (x) = x = g 3 (x) = x 4x Does not Converge Does not Converge 10 x 3 Converges after 31 Iterations x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Converges after 12 Iterations Converges after 5 Iterations Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 28 / 54

75 Solving f (x) = x 3 + 4x 2 10 = 0 x = g(x) with x 0 = 1.5 x = g 1 (x) = x x 3 4x Does not Converge x = g 2 (x) = x = g 3 (x) = x 4x Does not Converge 10 x 3 Converges after 31 Iterations x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Converges after 12 Iterations Converges after 5 Iterations Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 29 / 54

76 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 1 (x) = x x 3 4x Iteration for x = g 1 (x) Does Not Converge Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 30 / 54

77 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 1 (x) = x x 3 4x Iteration for x = g 1 (x) Does Not Converge Since g 1 (x) = 1 3x 2 8x g 1 (1) = 10 g 1 (2) = 27 there is no interval [a, b] containing p for which g 1 (x) < 1. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 30 / 54

78 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 1 (x) = x x 3 4x Iteration for x = g 1 (x) Does Not Converge Since g 1 (x) = 1 3x 2 8x g 1 (1) = 10 g 1 (2) = 27 there is no interval [a, b] containing p for which g 1 (x) < 1. Also, note that g 1 (1) = 6 and g 2 (2) = 12 so that g(x) / [1, 2] for x [1, 2]. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 30 / 54

79 Iteration Function: x = g 1 (x) = x x 3 4x Iterations starting with p 0 = 1.5 n p n 1 p n p n p n p Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 31 / 54

80 g 1 Does Not Map [1, 2] into [1, 2] y g 1 (x) = x x 3 4x x 10 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 32 / 54

81 g 1 (x) > 1 on [1, 2] y 1 2 x 10 g 1 (x) = 1 3x2 8x 27 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 33 / 54

82 Solving f (x) = x 3 + 4x 2 10 = 0 x = g(x) with x 0 = 1.5 x = g 1 (x) = x x 3 4x Does not Converge x = g 2 (x) = x = g 3 (x) = x 4x Does not Converge 10 x 3 Converges after 31 Iterations x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Converges after 12 Iterations Converges after 5 Iterations Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 34 / 54

83 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 2 (x) = Iteration for x = g 2 (x) is Not Defined 10 x 4x Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 35 / 54

84 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 2 (x) = Iteration for x = g 2 (x) is Not Defined 10 x 4x It is clear that g 2 (x) does not map [1, 2] onto [1, 2] and the sequence {p n } n=0 is not defined for p 0 = 1.5. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 35 / 54

85 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 2 (x) = Iteration for x = g 2 (x) is Not Defined 10 x 4x It is clear that g 2 (x) does not map [1, 2] onto [1, 2] and the sequence {p n } n=0 is not defined for p 0 = 1.5. Also, there is no interval containing p such that g 2 (x) < 1 since g (1) 2.86 g (p) 3.43 and g (x) is not defined for x > Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 35 / 54

86 Iteration Function: x = g 2 (x) = 10 x 4x Iterations starting with p 0 = 1.5 n p n 1 p n p n p n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 36 / 54

87 Solving f (x) = x 3 + 4x 2 10 = 0 x = g(x) with x 0 = 1.5 x = g 1 (x) = x x 3 4x Does not Converge x = g 2 (x) = x = g 3 (x) = x 4x Does not Converge 10 x 3 Converges after 31 Iterations x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Converges after 12 Iterations Converges after 5 Iterations Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 37 / 54

88 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 3 (x) = x 3 Iteration for x = g 3 (x) Converges (Slowly) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 38 / 54

89 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 3 (x) = x 3 Iteration for x = g 3 (x) Converges (Slowly) By differentiation, g 3 (x) = 3x 2 4 < 0 for x [1, 2] 10 x 3 and so g=g 3 is strictly decreasing on [1, 2]. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 38 / 54

90 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 3 (x) = x 3 Iteration for x = g 3 (x) Converges (Slowly) By differentiation, g 3 (x) = 3x 2 4 < 0 for x [1, 2] 10 x 3 and so g=g 3 is strictly decreasing on [1, 2]. However, g 3 (x) > 1 for x > 1.71 and g 3 (2) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 38 / 54

91 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 3 (x) = x 3 Iteration for x = g 3 (x) Converges (Slowly) By differentiation, g 3 (x) = 3x 2 4 < 0 for x [1, 2] 10 x 3 and so g=g 3 is strictly decreasing on [1, 2]. However, g 3 (x) > 1 for x > 1.71 and g 3 (2) A closer examination of {p n } n=0 will show that it suffices to consider the interval [1, 1.7] where g 3 (x) < 1 and g(x) [1, 1.7] for x [1, 1.7]. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 38 / 54

92 Iteration Function: x = g 3 (x) = x 3 Iterations starting with p 0 = 1.5 n p n 1 p n p n p n Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 39 / 54

93 g 3 Maps [1, 1.7] into [1, 1.7] y g 3 (x) = x x Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 40 / 54

94 g 3 (x) < 1 on [1, 1.7] y g 3 3x2 (x) = 4 10 x x 1 Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 41 / 54

95 Solving f (x) = x 3 + 4x 2 10 = 0 x = g(x) with x 0 = 1.5 x = g 1 (x) = x x 3 4x Does not Converge x = g 2 (x) = x = g 3 (x) = x 4x Does not Converge 10 x 3 Converges after 31 Iterations x = g 4 (x) = x x = g 5 (x) = x x 3 + 4x x 2 + 8x Converges after 12 Iterations Converges after 5 Iterations Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 42 / 54

96 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 4 (x) = x Iteration for x = g 4 (x) Converges (Moderately) Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 43 / 54

97 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 4 (x) = x Iteration for x = g 4 (x) Converges (Moderately) By differentiation, and it is easy to show that g 4 (x) = 10 4(4 + x) 3 < < g 4 (x) < 0.15 x [1, 2] Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 43 / 54

98 Solving f (x) = x 3 + 4x 2 10 = 0 x = g 4 (x) = x Iteration for x = g 4 (x) Converges (Moderately) By differentiation, and it is easy to show that g 4 (x) = 10 4(4 + x) 3 < < g 4 (x) < 0.15 x [1, 2] The bound on the magnitude of g 4 (x) is much smaller than that for g 3 (x) and this explains the reason for the much faster convergence. Numerical Analysis (Chapter 2) Fixed-Point Iteration II R L Burden & J D Faires 43 / 54

### Iterative Techniques in Matrix Algebra. Jacobi & Gauss-Seidel Iterative Techniques II

Iterative Techniques in Matrix Algebra Jacobi & Gauss-Seidel Iterative Techniques II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin

More information

### Numerical methods for finding the roots of a function

Numerical methods for finding the roots of a function The roots of a function f (x) are defined as the values for which the value of the function becomes equal to zero. So, finding the roots of f (x) means

More information

### Lecture 3: Solving Equations Using Fixed Point Iterations

cs41: introduction to numerical analysis 09/14/10 Lecture 3: Solving Equations Using Fixed Point Iterations Instructor: Professor Amos Ron Scribes: Yunpeng Li, Mark Cowlishaw, Nathanael Fillmore Our problem,

More information

### Math 317 HW #5 Solutions

Math 317 HW #5 Solutions 1. Exercise 2.4.2. (a) Prove that the sequence defined by x 1 = 3 and converges. x n+1 = 1 4 x n Proof. I intend to use the Monotone Convergence Theorem, so my goal is to show

More information

### HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

### Solving nonlinear equations in one variable

Chapter Solving nonlinear equations in one variable Contents.1 Bisection method............................. 7. Fixed point iteration........................... 8.3 Newton-Raphson method........................

More information

### Numerical Analysis and Computing

Joe Mahaffy, mahaffy@math.sdsu.edu Spring 2010 #4: Solutions of Equations in One Variable (1/58) Numerical Analysis and Computing Lecture Notes #04 Solutions of Equations in One Variable, Interpolation

More information

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

### (Quasi-)Newton methods

(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

### Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

### 1 Fixed Point Iteration and Contraction Mapping Theorem

1 Fixed Point Iteration and Contraction Mapping Theorem Notation: For two sets A,B we write A B iff x A = x B. So A A is true. Some people use the notation instead. 1.1 Introduction Consider a function

More information

### Numerical Analysis and Computing

Numerical Analysis and Computing Lecture Notes #3 Solutions of Equations in One Variable: ; Root Finding; for Iterative Methods Joe Mahaffy, mahaffy@math.sdsu.edu Department of Mathematics Dynamical Systems

More information

### INTRODUCTION TO THE CONVERGENCE OF SEQUENCES

INTRODUCTION TO THE CONVERGENCE OF SEQUENCES BECKY LYTLE Abstract. In this paper, we discuss the basic ideas involved in sequences and convergence. We start by defining sequences and follow by explaining

More information

### CS 221. Tuesday 8 November 2011

CS 221 Tuesday 8 November 2011 Agenda 1. Announcements 2. Review: Solving Equations (Text 6.1-6.3) 3. Root-finding with Excel ( Goal Seek, Text 6.5) 4. Example Root-finding Problems 5. The Fixed-point

More information

### Adaptive Online Gradient Descent

Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650

More information

### Math 2602 Finite and Linear Math Fall 14. Homework 9: Core solutions

Math 2602 Finite and Linear Math Fall 14 Homework 9: Core solutions Section 8.2 on page 264 problems 13b, 27a-27b. Section 8.3 on page 275 problems 1b, 8, 10a-10b, 14. Section 8.4 on page 279 problems

More information

### Real Roots of Univariate Polynomials with Real Coefficients

Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials

More information

### Basics of Polynomial Theory

3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where

More information

### Items related to expected use of graphing technology appear in bold italics.

- 1 - Items related to expected use of graphing technology appear in bold italics. Investigating the Graphs of Polynomial Functions determine, through investigation, using graphing calculators or graphing

More information

### Nonlinear Algebraic Equations Example

Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities

More information

### Rolle s Theorem. q( x) = 1

Lecture 1 :The Mean Value Theorem We know that constant functions have derivative zero. Is it possible for a more complicated function to have derivative zero? In this section we will answer this question

More information

### 4.3 Lagrange Approximation

206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

### 11. Nonlinear equations with one variable

EE103 (Fall 2011-12) 11. Nonlinear equations with one variable definition and examples bisection method Newton s method secant method 11-1 Definition and examples x is a zero (or root) of a function f

More information

### Numerical Methods for the Root Finding Problem

Chapter 1 Numerical Methods for the Root Finding Problem Oct. 11, 2011 HG 1.1 A Case Study on the Root-Finding Problem: Kepler s Law of Planetary Motion The root-finding problem is one of the most important

More information

### The Mean Value Theorem

The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers

More information

### Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

### FIXED POINT ITERATION

FIXED POINT ITERATION We begin with a computational example. solving the two equations Consider E1: x =1+.5sinx E2: x =3+2sinx Graphs of these two equations are shown on accompanying graphs, with the solutions

More information

### x a x 2 (1 + x 2 ) n.

Limits and continuity Suppose that we have a function f : R R. Let a R. We say that f(x) tends to the limit l as x tends to a; lim f(x) = l ; x a if, given any real number ɛ > 0, there exists a real number

More information

### Computer Algorithms. Merge Sort. Analysis of Merge Sort. Recurrences. Recurrence Relations. Iteration Method. Lecture 6

Computer Algorithms Lecture 6 Merge Sort Sorting Problem: Sort a sequence of n elements into non-decreasing order. Divide: Divide the n-element sequence to be sorted into two subsequences of n/ elements

More information

### Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

### t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).

1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction

More information

### Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

### 10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES

58 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 you saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c nn c nn...

More information

### CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

### Double Sequences and Double Series

Double Sequences and Double Series Eissa D. Habil Islamic University of Gaza P.O. Box 108, Gaza, Palestine E-mail: habil@iugaza.edu Abstract This research considers two traditional important questions,

More information

### Lecture 24: Series finale

Lecture 24: Series finale Nathan Pflueger 2 November 20 Introduction This lecture will discuss one final convergence test and error bound for series, which concerns alternating series. A general summary

More information

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

### Taylor Polynomials and Taylor Series Math 126

Taylor Polynomials and Taylor Series Math 26 In many problems in science and engineering we have a function f(x) which is too complicated to answer the questions we d like to ask. In this chapter, we will

More information

### Notes from Week 1: Algorithms for sequential prediction

CS 683 Learning, Games, and Electronic Markets Spring 2007 Notes from Week 1: Algorithms for sequential prediction Instructor: Robert Kleinberg 22-26 Jan 2007 1 Introduction In this course we will be looking

More information

### Series Convergence Tests Math 122 Calculus III D Joyce, Fall 2012

Some series converge, some diverge. Series Convergence Tests Math 22 Calculus III D Joyce, Fall 202 Geometric series. We ve already looked at these. We know when a geometric series converges and what it

More information

### SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.2 Mathematical Induction I Copyright Cengage Learning. All rights reserved.

More information

### Limit processes are the basis of calculus. For example, the derivative. f f (x + h) f (x)

SEC. 4.1 TAYLOR SERIES AND CALCULATION OF FUNCTIONS 187 Taylor Series 4.1 Taylor Series and Calculation of Functions Limit processes are the basis of calculus. For example, the derivative f f (x + h) f

More information

### Chapter 6 Finite sets and infinite sets. Copyright 2013, 2005, 2001 Pearson Education, Inc. Section 3.1, Slide 1

Chapter 6 Finite sets and infinite sets Copyright 013, 005, 001 Pearson Education, Inc. Section 3.1, Slide 1 Section 6. PROPERTIES OF THE NATURE NUMBERS 013 Pearson Education, Inc.1 Slide Recall that denotes

More information

### MTH4100 Calculus I. Lecture notes for Week 8. Thomas Calculus, Sections 4.1 to 4.4. Rainer Klages

MTH4100 Calculus I Lecture notes for Week 8 Thomas Calculus, Sections 4.1 to 4.4 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 Theorem 1 (First Derivative Theorem

More information

### THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

### Lecture 1 Newton s method.

Lecture 1 Newton s method. 1 Square roots 2 Newton s method. The guts of the method. A vector version. Implementation. The existence theorem. Basins of attraction. The Babylonian algorithm for finding

More information

### G.A. Pavliotis. Department of Mathematics. Imperial College London

EE1 MATHEMATICS NUMERICAL METHODS G.A. Pavliotis Department of Mathematics Imperial College London 1. Numerical solution of nonlinear equations (iterative processes). 2. Numerical evaluation of integrals.

More information

### 10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES

55 CHAPTER NUMERICAL METHODS. POWER METHOD FOR APPROXIMATING EIGENVALUES In Chapter 7 we saw that the eigenvalues of an n n matrix A are obtained by solving its characteristic equation n c n n c n n...

More information

### 1. R In this and the next section we are going to study the properties of sequences of real numbers.

+a 1. R In this and the next section we are going to study the properties of sequences of real numbers. Definition 1.1. (Sequence) A sequence is a function with domain N. Example 1.2. A sequence of real

More information

### Some Notes on Taylor Polynomials and Taylor Series

Some Notes on Taylor Polynomials and Taylor Series Mark MacLean October 3, 27 UBC s courses MATH /8 and MATH introduce students to the ideas of Taylor polynomials and Taylor series in a fairly limited

More information

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

More information

### (57) (58) (59) (60) (61)

Module 4 : Solving Linear Algebraic Equations Section 5 : Iterative Solution Techniques 5 Iterative Solution Techniques By this approach, we start with some initial guess solution, say for solution and

More information

### (Refer Slide Time: 00:00:56 min)

Numerical Methods and Computation Prof. S.R.K. Iyengar Department of Mathematics Indian Institute of Technology, Delhi Lecture No # 3 Solution of Nonlinear Algebraic Equations (Continued) (Refer Slide

More information

### The Derivative and the Tangent Line Problem. The Tangent Line Problem

The Derivative and the Tangent Line Problem Calculus grew out of four major problems that European mathematicians were working on during the seventeenth century. 1. The tangent line problem 2. The velocity

More information

### Some Polynomial Theorems. John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.

Some Polynomial Theorems by John Kennedy Mathematics Department Santa Monica College 1900 Pico Blvd. Santa Monica, CA 90405 rkennedy@ix.netcom.com This paper contains a collection of 31 theorems, lemmas,

More information

### CHAPTER 3. Sequences. 1. Basic Properties

CHAPTER 3 Sequences We begin our study of analysis with sequences. There are several reasons for starting here. First, sequences are the simplest way to introduce limits, the central idea of calculus.

More information

### Metric Spaces. Chapter 7. 7.1. Metrics

Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information

### Section 3 Sequences and Limits, Continued.

Section 3 Sequences and Limits, Continued. Lemma 3.6 Let {a n } n N be a convergent sequence for which a n 0 for all n N and it α 0. Then there exists N N such that for all n N. α a n 3 α In particular

More information

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

### 1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution.

Name : Instructor: Marius Ionescu Instructions: 1. Please write your name in the blank above, and sign & date below. 2. Please use the space provided to write your solution. 3. If you need extra pages

More information

### 1 if 1 x 0 1 if 0 x 1

Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

### Rootfinding for Nonlinear Equations

> 3. Rootfinding Rootfinding for Nonlinear Equations > 3. Rootfinding Calculating the roots of an equation is a common problem in applied mathematics. f(x) = 0 (7.1) We will explore some simple numerical

More information

### A Slide Show Demonstrating Newton s Method

The AcroT E X Web Site, 1999 A Slide Show Demonstrating Newton s Method D. P. Story The Department of Mathematics and Computer Science The Universityof Akron, Akron, OH Now go up to the curve. Now go

More information

### Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained

More information

### Aim. Decimal Search. An Excel 'macro' was used to do the calculations. A copy of the script can be found in Appendix A.

Aim The aim of this investigation is to use and compare three different methods of finding specific solutions to polynomials that cannot be solved algebraically. The methods that will be considered are;

More information

### CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS

CONTINUED FRACTIONS, PELL S EQUATION, AND TRANSCENDENTAL NUMBERS JEREMY BOOHER Continued fractions usually get short-changed at PROMYS, but they are interesting in their own right and useful in other areas

More information

### Roots of Equations (Chapters 5 and 6)

Roots of Equations (Chapters 5 and 6) Problem: given f() = 0, find. In general, f() can be any function. For some forms of f(), analytical solutions are available. However, for other functions, we have

More information

### MATH 2300 review problems for Exam 3 ANSWERS

MATH 300 review problems for Exam 3 ANSWERS. Check whether the following series converge or diverge. In each case, justify your answer by either computing the sum or by by showing which convergence test

More information

### PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

### Problem Set. Problem Set #2. Math 5322, Fall December 3, 2001 ANSWERS

Problem Set Problem Set #2 Math 5322, Fall 2001 December 3, 2001 ANSWERS i Problem 1. [Problem 18, page 32] Let A P(X) be an algebra, A σ the collection of countable unions of sets in A, and A σδ the collection

More information

### Math 317 HW #7 Solutions

Math 17 HW #7 Solutions 1. Exercise..5. Decide which of the following sets are compact. For those that are not compact, show how Definition..1 breaks down. In other words, give an example of a sequence

More information

### CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

### General Framework for an Iterative Solution of Ax b. Jacobi s Method

2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

### Math 113 HW #9 Solutions

Math 3 HW #9 Solutions 4. 50. Find the absolute maximum and absolute minimum values of on the interval [, 4]. f(x) = x 3 6x 2 + 9x + 2 Answer: First, we find the critical points of f. To do so, take the

More information

### Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1

Further Study on Strong Lagrangian Duality Property for Invex Programs via Penalty Functions 1 J. Zhang Institute of Applied Mathematics, Chongqing University of Posts and Telecommunications, Chongqing

More information

### CHAPTER 5. Product Measures

54 CHAPTER 5 Product Measures Given two measure spaces, we may construct a natural measure on their Cartesian product; the prototype is the construction of Lebesgue measure on R 2 as the product of Lebesgue

More information

### Official Math 112 Catalog Description

Official Math 112 Catalog Description Topics include properties of functions and graphs, linear and quadratic equations, polynomial functions, exponential and logarithmic functions with applications. A

More information

### ORDERS OF ELEMENTS IN A GROUP

ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since

More information

### Polynomials Classwork

Polynomials Classwork What Is a Polynomial Function? Numerical, Analytical and Graphical Approaches Anatomy of an n th -degree polynomial function Def.: A polynomial function of degree n in the vaiable

More information

### Practice Problems Solutions

Practice Problems Solutions The problems below have been carefully selected to illustrate common situations and the techniques and tricks to deal with these. Try to master them all; it is well worth it!

More information

### ANALYSIS I. How do we get hold of a real number? Answer, we look at successive approximations. E.g.: 1000, , 1414

ANALYSIS I 5 Real and complex sequences 5. Real numbers in practice How do we get hold of a real number? Answer, we look at successive approximations. E.g.: Our task is to make all this precise... 5. Sequences,

More information

### FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z

FACTORING POLYNOMIALS IN THE RING OF FORMAL POWER SERIES OVER Z DANIEL BIRMAJER, JUAN B GIL, AND MICHAEL WEINER Abstract We consider polynomials with integer coefficients and discuss their factorization

More information

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

More information

### n k=1 k=0 1/k! = e. Example 6.4. The series 1/k 2 converges in R. Indeed, if s n = n then k=1 1/k, then s 2n s n = 1 n + 1 +...

6 Series We call a normed space (X, ) a Banach space provided that every Cauchy sequence (x n ) in X converges. For example, R with the norm = is an example of Banach space. Now let (x n ) be a sequence

More information

### Paper 2 Revision. (compiled in light of the contents of paper1) Higher Tier Edexcel

Paper 2 Revision (compiled in light of the contents of paper1) Higher Tier Edexcel 1 Topic Areas 1. Data Handling 2. Number 3. Shape, Space and Measure 4. Algebra 2 Data Handling Averages Two-way table

More information

### The Expectation Maximization Algorithm A short tutorial

The Expectation Maximiation Algorithm A short tutorial Sean Borman Comments and corrections to: em-tut at seanborman dot com July 8 2004 Last updated January 09, 2009 Revision history 2009-0-09 Corrected

More information

### Analysis MA131. University of Warwick. Term

Analysis MA131 University of Warwick Term 1 01 13 September 8, 01 Contents 1 Inequalities 5 1.1 What are Inequalities?........................ 5 1. Using Graphs............................. 6 1.3 Case

More information

### Section 3 Sequences and Limits

Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the n-th term of the sequence.

More information

### S = k=1 k. ( 1) k+1 N S N S N

Alternating Series Last time we talked about convergence of series. Our two most important tests, the integral test and the (limit) comparison test, both required that the terms of the series were (eventually)

More information

### 5. Convergence of sequences of random variables

5. Convergence of sequences of random variables Throughout this chapter we assume that {X, X 2,...} is a sequence of r.v. and X is a r.v., and all of them are defined on the same probability space (Ω,

More information

### Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if

Differentiability and some of its consequences Definition: A function f : (a, b) R is differentiable at a point x 0 (a, b) if f(x)) f(x 0 ) x x 0 exists. If the it exists for all x 0 (a, b) then f is said

More information

### Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

### Pseudocode Analysis. COMP3600/6466 Algorithms Lecture 5. Recursive Algorithms. Asymptotic Bounds for Recursions

COMP600/6466 Algorithms Lecture 5 Pseudocode Analysis Iterative Recursive S 0 Dr. Hassan Hijazi Prof. Weifa Liang Recursive Algorithms Asymptotic Bounds for Recursions Total running time = Sum of times

More information

### MAT2400 Analysis I. A brief introduction to proofs, sets, and functions

MAT2400 Analysis I A brief introduction to proofs, sets, and functions In Analysis I there is a lot of manipulations with sets and functions. It is probably also the first course where you have to take

More information

### Power Series. We already know how to express one function as a series. Take a look at following equation: 1 1 r = r n. n=0

Math -0 Calc Power, Taylor, and Maclaurin Series Survival Guide One of the harder concepts that we have to become comfortable with during this semester is that of sequences and series We are working with

More information

### Lecture 12 Basic Lyapunov theory

EE363 Winter 2008-09 Lecture 12 Basic Lyapunov theory stability positive definite functions global Lyapunov stability theorems Lasalle s theorem converse Lyapunov theorems finding Lyapunov functions 12

More information

### k=1 k2, and therefore f(m + 1) = f(m) + (m + 1) 2 =

Math 104: Introduction to Analysis SOLUTIONS Alexander Givental HOMEWORK 1 1.1. Prove that 1 2 +2 2 + +n 2 = 1 n(n+1)(2n+1) for all n N. 6 Put f(n) = n(n + 1)(2n + 1)/6. Then f(1) = 1, i.e the theorem

More information

### General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1

A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics General Theory of Differential Equations Sections 2.8, 3.1-3.2, 4.1 Dr. John Ehrke Department of Mathematics Fall 2012 Questions

More information

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

More information

### This workshop will. X-intercepts and Zoom Box

This workshop will Arapahoe Community College MAT 111 - Graphing Calculator Techniques for Survey of Algebra TI-83 Graphing Calculator Workshop #8 Solving Equations - Graphical Approach 1) demonstrate

More information