Light, Color, and the Greenhouse Effect

Size: px
Start display at page:

Download "Light, Color, and the Greenhouse Effect"

Transcription

1 IDS 101 Light, Color, and the Greenhouse Effect Imagine that you have a light source and some way to detect the intensity of light at various distances. If you increase the distance of the detector from the light bulb, the intensity of the light decreases dramatically. From lab measurements of this type and knowledge of the energy radiating from the Sun, we can predict the average temperature of the surface of various planets. As you may know, Venus is the second planet from the Sun, while the Earth is the third planet out from the Sun. Since Venus is closer to the Sun, it is reasonable that the average surface temperature of Venus should be higher than the average surface temperature of Earth. If we do some calculations we find that the temperature of Venus s atmosphere should be around 67 C. This compares to the average temperature of Earth s atmosphere at about 15 C. This sounds logical, but the temperature at the surface of Venus is about 460 C! The purpose of this module is to help you understand how the gases in our atmosphere help drive the hydrologic cycle. The atmosphere of Venus is about 96% carbon dioxide (CO 2 ). This gas has a major role in creating what we term a greenhouse effect. Before we discuss the role of CO 2 in both the Earth s and Venus s atmosphere, we need to understand more about electromagnetic radiation, waves, reflection, transmission, and most importantly about absorption. An aside: What is even more amazing is that about 80% of the solar radiation arriving at Venus is reflected back into space. (For comparison, about 29% of the energy arriving at the Earth is reflected back into space.) The reason for this large reflectance value for Venus is the density of the atmosphere of Venus. The atmosphere of Venus is 90 times as dense as the Earth s atmosphere. (Is the air pressure on Venus higher or lower than on Earth?) 1

2 WAVES, LIGHT, and the ELECTROMAGNETIC SPECTRUM What is a wave? For our purposes, we will think of a wave as something that travels from one place to another. The shape of a wave is usually something like alternating bumps and valleys: first a bump, then a valley, then a bump, and so on. Here is a cartoon of a wave going by on the surface of a body of water, moving to the right. What am I doing here? I'm a hummingbird! As you may have noticed, there is a hummingbird hovering just above the surface of the water in the middle of one of the "valleys" (between two bumps). If our hummingbird continues to hover in that specific place in space (so that it does not move), what will happen to it as the wave moves? (Think about it! This may seem obvious, but it is an important point about the behavior of waves.) You probably concluded that the hummingbird would get wet. Very good. Now for the important point about waves Two students are arguing. Student #1 says that waves move back and forth in a zigzag type motion. Student #2 says that unless something gets in the way waves move (for the most part) in straight lines. "The shape of the wave," Student #2 says, "is not the same as the direction that the wave is going." Based on your ideas about the wave above, which student do you and your hummingbird agree with? Did that wave move in a straight line or in a zigzag? Among the other things that waves do, they carry energy. Our poor hummingbird was smacked with the energy of a passing water wave. Look at the two waves below. Imagine that you saw the surface of the sea on a day when it appeared like wave #1 and on a day when it appeared like wave #2. On which day would you say the sea had more energy? (assume waves are the same height) 2

3 Wave #1 Wave #2 Hopefully by now you have concluded that waves travel in straight lines, not zigzags, and that waves in which the crests are close together seem to carry more energy than long waves. If you are having trouble believing either of these things, you are not alone. They are two of the most important and most misunderstood properties of waves. Light Waves Light travels in waves. Remember, this does not mean that light travels along a zigzag path. It means that light travels in "packages" that are shaped like waves (we call them waveforms). We usually think of a wave as something that goes by in lumps and bumps. First one bump goes by, then another, and then another. We don't notice light going by that way because the bumps are so small and they go by so fast. When a wave of orange light reaches our eyes, for example, there are half a million bumps crammed into every foot, and it only takes a nanosecond (one billionth of a second) for those half a million waves to go by. Still, it is precisely the size of those waves, so small that we can fit half a million of them into one foot (or more precisely 1.5 million into each meter) that tells our eyes that we are looking at orange light and not blue light (2 million waves per meter) or red light (1.3 million waves per meter). Imagine you have two lights that are equally bright, a blue light and a red light. The blue light packs 2 million waves into each meter. The red light only gets 1.3 million waves into each meter. We call the length of a wave (take a guess) the wavelength. Which one has longer waves, the blue light or the red light? Explain your reasoning. Which one carries more energy, the blue light or the red light? Explain your reasoning. 3

4 It turns out that the blue light and the red light move with the same speed (three hundred million meters per second). We call the number of waves that pass each second the frequency. Which one sends more waves past your eye per second? Explain your reasoning. The visible light spectrum When we compare blue light to red light we see that blue light has a shorter wavelength, higher frequency, and carries more energy for the same amount of brightness (red light has a Longer wavelength, Lower frequency, and Less energy the L s go together). Still, what s the fun of knowing that if you don t understand color? It turns out that most of us have eyes that detect three colors of light: Red, Green, and Blue. Some people detect fewer colors (they have partial color blindness) but nobody detects more. * Every other color you have perceived in your life has been a mixture of those three colors of light. Every color on a computer monitor is a combination of red, green, and blue dots. ACTIVITY #1: Open a blank white page in Word. Look at the computer screen using a magnifying glass. See all of the pretty red, green, and blue dots? Cool, huh? ACTIVITY #2 Find a computer and go the following web site: Click to "RGB Color Mixing." * Technical detail: we can still see a single wavelength of light, even if it has a wavelength somewhere between green and red. When we see that wavelength, it triggers the receptors in our brain for both green and red, but not as strongly as if we saw only green or only red light. The curious thing is that we can't distinguish between a yellow light that is all one wavelength, and a mixture of red and green light that appears to be the same shade of yellow. We also see violet light even though it has a shorter wavelength than blue light. Our eyes are not very sensitive to violet light, however, and violet light has to be very bright for us to perceive it as being equally bright with, say, green light. 4

5 What happens when you have red and green at the maximum intensity? What happens when you have green and blue at the maximum intensity? What happens when you have red and blue at the maximum intensity? What happens if you have all three colors at the maximum intensity? What combination produces orange? ACTIVITY #2B: Somewhere around the room find a light box that emits all three colors of light. Don t pick up the light box; they fall apart easily. Move the mirrors around to make different mixtures of red, green, and blue light (if you want to block one of the colors of light, try putting a hand or a sheet of paper in front of it). What color do you see when you mix red and green light? What color do you see when you mix green and blue light? What color do you see when you mix red and blue light? What color do you see when you mix red, green, and blue light? 5

6 We say that red, green and blue are the primary colors of light. When we see all three colors mixed equally, our eyes perceive that as white light, so you can think of white light as an equal mixture of red, blue, and green. ACTIVITY #3: Before you go to the next web page, imagine that you have some white light. If you could absorb all of the blue light from it, what color would remain? Before you go to the next web page, imagine you have some white light. If you could absorb all of the red light from the white light, what color would remain? Next go back to the same initial site, click on "Multiple Filter Absorption", and check your answers: What is a definition for absorption? ACTIVITY #4: Go back to the main web page and click on Single Filter Absorption: By playing with the controls on this web site, create a definition for a filter. If you are looking through a red filter at a white object, what color will the object appear? 6

7 If you are looking at a yellow object through a red filter what color will the object appear? If you look at a blue object through a red filter, what will you see? In Summary: Absorption, reflection, and transmission When light encounters a substance, there are three things that can happen, and sometimes they all happen at once. 1. The light can be reflected which means that it bounces off. It changes direction, but aside from that it is pretty much unchanged. A mirror is very smooth and it reflects light all in the same direction. A piece of sandpaper is rough and it scatters light in all directions. Most objects are somewhere in between. 2. Light can be absorbed which means that the energy in the light is absorbed by the substance. Something that absorbs some colors (or wavelengths) of visible light is called a pigment and it is what we use to make paint. When light is absorbed, the light is gone but the energy remains in the substance in another form. (Hint of things to come: the energy usually comes back out!) 3. Light can be transmitted which means that it passes through the substance. A window is clear because visible light is transmitted. Stained glass appears brightly colored because some colors (or wavelengths) are absorbed and others are transmitted. Something that transmits some wavelengths but not others is called a filter. Check your understanding with the following questions: Imagine that white light were to hit a substance that absorbed all of the blue light so that a mixture of red and green light was reflected. Read that sentence again and ask questions if you don t understand. When your eye detects the red and green light that is reflected, what color would your eye see? What color would you say this substance is? Imagine that white light were to hit a substance that absorbed all of the green light so that a mixture of red and blue light was reflected. When your eye detects the red and blue light that is reflected, what color would your eye see? What color would you say this substance is? 7

8 A substance that absorbs some colors and reflects others is called a pigment. We say that the three primary colors of pigment (or paint) are yellow, cyan, and magenta. (In primary school you probably learned that the primary colors of paint were red, blue, and green, but you never could get that cool magenta or turquoise color, could you?) ACTIVITY #5: Find some colored paper (pigments) and filters (translucent plastic). You should have magenta, yellow, and cyan sheets of paper and at least a red and blue filter. (Our cyan paper is not truly cyan, but it is close!.) White light is hitting each of your sheets of paper. Think of which two colors are reflected by each of them: Cyan Magenta Yellow The red filter only lets red light through. How will the three sheets of paper appear through the red filter? Make a prediction and then place the three sheets of paper so that they are overlapping but you can see all of them. Place the red filter over them and record your observations. Do you understand why you see what you see? The blue filter only lets blue light through. Which two sheets of paper will look the same through the blue filter? How will the other one appear? Make a prediction and then repeat the experiment with the blue filter. Record your observations. If you understood the previous sections on visible light, you have understood a great deal. Light does not just come in one wavelength (color). There is a whole spectrum of colors. The spectrum is the complete collection of all possible wavelengths. When we separate 8

9 all of the different wavelengths that are hidden in white light, we see the spectrum as a rainbow. 9

10 ACTIVITY #6: Put on a pair of "rainbow glasses" and try not to look silly. The rainbow glasses contain diffraction gratings, which separate white light into a spectrum the same way that prisms do. 1. Look at a white light (use an incandescent light - not a fluorescent light) through the glasses. You should see lots of rainbows stretched out in many directions. Ask your instructor to increase or reduce the energy that the light is producing. When the energy is increased, what happens to the brightness of the light? The total amount of light increases when the brightness is increased. Now think about the fraction of the light that appears as different colors. When the energy is increased, what happens to the relative amount of blue light? What happens to the relative amount of red light? The incandescent bulb produces light simply because it is hot. 2. Some other light sources (fluorescent bulbs, neon lights, sodium lights) produce light through specific atomic changes. Look at a neon light, sodium light, or other chemical gas light through the glasses. What do you notice about the spectrum produced by neon light, sodium light, or other chemical gas light? How would you describe the difference between the spectrums produced by the incandescent bulb and the chemical gas bulb? The spectrum of the incandescent bulb appears to be more more what? 10

11 Think about rainbows that you have seen in the sky. These are the spectrum of the Sun. What does this tell you about the spectrum of the Sun? Is the spectrum more similar to the incandescent bulb or the gas bulb? Go the web site listed below. You should see the graphic below. The short bars are links to other pages with information about the various wavelengths. Use this information to complete the questions below: Electromagnetic waves Most of the waves we are familiar with, such as waves in water and sound waves, require a medium (or substance) to travel through. However, light is part of a spectrum of electromagnetic radiation that will travel through a vacuum (no substance). Electric and magnetic "fields" can carry waves the same way the surface of a body of water can. Light travels along as "bumps and valleys" of electrical "pushes and pulls." Honest. When this property of light was discovered, it immediately raised a question. We see electromagnetic waves (EM waves) with wavelengths between 450 nanometers (blue) and 700 nanometers (red). We call them light. Are there EM waves with longer wavelengths? Shorter wavelengths? The physics of electricity suggested that there would be, but we could not see them. We now know that there are EM waves with wavelengths thousands of times shorter than blue light (and thus energy thousands of times greater than light). There are EM waves with wavelengths longer than light, too. Our eyes don't detect them, but they are important in nature and we use them in technology. ACTIVITY #7: Consult the chart of the electromagnetic spectrum on the previous page and try to identify the following kinds of EM waves. See if you can fill in this table. Name of EM wave Wavelength Energy Gamma X-ray Ultraviolet (UV) Visible About 500 nm Medium 11

12 Infrared Radio Recall that waves that have a short wavelength have the highest energy. This is the reason that there are limits to amount of x-rays a person should be exposed to during a certain period of time (this is mostly an issue for x-ray technicians rather than the patients). Fortunately for us, the Sun does not produce a lot of gamma rays and x-rays. Most of the gamma rays and x-rays that come to the Earth from elsewhere in the universe are absorbed in the far upper atmosphere (above the troposphere). The small amount of high energy EM radiation reaching the Earth is a good thing because otherwise life on Earth as we know it would not be possible. A short review: As electromagnetic radiation from the Sun arrives at the Earth, what are the three things that can happen to this energy? Recall that energy can be reflected, absorbed and/or transmitted. The climates of the Earth and Venus are dependent on the amount of reflection, absorption, and transmission of the Sun s energy. Let s study these ideas a little more. We use the term albedo to describe the amount of radiation that the Earth reflects back into space. On the first page of this module you read that about 29% of the Sun s energy reaching the Earth is reflected back into space. (Imagine if no energy were reflected, it would have been difficult for the astronauts on the moon to see the Earth!) The table below is the albedo values for different types of earth surface: Earth Surface Type Average Albedo Forests 15% Agricultural land 20% Deserts 28% Snow and ice cover 80% Ocean (<70 º latitude) 3.8% Ocean (>70 º latitude) 9.2% Clouds 50% As you might expect, snow and ice reflect a lot of incoming radiation, while forests do not reflect nearly as much radiation. Agricultural land reflects more 12

13 radiation than forests, so what effect have people had on the Earth s albedo by cutting forests and growing crops in the same location? Ice and snow reflect more radiation than ocean water. If large ice sheets melt and there is more ocean water surface, how will the albedo of the Earth change? If there is an increase in the Earth s albedo, what will happen to the temperature of the Earth? What happens to the 71% of the energy that does not reflect back into space? One of the types of radiation you labeled under the Electromagnetic Waves section above was ultraviolet radiation (or UV). UV radiation is often called ultraviolet light even though we can t see it. For the sake of accuracy, we should try to use the word light to describe only what we can see. Despite what you may have seen with "black lights" that are commercially available, you cannot see ultraviolet waves. The violet light that we see coming from "black lights" is light with a wavelength that is not quite short enough to really be ultraviolet. A black light makes ultraviolet waves as well, but you can't see them. Look back at your table of different kinds of EM waves (p. 9) with different energies. Do you think a molecule could absorb some UV waves and then give off gamma rays or x-rays? Explain your reasoning. (Hint: if Keith gave you a dollar could you turn around and give Bob a million dollars? Bob likes the idea!) 13

14 Could a molecule absorb some UV waves and then give off visible light or infrared light? Explain your reasoning. (Think about that dollar.) Activity #8 Ask one of your instructors for help with one of the UV sources. CAUTION! These are high intensity UV sources and they are very different from ordinary black lights. Do not look directly into them when they are in use! Shine a UV source on a dull patch of the wall (not a shiny surface and not a "bleached" surface such as a piece of paper or your socks). Do you think you can see ultraviolet waves? (Could this just be a very dim ordinary light?) Shine a UV source on one of the wondrous and very cool rocks of science. Does it look the same as the wall? What do you suppose is happening to the UV radiation that is being absorbed by the rock? If we had a source of infrared radiation, could we shine the IR on the rock and get the same result? Why? Why not? When infrared radiation (IR) shines on our skin, we feel it as heat. Heat can move from one place to another by conduction, by convection, or by radiation. When heat travels by radiation it is traveling in the form of infrared radiation. * When we feel "the warmth of the Sunshine" we are feeling infrared waves that reach the Earth after traveling a hundred million miles. Another example is when we feel warm from a campfire even when the air around us is cold. * Technical note: Some textbook authors separate infrared waves from short wavelength radio waves, in which case one has to say that radiated heat travels as infrared and/or radio waves. For the purposes of studying weather and climate, it is sufficient to call both of these forms by the name "infrared. Still, you may be interested to know that every time you cook something in a "microwave" oven, you are heating it up with very intense radio waves. 14

15 Whenever we feel heat radiated by anything, we are feeling infrared waves. Any object that is warmer than its surroundings will radiate IR. Any object that is cooler than its surroundings will absorb more IR than it radiates. Ask for a special type of thermometer when you reach this point. This special thermometer can measure our skin temperature without touching us. How did this thermometer measure our temperature without touching our skin? Actually, the atmosphere absorbs or reflects much of the infrared radiation that reaches the Earth, so much of the infrared radiation that heads our way does not make it down to the surface of the Earth. If the atmosphere absorbs the IR, what happens to the atmosphere? An important idea most of the "solar energy" that reaches the surface of the Earth from the Sun is in the form of VISIBLE LIGHT. (Infrared trails just behind.) Remember, visible light is higher in energy than infrared. Key question: When objects on the surface of the Earth absorb visible light, can they turn around and give off ultraviolet waves? X-rays? (HINT: Some objects can give off gamma waves even if they don't absorb anything, but what we are really asking here is whether the absorption of some visible light would cause something to be able to give off x-rays or UV waves.) When objects on the surface of the Earth absorb visible light, can they turn around and give off infrared waves? Explain your reasoning. 15

16 In the summer you may have noticed that when you touch a dark colored object, the object feels very hot. If very little IR reaches the Earth s surface, why is the object hot? If 71% of the Sun s energy is not reflected back into space, it is mostly absorbed by the Earth s surface. Objects on the Earth s surface re-emit that radiation in the form of IR. We call this black body radiation. When the IR is re-emitted by the Earth, gases in the atmosphere absorb most of that IR and the atmosphere becomes warmer. If your car has been parked for a couple of hours with the windows closed you will find that when you get into your car that the temperature inside the car is higher than the outside temperature. Why is the inside of your car warmer than the outside air? Gardeners use greenhouses to provide a warmer, lighted environment for plants to grow. Draw a picture of how a greenhouse works. 16

17 In what ways is the Earth similar and different than a greenhouse? The gases in the atmosphere act like the glass in a greenhouse, keeping the infrared radiation from escaping, so the temperature inside increases. The specific gases that absorb IR are carbon dioxide, methane, water vapor, and chorofluorocarbons (cfc s such as Freon ). The first three of these gases are natural gases, but the fourth is a human compound that was used primarily in air conditioners and refrigerators until the last few years. The arc below is intended to be the surface of the Earth. Create a diagram that illustrates and explains how the greenhouse effect increases the temperature of the atmosphere. 17

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K

1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 1. At which temperature would a source radiate the least amount of electromagnetic energy? 1) 273 K 3) 32 K 2) 212 K 4) 5 K 2. How does the amount of heat energy reflected by a smooth, dark-colored concrete

More information

Energy Pathways in Earth s Atmosphere

Energy Pathways in Earth s Atmosphere BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

After a wave passes through a medium, how does the position of that medium compare to its original position?

After a wave passes through a medium, how does the position of that medium compare to its original position? Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

More information

ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

More information

Materials Needed: Choose one of the following methods depending on how familiar your students are with the internet and how to use it.

Materials Needed: Choose one of the following methods depending on how familiar your students are with the internet and how to use it. Teacher Information Lesson Title: Global Warming, Green House Effect and Climate Changes Lesson Description: This lesson helps students to understand or review their understanding of global warming, the

More information

THE NATURE OF LIGHT AND COLOR

THE NATURE OF LIGHT AND COLOR THE NATURE OF LIGHT AND COLOR THE PHYSICS OF LIGHT Electromagnetic radiation travels through space as electric energy and magnetic energy. At times the energy acts like a wave and at other times it acts

More information

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light. Exercises 28.1 The Spectrum (pages 555 556) 1. Isaac Newton was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a.

More information

The Earth s Atmosphere

The Earth s Atmosphere THE SUN-EARTH SYSTEM III The Earth s Atmosphere Composition and Distribution of the Atmosphere The composition of the atmosphere and the way its gases interact with electromagnetic radiation determine

More information

Review Vocabulary spectrum: a range of values or properties

Review Vocabulary spectrum: a range of values or properties Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

MAKING SENSE OF ENERGY Electromagnetic Waves

MAKING SENSE OF ENERGY Electromagnetic Waves Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group

More information

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of

Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors

More information

Energy - Heat, Light, and Sound

Energy - Heat, Light, and Sound Science Benchmark: 06:06 Heat, light, and sound are all forms of energy. Heat can be transferred by radiation, conduction and convection. Visible light can be produced, reflected, refracted, and separated

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program

Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Photosynthesis and Light in the Ocean Adapted from The Fluid Earth / Living Ocean Heather Spalding, UH GK-12 program Algae, like your Halimeda, and plants live in very different environments, but they

More information

Light Waves and Matter

Light Waves and Matter Name: Light Waves and Matter Read from Lesson 2 of the Light Waves and Color chapter at The Physics Classroom: http://www.physicsclassroom.com/class/light/u12l2a.html MOP Connection: Light and Color: sublevel

More information

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts CHAPTER 8 CELL PROCESSES 8.2 Cells and Energy To stay alive, you need a constant supply of energy. You need energy to move, think, grow, and even sleep. Where does that energy come from? It all starts

More information

Color Part I. (The two items we can determine: a. How bright is the light is. b. What color the light is.)

Color Part I. (The two items we can determine: a. How bright is the light is. b. What color the light is.) Color Part I Name Color is one of the most important pieces of information scientists have used for all time. In space it is one of only two pieces of information we can collect without sending probes

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

Module 2.2. Heat transfer mechanisms

Module 2.2. Heat transfer mechanisms Module 2.2 Heat transfer mechanisms Learning Outcomes On successful completion of this module learners will be able to - Describe the 1 st and 2 nd laws of thermodynamics. - Describe heat transfer mechanisms.

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have

More information

What is Energy? What is the relationship between energy and work?

What is Energy? What is the relationship between energy and work? What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but

More information

CPI Links Content Guide & Five Items Resource

CPI Links Content Guide & Five Items Resource CPI Links Content Guide & Five Items Resource Introduction The following information should be used as a companion to the CPI Links. It provides clarifications concerning the content and skills contained

More information

1. Three-Color Light. Introduction to Three-Color Light. Chapter 1. Adding Color Pigments. Difference Between Pigments and Light. Adding Color Light

1. Three-Color Light. Introduction to Three-Color Light. Chapter 1. Adding Color Pigments. Difference Between Pigments and Light. Adding Color Light 1. Three-Color Light Chapter 1 Introduction to Three-Color Light Many of us were taught at a young age that the primary colors are red, yellow, and blue. Our early experiences with color mixing were blending

More information

Standards A complete list of the standards covered by this lesson is included in the Appendix at the end of the lesson.

Standards A complete list of the standards covered by this lesson is included in the Appendix at the end of the lesson. Lesson 3: Albedo Time: approximately 40-50 minutes, plus 30 minutes for students to paint pop bottles Materials: Text: Albedo (from web site 1 per group) Small thermometers, at least 0ºC to 100ºC range

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Convection, Conduction & Radiation

Convection, Conduction & Radiation Convection, Conduction & Radiation There are three basic ways in which heat is transferred: convection, conduction and radiation. In gases and liquids, heat is usually transferred by convection, in which

More information

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light 1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

More information

Introduction to Chapter 27

Introduction to Chapter 27 9 Heating and Cooling Introduction to Chapter 27 What process does a hot cup of coffee undergo as it cools? How does your bedroom become warm during the winter? How does the cooling system of a car work?

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Characteristics of the. thermosphere

Characteristics of the. thermosphere Characteristics of the Atmosphere. If you were lost in the desert, you could survive for a few days without food and water. But you wouldn't last more than five minutes without the ' Objectives Describe

More information

Using the Spectrophotometer

Using the Spectrophotometer Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to

More information

Study Guide for Exam on Light

Study Guide for Exam on Light Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

More information

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes.

a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. J.D. McAlpine ATMS 611 HMWK #8 a) species of plants that require a relatively cool, moist environment tend to grow on poleward-facing slopes. These sides of the slopes will tend to have less average solar

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

The Water Cycle Now You See It, Now You Don t

The Water Cycle Now You See It, Now You Don t The Water Cycle Now You See It, Now You Don t Unit: Salinity Patterns & the Water Cycle l Grade Level: Elementary l Time Required: Introduction - 30 min. - Activity as groups 45min Wrap Up 20 min l Content

More information

TEACHER BACKGROUND INFORMATION THERMAL ENERGY

TEACHER BACKGROUND INFORMATION THERMAL ENERGY TEACHER BACKGROUND INFORMATION THERMAL ENERGY In general, when an object performs work on another object, it does not transfer all of its energy to that object. Some of the energy is lost as heat due to

More information

FACTS ABOUT CLIMATE CHANGE

FACTS ABOUT CLIMATE CHANGE FACTS ABOUT CLIMATE CHANGE 1. What is climate change? Climate change is a long-term shift in the climate of a specific location, region or planet. The shift is measured by changes in features associated

More information

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.

AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which

More information

Reflection Lesson Plan

Reflection Lesson Plan Lauren Beal Seventh Grade Science AMY-Northwest Middle School Three Days May 2006 (45 minute lessons) 1. GUIDING INFORMATION: Reflection Lesson Plan a. Student and Classroom Characteristics These lessons

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Today: Chapter 27 (Color) (Maybe begin Review if time)

Today: Chapter 27 (Color) (Maybe begin Review if time) Tue Dec 22nd: Final Exam, 11.30am 1.30pm, 70 multiple-choice questions Final Exam is cumulative i.e. Chs. 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 19, 20, 22, 23, 24, 25, 26, 27 ~ 2 or 3 per chapter for

More information

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION

COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow

More information

Energy and Energy Transformations Test Review

Energy and Energy Transformations Test Review Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.

More information

CHAPTER 2 Energy and Earth

CHAPTER 2 Energy and Earth CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect

More information

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Chem 306 Section (Circle) M Tu W Th Name Partners Date ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION Materials: prepared acetylsalicylic acid (aspirin), stockroom samples

More information

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50)

Atmospheric Layers. Ionosphere. Exosphere. Thermosphere. Mesosphere. Stratosphere. Troposphere. mi (km) above sea level 250 (400) 50 (80) 30 (50) mi (km) above sea level Atmospheric Layers Exosphere 250 (400) Thermosphere Ionosphere 50 (80) Mesosphere Ozone Layer 30 (50) 7 (12) Stratosphere Troposphere Atmospheric Layers Earth s atmosphere is held

More information

(Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION

(Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION Convection (Walter Glogowski, Chaz Shapiro & Reid Sherman) INTRODUCTION You know from common experience that when there's a difference in temperature between two places close to each other, the temperatures

More information

UNIT 1 GCSE PHYSICS 1.1.1 Infrared Radiation 2011 FXA

UNIT 1 GCSE PHYSICS 1.1.1 Infrared Radiation 2011 FXA 1 All objects emit and absorb thermal radiation. The hotter an object is the infrared radiation it radiates in a given time. It is continually being transferred to and from all objects. The hotter the

More information

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE

GETTING TO THE CORE: THE LINK BETWEEN TEMPERATURE AND CARBON DIOXIDE DESCRIPTION This lesson plan gives students first-hand experience in analyzing the link between atmospheric temperatures and carbon dioxide ( ) s by looking at ice core data spanning hundreds of thousands

More information

ES 106 Laboratory # 2 HEAT AND TEMPERATURE

ES 106 Laboratory # 2 HEAT AND TEMPERATURE ES 106 Laboratory # 2 HEAT AND TEMPERATURE Introduction Heat transfer is the movement of heat energy from one place to another. Heat energy can be transferred by three different mechanisms: convection,

More information

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be

More information

Color Filters and Light

Color Filters and Light activity 4 Color Filters and Light OBJECTIVES Students add to their understanding of subtractive color mixing by investigating the effect of filters on the color of light. The students shine white light

More information

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb.

Name: Class: Date: 10. Some substances, when exposed to visible light, absorb more energy as heat than other substances absorb. Name: Class: Date: ID: A PS Chapter 13 Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. In all cooling

More information

The Earth's Atmosphere. Layers of the Earth's Atmosphere

The Earth's Atmosphere. Layers of the Earth's Atmosphere The Earth's Atmosphere The atmosphere surrounds Earth and protects us by blocking out dangerous rays from the sun. The atmosphere is a mixture of gases that becomes thinner until it gradually reaches space.

More information

Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133

Color and Light. DELTA SCIENCE READER Overview... 125 Before Reading... 126 Guide the Reading... 127 After Reading... 133 Color and Light T ABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment and

More information

Spectra of Lights: An Interactive Demonstration with Diffraction Gratings

Spectra of Lights: An Interactive Demonstration with Diffraction Gratings Grades: 4 th 12 th grade Purpose: Students will explore the properties of different types of light bulbs using diffraction grating glasses to reveal the light s unique spectra or fingerprint. The goal

More information

Clouds and the Energy Cycle

Clouds and the Energy Cycle August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and

More information

1. Theoretical background

1. Theoretical background 1. Theoretical background We consider the energy budget at the soil surface (equation 1). Energy flux components absorbed or emitted by the soil surface are: net radiation, latent heat flux, sensible heat

More information

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL

Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General

More information

Transferring Solar Energy

Transferring Solar Energy activity 14 Transferring Solar Energy BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 4 Quarter 2 Activity 14 SC.B.1.2.2 The student recognizes various forms of energy (e.g., heat, light, and electricity).

More information

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES SIXTH GRADE WEATHER 1 WEEK LESSON PLANS AND ACTIVITIES WATER CYCLE OVERVIEW OF SIXTH GRADE WATER WEEK 1. PRE: Evaluating components of the water cycle. LAB: Experimenting with porosity and permeability.

More information

The Three Heat Transfer Modes in Reflow Soldering

The Three Heat Transfer Modes in Reflow Soldering Section 5: Reflow Oven Heat Transfer The Three Heat Transfer Modes in Reflow Soldering There are three different heating modes involved with most SMT reflow processes: conduction, convection, and infrared

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question.

Review 1. Multiple Choice Identify the choice that best completes the statement or answers the question. Review 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. When hydrogen nuclei fuse into helium nuclei a. the nuclei die. c. particles collide. b. energy

More information

READING COMPREHENSION I SIR ISAAC NEWTON

READING COMPREHENSION I SIR ISAAC NEWTON READING COMPREHENSION I SIR ISAAC NEWTON Sir Isaac Newton (1642-1727) was an English scientist who made great contributions to physics, optics, maths and astronomy. He is known for his Three Laws of Motion

More information

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)

What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer

More information

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere

Humidity, Condensation, Clouds, and Fog. Water in the Atmosphere Humidity, Condensation, Clouds, and Fog or Water in the Atmosphere The Hydrologic Cycle Where the Water Exists on Earth Evaporation From the Oceans and Land The Source of Water Vapor for the Atmosphere

More information

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9

Light Energy. Countdown: Experiment 1: 1 tomato paste can (without top or bottom) table lamp white poster board, 7 x 9 Light Energy Grade Level: 5 Time Required: 1-2 class periods Suggested TEKS: Science - 5.8 Suggested SCANS: Information. Acquires and evaluates information. National Science and Math Standards Science

More information

Introduction to Light, Color, and Shadows

Introduction to Light, Color, and Shadows Introduction to Light, Color, and Shadows What is light made out of? -waves, photons, Electromagnetic waves (don t know this one) How do you get color? - different wavelengths of light. What does it mean

More information

How Landsat Images are Made

How Landsat Images are Made How Landsat Images are Made Presentation by: NASA s Landsat Education and Public Outreach team June 2006 1 More than just a pretty picture Landsat makes pretty weird looking maps, and it isn t always easy

More information

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test.

6 th Grade Science Assessment: Weather & Water Select the best answer on the answer sheet. Please do not make any marks on this test. Select the be answer on the answer sheet. Please do not make any marks on this te. 1. Weather is be defined as the A. changes that occur in cloud formations from day to day. B. amount of rain or snow that

More information

Science Standard 3 Energy and Its Effects Grade Level Expectations

Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological

More information

Worksheet A Environmental Problems

Worksheet A Environmental Problems Worksheet A Environmental Problems Vocabulary Can you talk about Environmental issues in English? With a partner, try to explain the terms in the diagram below. Why are the words divided into two groups

More information

Physics 1230: Light and Color

Physics 1230: Light and Color Physics 1230: Light and Color Instructor: Joseph Maclennan TOPIC 3 - Resonance and the Generation of Light http://www.colorado.edu/physics/phys1230 How do we generate light? How do we detect light? Concept

More information

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab

More information

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

v = fλ PROGRESSIVE WAVES 1 Candidates should be able to : PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

More information

TOPIC 5 (cont.) RADIATION LAWS - Part 2

TOPIC 5 (cont.) RADIATION LAWS - Part 2 TOPIC 5 (cont.) RADIATION LAWS - Part 2 Quick review ELECTROMAGNETIC SPECTRUM Our focus in this class is on: UV VIS lr = micrometers (aka microns) = nanometers (also commonly used) Q1. The first thing

More information

PUSD High Frequency Word List

PUSD High Frequency Word List PUSD High Frequency Word List For Reading and Spelling Grades K-5 High Frequency or instant words are important because: 1. You can t read a sentence or a paragraph without knowing at least the most common.

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Test 2 f14 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Carbon cycles through the Earth system. During photosynthesis, carbon is a. released from wood

More information

Overview. Suggested Lesson Please see the Greenlinks Module description.

Overview. Suggested Lesson Please see the Greenlinks Module description. Overview Plants interact with their environment in many ways that we cannot see. Children often enjoy learning about these hidden secrets of plant life. In this lesson, children will learn about role of

More information

What is Solar Control?

What is Solar Control? A better environment inside and out. Solar, Safety and Security Window Films: Tech Bulletin Understanding Solar Performance Solar Gard solar control window films use advanced technology to benefit consumers

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Problems: 8, 11, 13, 17, 21, 27, 29, 37, 39, 41, 47, 51, 57 Thermodynamics study and application of thermal energy temperature quantity

More information

THE EFFECT OF COLOUR FILTERS ON SOLAR PANELS. Katie Fitzgerald Expo Project Grade 7

THE EFFECT OF COLOUR FILTERS ON SOLAR PANELS. Katie Fitzgerald Expo Project Grade 7 THE EFFECT OF COLOUR FILTERS ON SOLAR PANELS Katie Fitzgerald Expo Project Grade 7 OBSERVATION By using a solar light instead of electricity, one can assist in lightening the load on our environment. By

More information

Engineering Mini Holiday Lights

Engineering Mini Holiday Lights 1 Engineering Mini Holiday Lights Jeffrey La Favre The small light bulbs we are using for our activities were cut from strings of mini holiday lights. The strings contained 100 light bulbs arranged in

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Weather: 4.H.3 Weather and Classical Instruments Grade

More information

Teaching Time: One-to-two 50-minute periods

Teaching Time: One-to-two 50-minute periods Lesson Summary Students create a planet using a computer game and change features of the planet to increase or decrease the planet s temperature. Students will explore some of the same principles scientists

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information

Light Transmission and Reflectance

Light Transmission and Reflectance Technical information ACRYLITE cast and extruded acrylic Light Transmission and Reflectance Light and Radiation Light or electromagnetic radiation can be divided into several bands or categories each defined

More information

Three Key Paper Properties

Three Key Paper Properties Three Key Paper Properties Whiteness, Brightness and Shade Demystifying Three Key Paper Properties Whiteness, Brightness and Shade Xerox Supplies, See the Difference Quality Makes Prepared by: Xerox Corporation

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered

Heat Energy FORMS OF ENERGY LESSON PLAN 2.7. Public School System Teaching Standards Covered FORMS OF ENERGY LESSON PLAN 2.7 Heat Energy This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven states served

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

What s better than a milliondollar

What s better than a milliondollar F o r k i d s o f a l l a g e s BY MEMORIE YASUDA What s better than a milliondollar view from the top of a skyscraper? Try a multimillion-dollar view from a satellite flying around Earth. A satellite

More information

Lessons 1-15: Science in the First Day of the Creation Week. Lesson 1: Let There Be Light!

Lessons 1-15: Science in the First Day of the Creation Week. Lesson 1: Let There Be Light! Day 1: Let There Be Light! 1 Lessons 1-15: Science in the First Day of the Creation Week Lesson 1: Let There Be Light! Note to the parent/teacher: To start this lesson, you should have Genesis 1:2-3 memorized

More information

Third Grade Light and Optics Assessment

Third Grade Light and Optics Assessment Third Grade Light and Optics Assessment 1a. Light travels at an amazingly high speed. How fast does it travel? a. 186,000 miles per second b. 186,000 miles per hour 1b. Light travels at an amazingly high

More information