Extension of measure


 Theresa Parrish
 1 years ago
 Views:
Transcription
1 1 Extension of measure Sayan Mukherjee Dynkin s π λ theorem We will soon need to define probability measures on infinite and possible uncountable sets, like the power set of the naturals. This is hard. It is easier to define the measure on a much smaller collection of the power set and state consistency conditions that allow us to extend the measure to the the power set. This is what Dynkin s π λ theorem was designed to do. Definition πsystem) Given a set Ω a π system is a collection of subsets P that are closed under finite intersections. 1) P is nonempty; 2) A B P whenever A, B P. Definition λsystem) Given a set Ω a λ system is a collection of subsets L that contains Ω and is closed under complementation and disjoint countable unions. 1) Ω L ; 2) A L A c L ; 3) A n L, n 1 with A i A j = i j n=1 A n L. Definition σalgebra) Let F be a collection of subsets of Ω. F is called a field algebra) if Ω F and F is closed under complementation and countable unions, 1) Ω F; 2) A F A c F; 3) A 1,..., A n F n j=1 A j F; 4) A 1,..., A n,... F j=1 A j F. A σalgebra is a π system. A σalgebra is a λ system but a λ system need not be a σ algebra, a λ system is a weaker system. The difference is between unions and disjoint unions. Example Ω = {a, b, c, d} and L = {Ω,, {a, b}, {b, c}, {c, d}, {a, d}, {b, d}, {a, c}} L is closed under disjoint unions but not unions. However: Lemma A class that is both a π system and a λ system is a σalgebra. Proof. We need to show that the class is closed under countable union. Consider A 1, A 2,..., A n L note that these A i are not disjoint. We disjointify them, B 1 = A 1 and B n = A n \ n 1 A n 1 i = A n Ac i. B n L by π system and complement property of λ system. A i = B i but the {B i } are disjoint so A i = B i L. We will start constructing probability measures on infinite sets and we will need to push the idea of extension of measure. In this the following theorem is central. Theorem Dynkin) 1) If P is a π system and L is a λ system, then P L implies σp) L. b) If P is a π system σp) = L P). Proof of a). Let L 0 be the λ system generated by P, the intersection of all λ systems containing P. This is a λ system and contains P and is contained in every λ system that contains P. So P L 0 L. If L 0 is also a π system, it is a λ system and so is a σ algebra. By minimality of σp) it follows σp) L 0 so P σp) L 0 L. So we need to show that L 0 is a π system. Set A σp) and define G A = {B σp) : A B L P)}.
2 2 1) We show if A L P) then G A is a λ system. i) Ω G A since A Ω = A L P). ii) Suppose B G A. B c A = A\A B) but B G A means A B L P) and since A L P) it holds A \ A B) = B c A L P) by complementarity. Since B c A L P) it holds that B c G A. iii) {B j } are mutually disjoint and B j G A then 2) We show if A P then L P) G A. A B j ) = A B j ) L P). j=1 Since A P L P) from 1) G A is a λ system, j=1 For B P we have A B P since A P and P is a π system. So if B P then A B P L P) implies B G A so P G A and since G A is a λ system L P) G A. 3) We rephrase 2) to state if A P and B L P) then A B L P) if we can extend A to L P) we are done). 4) We show that if A L P) then L P) G A. If B P and A L P) then A B L P) then from 3) it holds A B L P). So when A L P) it holds P G A so from 1) G A is a π system and L P) G A. 5) If A L P) then for any B L P), B G A then A B L P). The following lemma is a result of Dynkin s theorem and highlights uniqueness. Lemma If P i and P 2 are two probability measures on σp) where P is a π system. If P 1 and P 2 agree on P, then they agree on σp). Proof is a λ system and P L so σp) L. L = {A P : P 1 A) = P 2 A)}, We will need to define a probability measure, µ, for all sets in a σ algebra. It will be convenient and almost necessary to define a pre)measure, µ 0, on a smaller collection F 0 that extends to µ on σf 0 ) and µ is unique, µ 1 F ) = µ 2 F ), F F 0 implies µ 1 F ) = µ 2 F ), F σf 0 ). Restatement of Dynkin s theorem in the above context is that the smallest σ algebra generated from a π system is the λ system generated from that π system. Theorem Let F 0 be a π system then λf 0 ) = σf 0 ). We now define the term extension and develop this idea of extension of measure. The main working example we will use in the development is. Ω = R, S = {a, b] : a b }, Pa, b]) = F b) F a). Remember, that the Borel sets BR) = σs). Goal: we have a probability measure on S we want to extend it to BR). Extension: If G 1 and G 2 are collections of subsets of Ω with G 1 G 2 and P 1 : G 1 [0, 1], P 2 : G 2 [0, 1]. P 2 is an extension of P 1 if P 2 G1 = P 1, P 2 A 1 ) = P 1 A i ) A i G 1.
3 3 Few terms: A measure is P additive if for disjoint sets A 1,..., A n G n A i n n A i G P A i ) = A measure is σ additive if for disjoint sets A 1,..., A n,... G n PA i ). A i G P A i ) = PA i ). Definition Semialgebra) A class S of subsets of Ω is a semialgebra if 1), Ω S 2) S is a π system 3) If A S there exists disjoint sets C 1,..., C n with each C i S such that A c = n C i. Example of Semialgebra: Intervals Ω = R, S = {a, b] : a b }. If I 1, I 2 S then I 1 I 2 S and I c is a union of disjoint intervals. The idea/plan: 1. Start with a semialgebra S 2. Show a unique extension to an algebra AS) generated by S 3. Show a unique extension to σas)) = σs). If S is a semialgebra of Ω then AS) = { S i : I is finite, {S i } is disjoint, S i S}, i I a system of finite collections of mutually disjoint sets. An example of extension of measure for a countable set. Ω = {ω 1,..., ω n,...} i p i p i 0, i = 1 p 1 = 1. F = PΩ) the power set of Ω. We define for all A F the following extension of measure PA) = p i. ω i A For this to be a proper measure the follow need to hold they do) 1. PA) 0 for all A F 2. PΩ) = p i = 1 3. If {A j } with j 1 are disjoint then P Aj ) = j=1 p i = p i = PA j ). w i ja j j ω i A j j Is the power set PΩ) countable? What was the semialgebra above? What would we do if Ω = R? As we consider the following theorems and proofs or proof sketches a good example to keep in mind is the case where Ω = R and S == {a, b] : a < b }.
4 4 Theorem First extension) S is a semialgebra of Ω and P : S [0, 1] is σadditive on S and PΩ) = 1. There is a unique extension P of P to AS) defined by P S i ) = i PS i ), P Ω) = 1 and P is σ additive on AS). Proof Page 46, Probability Path by Resnick) We need to show that P S i ) = i PS i ), uniquely defines P. Suppose that A AS) has representations A = i I S i = j J S j, we need to verify Since S i A the following hold i I PS i ) = j J PS j). i I PS i ) = i I PS i A) = i I PS i j J = i I P j J S i S j), S j) and S i = j J S i S j S and P is additive on S so and by the same argument PS i ) = PS i S j) = i I i I j J i I PS j) = PS i S j) = j J i I j J i I We now check that P is σ additive on AS). Suppose for i 1, PS i S j), j J PS i S j). j J A i = j J i S ij AS), S ij S, and {A i, i 1} are mutually disjoint and A = A i AS). Since A AS), A can be represented as A = S k, k K S k S, k K, where K is a finite index set. So by the definition of P P A) = k K PS k ). We can write S k = S k A = S k A i = S k S ij. j J i
5 5 Since S k S ij S and j J i S k S ij = S k S and P is σ additive on S PS k ) = PS k S ij ) = PS k S ij ). k K k K j J i k K j J i Note that Sk S ij = A S ij = S ij S, k K and by additivity of P on S we show σ additivity PS k S ij ) = j J i k K = PS ij ) j J i P S ij ) = P A i ). j J i The last step is to check the extension is unique. Assume P 1 and P 2 aretwo additive extensions, then for any A = i I S i AS) we have P 1A) = i I PS i ) = P 2A). We now show how to extend from an algebra to a sigma algebra. Theorem Second extension, Caratheodory) A probability measure P defined on an algebra A has a unique extension to a probability measure P on σa). Proof sketch Page 4, Probability Theory by Varadhan) There are 5 steps to the proof. 1. Define the extension: {A j } are the set of all countable collections of A that are disjoint and we define the outer measure P as P A) = inf A ja j j PA j ). P will be the extension. 2. Show P satisfies properties of a measure i) Countable subattitivity P j A j ) j P A j ). ii) For all A A, P A) = PA). This is done in two steps by showing 1) P A) P A) and 2) P A) PA). 3. Checking measurability of the extension are all of the extra sets in going from the algebra to the σ algebra adding correctly). A set E is measurable if P A) P A E) + P A E c ), for all A A. The class M is the collection of measurable sets. We need to show that M is a σ algebra and P is σ additive on M.
6 6 4. Show A M. This implies that σa) M and P extends from A to σa). 5. Uniqueness. Let P 1 and P 2 be σ additive measures on A then show if for all A A P 1 A) = P 2 A), then P 1 B) = P 2 B), B σa). We now look at two examples. The first is the extension of the Lebesgue measure to Borel sets. The second example illustrates sets that are not measurable. Lebesgue measure: Ω = [0, 1], F = B0, 1]), S = {a, b] : 0 a b 1}. S is a semialgebra and we define the following measure on it λ : S a, b], λ ) = 0, λa, b]) = b a. This measure λ extends to the Borel set B0, 1]). To show that λ extends to B0, 1]) we need to show that it is σ additive on B0, 1]). We first show finite additivity. Set a, b] = K a i, b i ], where a = a 1, b K = b, b i = a i+1. We can see K λa i, b i ] = K b i a i ) = b 1 a 1 + b 2 a 2 + = b K a 1 = b a. We now note a few asymptotic properties of intervals a, b) = [a, b] = {a} = n=1 n=1 n=1 a, b 1 ], a < b n a 1n ], b, a < b a 1n, a ], a < b. The Borel σ algebra contains all singletons a as well as the forms a, b), [a, b], [a, b), a, b]. We now have to address σ additivity. First note that the interval [0, 1] is compact, this means that there exists a finite ε cover of the interval for any ε > 0. Let A n be a sequence of sets from S such that A n. We can define a set B n S such that its closure [B n ] A n and λa n ) λb n ) ε 2 n. Remember A n = and since the sets [B n ] are closed there exists a finite n 0 ε) such that n0 [B n] =. Remember that A n0 A n0 1 A 1 so ) n 0 n0 ) λa n0 ) = λ A n0 \ B k + λ B k n 0 ) = λ A n0 \ B k λ n 0 n0 ) A k \ B k n 0 λa k \ B k ) ε 2 k ε.
7 7 The reason this shows σ additivity is that if for all A n S, A n implies λa n ) 0 then σ additivity holds on σs). Not a measurable set: Let Ω = N be the natural numbers and E be the even numbers and E c the odd numbers and set F = {2 2k + 1,..., 2 2k+1 } = {2,. 5,..., 8, 17,..., 32, 65,..., 128,...}. k=0 1. For n = 2 2k the ratio P n F ) = #[F {1,..., n}]/n = n 1)/3n 1/3 and for n = 2 2k+1, P n F )2n 1)/3n 2/3 so P n cannot converge as n. 2. The even and odd portions of F and F c, A F E and B F c E c, have relative frequencies that do not converge. 3. C = A B does have a relative frequency that converges: P 2n C) = 1/2 + 1/2n so lim n P n = 1/2. 4. Both E and C have well defined asymptotic frequences but A = E C does not and the collection of sets M for which P n converges is not an algebra.
Probability: Theory and Examples. Rick Durrett. Edition 4.1, April 21, 2013
i Probability: Theory and Examples Rick Durrett Edition 4.1, April 21, 213 Typos corrected, three new sections in Chapter 8. Copyright 213, All rights reserved. 4th edition published by Cambridge University
More informationBasic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011
Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely
More informationAn example of a computable
An example of a computable absolutely normal number Verónica Becher Santiago Figueira Abstract The first example of an absolutely normal number was given by Sierpinski in 96, twenty years before the concept
More informationMODELS OF SET THEORY
MODELS OF SET THEORY STEFAN GESCHKE Contents 1. First order logic and the axioms of set theory 2 1.1. Syntax 2 1.2. Semantics 2 1.3. Completeness, compactness and consistency 3 1.4. Foundations of mathematics
More informationNotes on descriptive set theory and applications to Banach spaces. Th. Schlumprecht
Notes on descriptive set theory and applications to Banach spaces Th. Schlumprecht Contents Chapter 1. Notation 5 Chapter 2. Polish spaces 7 1. Introduction 7 2. Transfer Theorems 9 3. Spaces of compact
More informationINTRODUCTORY SET THEORY
M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H1088 Budapest, Múzeum krt. 68. CONTENTS 1. SETS Set, equal sets, subset,
More informationFindTheNumber. 1 FindTheNumber With Comps
FindTheNumber 1 FindTheNumber With Comps Consider the following twoperson game, which we call FindTheNumber with Comps. Player A (for answerer) has a number x between 1 and 1000. Player Q (for questioner)
More informationReading material on the limit set of a Fuchsian group
Reading material on the limit set of a Fuchsian group Recommended texts Many books on hyperbolic geometry and Kleinian and Fuchsian groups contain material about limit sets. The presentation given here
More information1 Sets and Set Notation.
LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most
More informationCHAPTER 1. Internal Set Theory
CHAPTER 1 Internal Set Theory Ordinarily in mathematics, when one introduces a new concept one defines it. For example, if this were a book on blobs I would begin with a definition of this new predicate:
More informationA UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS. Dedicated to Constantine Dafermos on the occasion of his 70 th birthday
A UNIQUENESS RESULT FOR THE CONTINUITY EQUATION IN TWO DIMENSIONS GIOVANNI ALBERTI, STEFANO BIANCHINI, AND GIANLUCA CRIPPA Dedicated to Constantine Dafermos on the occasion of his 7 th birthday Abstract.
More informationDescriptive Set Theory
Descriptive Set Theory David Marker Fall 2002 Contents I Classical Descriptive Set Theory 2 1 Polish Spaces 2 2 Borel Sets 14 3 Effective Descriptive Set Theory: The Arithmetic Hierarchy 27 4 Analytic
More informationNotes on Richard Dedekind s Was sind und was sollen die Zahlen?
Notes on Richard Dedekind s Was sind und was sollen die Zahlen? David E. Joyce, Clark University December 2005 Contents Introduction 2 I. Sets and their elements. 2 II. Functions on a set. 5 III. Onetoone
More informationHow many numbers there are?
How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural
More informationOn the Locality of Codeword Symbols
On the Locality of Codeword Symbols Parikshit Gopalan Microsoft Research parik@microsoft.com Cheng Huang Microsoft Research chengh@microsoft.com Sergey Yekhanin Microsoft Research yekhanin@microsoft.com
More informationSome elements of elementary set theory MAT2200 Spring 2011 By Geir Ellingsud
Some elements of elementary set theory MAT2200 Spring 2011 By Geir Ellingsud Most of what this document contains is probably well known to most of you, but still I think it is useful to cast a glance at
More informationINTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES
INTEGRAL OPERATORS ON THE PRODUCT OF C(K) SPACES FERNANDO BOMBAL AND IGNACIO VILLANUEVA Abstract. We study and characterize the integral multilinear operators on a product of C(K) spaces in terms of the
More informationAN INTRODUCTION TO OMINIMAL GEOMETRY. Michel COSTE Institut de Recherche Mathématique de Rennes michel.coste@univrennes1.fr
AN INTRODUCTION TO OMINIMAL GEOMETRY Michel COSTE Institut de Recherche Mathématique de Rennes michel.coste@univrennes1.fr November 1999 Preface These notes have served as a basis for a course in Pisa
More informationAll of mathematics can be described with sets. This becomes more and
CHAPTER 1 Sets All of mathematics can be described with sets. This becomes more and more apparent the deeper into mathematics you go. It will be apparent in most of your upper level courses, and certainly
More informationFixed Point Theorems For SetValued Maps
Fixed Point Theorems For SetValued Maps Bachelor s thesis in functional analysis Institute for Analysis and Scientific Computing Vienna University of Technology Andreas Widder, July 2009. Preface In this
More informationALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY
ALGEBRAIC NUMBER THEORY AND QUADRATIC RECIPROCITY HENRY COHN, JOSHUA GREENE, JONATHAN HANKE 1. Introduction These notes are from a series of lectures given by Henry Cohn during MIT s Independent Activities
More informationOn the Palis Conjecture
On the Palis Conjecture Sebastian van Strien (Warwick) Unless stated otherwise, the results are joint with a subset of {H. Bruin, J. RiveraLetelier, W. Shen, O Kozlovski.} January 10, 2007 1 Contents
More informationSET THEORY AND UNIQUENESS FOR TRIGONOMETRIC SERIES. Alexander S. Kechris* Department of Mathematics Caltech Pasadena, CA 91125
SET THEORY AND UNIQUENESS FOR TRIGONOMETRIC SERIES Alexander S. Kechris* Department of Mathematics Caltech Pasadena, CA 91125 Dedicated to the memory of my friend and colleague Stelios Pichorides Problems
More informationAlgebraic Number Theory
Algebraic Number Theory 1. Algebraic prerequisites 1.1. General 1.1.1. Definition. For a field F define the ring homomorphism Z F by n n 1 F. Its kernel I is an ideal of Z such that Z/I is isomorphic to
More informationThe Set Data Model CHAPTER 7. 7.1 What This Chapter Is About
CHAPTER 7 The Set Data Model The set is the most fundamental data model of mathematics. Every concept in mathematics, from trees to real numbers, is expressible as a special kind of set. In this book,
More informationTAKEAWAY GAMES. ALLEN J. SCHWENK California Institute of Technology, Pasadena, California INTRODUCTION
TAKEAWAY GAMES ALLEN J. SCHWENK California Institute of Technology, Pasadena, California L INTRODUCTION Several games of Tf takeaway?f have become popular. The purpose of this paper is to determine the
More informationWHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT?
WHAT ARE MATHEMATICAL PROOFS AND WHY THEY ARE IMPORTANT? introduction Many students seem to have trouble with the notion of a mathematical proof. People that come to a course like Math 216, who certainly
More informationTreerepresentation of set families and applications to combinatorial decompositions
Treerepresentation of set families and applications to combinatorial decompositions BinhMinh BuiXuan a, Michel Habib b Michaël Rao c a Department of Informatics, University of Bergen, Norway. buixuan@ii.uib.no
More informationA SELFGUIDE TO OMINIMALITY
A SELFGUIDE TO OMINIMALITY CAMERINO TUTORIAL JUNE 2007 Y. PETERZIL, U. OF HAIFA 1. How to read these notes? These notes were written for the tutorial in the Camerino Modnet Summer school. The main source
More informationAlgebra & Number Theory. A. Baker
Algebra & Number Theory [0/0/2009] A. Baker Department of Mathematics, University of Glasgow. Email address: a.baker@maths.gla.ac.uk URL: http://www.maths.gla.ac.uk/ ajb Contents Chapter. Basic Number
More information