Energy. Mechanical Energy
|
|
- Thomasine Ford
- 4 years ago
- Views:
Transcription
1 Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance expends energy Mechanical Energy Action of physical movement Two types: Potential Kinetic 1
2 Chemical Energy Energy released from chemical reaction Examples: Body converts chemical energy from food into mechanical energy or movement Battery converts chemical energy into electrical energy Heat Energy Also known as thermal energy Results from movement of molecules Temperature measures thermal energy Example: Toaster converts electrical energy into heat energy Electrical Energy Electricity Results from movement of electrons in conductor Example: Light bulb converts electric energy to light 2
3 Electromagnetic Energy Exists independently of objects Present ubiquitously and spans an energy continuum Endless ordered arrangement Combination of electrical and magnetic bundles called photons or quantum Electromagnetic Energy (EM) All types of electromagnetic radiation are a form of energy EM energy is the result of electric and magnetic disturbances traveling through space Typically, only the electric wave is depicted in illustrations Electromagnetic Energy (EM) Pure energy travels through space at speed of light Electric and magnetic waves 90 degrees to each other Does not need a medium to be transmitted unlike mechanical waves in water or sound waves in air Can travel in a vacuum Entire band of energies is grouped in the EM spectrum 3
4 PHOTONS Smallest quantity of any electromagnetic energy Have no mass, no form Quantum refers to a small bundle of energy that travels through space at the speed of light Speed of light = 186,400 miles/sec = x 10 5 miles/sec = 3 x 10 8 m/sec Velocity of all electromagnetic radiation PHOTON PROPERTIES Electric & magnetic fields that continuously change in a wavelike motion Field: Interaction among the electric and magnetic energies Sine Wave: Variation of the interactions is represented as a sine wave SINE WAVE DEFINITION & TERMS Disturbance in a medium Amplitude One half the range of the wave that varies from crest to valley Height of the wave 4
5 Sine Wave Terms Wavelength Distance between adjacent crests or valleys Measured in metric meters Represented by lambda (λ) SINE WAVE TERMS Frequency # of wavelengths that pass a given point per second Cycles/sec Oscillations/sec Measured in Hertz (Hz) 1 Cycle/second = 1 Hz Wavelength & Frequency Relationship 5
6 SINE WAVE TERMS Period: Time to complete one cycle of a wave TIME /#CYCLES Wave with a frequency of one cycle per second = 1.0 sec period Wave with a frequency of two cycles per second = 0.5 sec period Two Sine Wave Comparison 1 sec/2cps = 0.5 Period 1 sec/4cps = 0.25 Period WAVE EQUATION Relationship between the sine wave parameters Change in one parameter affects the value of one or both parameters Amplitude is not related to frequency or wavelength Equation Velocity = Frequency x Wavelength As velocity decreases, frequency decreases to maintain wavelength As velocity is maintained, frequency and wavelength are inversely proportional frequency = Velocity/Wavelength Wavelength = Velocity/frequency 6
7 PARTICLE MODEL Applied to electromagnetic radiation Planck s Quantum Theory Direct relationship between photon energy and frequency E = hf E = Photon Energy h = Planck s constant 4.15 X evs f = Frequency Velocity (c) = frequency x wavelength EM SPECTRUM Continuum of electromagnetic energies The full range of all of the different types of electromagnetic radiations arranged in order of increasing energy: Radio Radar/microwaves Infrared Visible light Ultraviolet X-rays and gamma rays Represents frequency, wavelength, and energy EM SPECTRUM 7
8 EM SPECTRUM EM SPECTRUM Wavelength and frequency are inversely proportional. Wavelength and energy are inversely proportional. Energy and frequency are directly proportional. Electromagnetic Interactions EM interaction with matter is based upon wavelength EM energy interacts with objects that have a size similar to the wavelength Radio/TV (km) antennae Microwaves (cm) food X-ray, Gamma ray atoms Visible light acts more like a wave when it interacts with matter»has particle properties X-rays behave more like particles due to ionizing potential 8
9 Light Characteristics Wave and particle characteristics Visible light refers to the light we can see (wave) Infrared light, ultraviolet light Warmth and sunburn are the manifestations of UV energy (particles) The intensity of light is related to how many particles are emitted from the source and distance Light Characteristics Transmission Passing of light rays through a substance Air, clear glass, or the near vacuum of space Light photons are transmitted, attenuated, or absorbed Wave Model 9
10 Wave Model X-ray photons that interact with the body are attenuated or absorbed RADIOGRAPHIC TERMINOLOGY Radiopaque Anatomical structures that absorb x-ray photons Demonstrate anatomical structures white in the image Bones Radiolucent Anatomical structures that partially absorb or attenuate x-ray photons Demonstrate structures grey in the image Soft tissue, organs, muscle Radiographic Terminology Density (Brightness) Degree of blackening in the image High Density (Dark) Low Density (White) Contrast (Grey Scale) Long Scale Contrast Many shades of grey Low contrast CXR, Abdomen Short Scale Contrast Black and white High contrast Bony anatomy 10
11 Radiopaque or Radiolucent? Density Long Scale vs Short Scale Contrast 11
12 Scale of Contrast Contrast INVERSE SQUARE LAW Demonstrates the similarity of x-rays and light rays The intensity of radiation decreases with the square of the distance from the source Doubling the distance from the source decreases the intensity 4x. Halving the distance from the source increases the intensity 4x. 12
13 Inverse Square Law Light also acts like particles Even though these photons are steadily emitted by the light source, as you move farther away from the source, fewer photons reach you They spread out as they travel in a wider area away from the source THE INVERSE SQUARE LAW THE INVERSE SQUARE LAW The intensity of the radiation decreases with an increase of distance from the source (and vice versa) Intensity is inversely proportional to the square of the distance Formula: I 2 = I 1 (d 1 /d 2 ) 2 I 1 = Old intensity d 1 = Old distance Formula may also be expressed as: I 1 /I 2 = d 12 /d 2 2 I 2 = New intensity d 2 = New distance 13
14 INVERSE SQUARE LAW I 1 = D 2 2 I 2 D 1 2 I 1 = Original Intensity I 2 = New Intensity D = Original Distance 1 D = New Distance 2 Examples 14
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
MAKING SENSE OF ENERGY Electromagnetic Waves
Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Semester 2. Final Exam Review
Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration
Forms of Energy. Freshman Seminar
Forms of Energy Freshman Seminar Energy Energy The ability & capacity to do work Energy can take many different forms Energy can be quantified Law of Conservation of energy In any change from one form
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.
PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,
Non-Ionizing Electromagnetic Radiation
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.
Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
Production of X-rays. Radiation Safety Training for Analytical X-Ray Devices Module 9
Module 9 This module presents information on what X-rays are and how they are produced. Introduction Module 9, Page 2 X-rays are a type of electromagnetic radiation. Other types of electromagnetic radiation
Science Standard 3 Energy and Its Effects Grade Level Expectations
Science Standard 3 Energy and Its Effects Grade Level Expectations Science Standard 3 Energy and Its Effects The flow of energy drives processes of change in all biological, chemical, physical, and geological
Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light
Current Staff Course Unit/ Length August August September September October Unit Objectives/ Big Ideas Basic Outline/ Structure PS4- Types of Waves Because light can travel through space, it cannot be
Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.
Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
Radiant Energy Definition
Radiant Energy Definition: the energy of electromagnetic waves; this includes radio, microwave, infrared, visible, ultraviolet, x-ray, and gamma waves Solar panels Radiant Energy Examples of energy transformations:
Science Tutorial TEK 6.9C: Energy Forms & Conversions
Name: Teacher: Pd. Date: Science Tutorial TEK 6.9C: Energy Forms & Conversions TEK 6.9C: Demonstrate energy transformations such as energy in a flashlight battery changes from chemical energy to electrical
Electromagnetic (EM) waves. Electric and Magnetic Fields. L 30 Electricity and Magnetism [7] James Clerk Maxwell (1831-1879)
L 30 Electricity and Magnetism [7] ELECTROMAGNETIC WAVES Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Heinrich Hertz made the experimental
The Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
Examples of Uniform EM Plane Waves
Examples of Uniform EM Plane Waves Outline Reminder of Wave Equation Reminder of Relation Between E & H Energy Transported by EM Waves (Poynting Vector) Examples of Energy Transport by EM Waves 1 Coupling
Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?
Old Science 30 Physics Practice Test A on Fields and EMR Test Solutions on the Portal Site Use the following image to answer the next question 1. Which of the following rows identifies the electrical charge
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current
G482 Electrons, Waves and Photons; Revision Notes Module 1: Electric Current Electric Current A net flow of charged particles. Electrons in a metal Ions in an electrolyte Conventional Current A model used
Energy Transformations
Energy Transformations Concept Sheet Energy Transformations PS.6: The student will investigate and understand states and forms of energy and how energy is transferred and transformed. 1. Energy is the
Energy and Energy Transformations Test Review
Energy and Energy Transformations Test Review Completion: 1. Mass 13. Kinetic 2. Four 14. thermal 3. Kinetic 15. Thermal energy (heat) 4. Electromagnetic/Radiant 16. Thermal energy (heat) 5. Thermal 17.
Conceptual Physics Review (Chapters 25, 26, 27 & 28) Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of
Conceptual Physics Review (Chapters 25, 26, 27 & 28) Solutions Chapter 25 Describe the period of a pendulum. Describe the characteristics and properties of waves. Describe wave motion. Describe factors
Physics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
The Electromagnetic Spectrum
INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Principle of Thermal Imaging
Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging
NASA LAUNCHPAD Educational Product Educators & Students Grades 9-12 www.nasa.gov NP-2009-12-232-LaRC
National Aeronautics and Space Administration NASA eclips TM Educator Guide NASA LAUNCHPAD Making Waves Educational Product Educators & Students Grades 9-12 NP-2009-12-232-LaRC www.nasa.gov eclips Making
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION
COLLATED QUESTIONS: ELECTROMAGNETIC RADIATION 2011(2): WAVES Doppler radar can determine the speed and direction of a moving car. Pulses of extremely high frequency radio waves are sent out in a narrow
Calculating particle properties of a wave
Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can
WAVES AND ELECTROMAGNETIC RADIATION
WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
Unit 2 Lesson 1 Introduction to Energy. Copyright Houghton Mifflin Harcourt Publishing Company
Get Energized! What are two types of energy? Energy is the ability to cause change. Energy takes many different forms and causes many different effects. There are two general types of energy: kinetic energy
Chapter 2: Forms of Energy
Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3: To define the efficiency
What is Energy? What is the relationship between energy and work?
What is Energy? What is the relationship between energy and work? Compare kinetic and potential energy What are the different types of energy? What is energy? Energy is the ability to do work. Great, but
Infrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
Preview of Period 2: Forms of Energy
Preview of Period 2: Forms of Energy 2.1 Forms of Energy How are forms of energy defined? 2.2 Energy Conversions What happens when energy is converted from one form into another form? 2.3 Efficiency of
Upon completion of this lab, the student will be able to:
1 Learning Outcomes EXPERIMENT B4: CHEMICAL EQUILIBRIUM Upon completion of this lab, the student will be able to: 1) Analyze the absorbance spectrum of a sample. 2) Calculate the equilibrium constant for
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Symmetric Stretch: allows molecule to move through space
BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed
UNIT 1: mechanical waves / sound
1. waves/intro 2. wave on a string 3. sound waves UNIT 1: mechanical waves / sound Chapter 16 in Cutnell, Johnson: Physics, 8th Edition Properties of waves, example of waves (sound. Light, seismic), Reflection,
Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
SIZE. Energy. Non-Mechanical Energy. Mechanical Energy. Part II. Examples of Non-Mechanical Energy. Examples of Mechanical Energy.
Energy Part II Non-Mechanical Energy Wait a minute if all energy is either kinetic or potential and TME = KE + PE then how can there possibly be such thing as non-mechanical energy!?!? Mechanical Energy
Describing Sound Waves. Period. Frequency. Parameters used to completely characterize a sound wave. Chapter 3. Period Frequency Amplitude Power
Parameters used to completely characterize a sound wave Describing Sound Waves Chapter 3 Period Frequency Amplitude Power Intensity Speed Wave Length Period Defined as the time it take one wave vibrate
Atomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
CHAPTER 2 Energy and Earth
CHAPTER 2 Energy and Earth This chapter is concerned with the nature of energy and how it interacts with Earth. At this stage we are looking at energy in an abstract form though relate it to how it affect
Waves-Wave Characteristics
1. What is the wavelength of a 256-hertz sound wave in air at STP? 1. 1.17 10 6 m 2. 1.29 m 3. 0.773 m 4. 8.53 10-7 m 2. The graph below represents the relationship between wavelength and frequency of
XX. Introductory Physics, High School
XX. Introductory Physics, High School High School Introductory Physics Test The spring 2013 high school Introductory Physics test was based on learning standards in the Physics content strand of the Massachusetts
Blackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
RADIOFREQUENCY RADIATION, (RFR): (RFR Information - Technology Newsletter, Full Version)
RADIOFREQUENCY RADIATION, (RFR): (RFR Information - Technology Newsletter, Full Version) George M. Harris, P.E. (Revised February, 2011) Questions: -What is Radiofrequency Radiation, (RFR)? -With SO MANY
Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
CRT Science Review #1 Physical Science: Matter
CRT Science Review #1 Physical Science: Matter Standard: Matter Matter has various states with unique properties that can be used as the basis for organization. The relationship between the properties
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
TOPIC 5 (cont.) RADIATION LAWS - Part 2
TOPIC 5 (cont.) RADIATION LAWS - Part 2 Quick review ELECTROMAGNETIC SPECTRUM Our focus in this class is on: UV VIS lr = micrometers (aka microns) = nanometers (also commonly used) Q1. The first thing
where h = 6.62 10-34 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena
Energy comes in many flavors!
Forms of Energy Energy is Fun! Energy comes in many flavors! Kinetic Energy Potential Energy Thermal/heat Energy Chemical Energy Electrical Energy Electrochemical Energy Electromagnetic Radiation Energy
Forms of Energy Explain
Forms of Energy Explain DIRECTIONS 1. For the Explain portion of the section, work through each slide 2. For each form there are three slides: 1. Introduce the form of energy 2. Give examples of the form
Waves - Transverse and Longitudinal Waves
Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.
13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19
Review Vocabulary spectrum: a range of values or properties
Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by
Chapter 2: Solar Radiation and Seasons
Chapter 2: Solar Radiation and Seasons Spectrum of Radiation Intensity and Peak Wavelength of Radiation Solar (shortwave) Radiation Terrestrial (longwave) Radiations How to Change Air Temperature? Add
GS units (dirty electricity) presented as a function of voltage & frequency. Ralph Frederick
What are GS units? GS units (dirty electricity) presented as a function of voltage & frequency Magda Havas Ralph Frederick Trent University, Peterborough, Ontario, Canada December 2009. 1 Martin Graham
STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves
Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to
Sample Exercise 6.1 Concepts of Wavelength and Frequency
Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the
Antennas & Propagation. CS 6710 Spring 2010 Rajmohan Rajaraman
Antennas & Propagation CS 6710 Spring 2010 Rajmohan Rajaraman Introduction An antenna is an electrical conductor or system of conductors o Transmission - radiates electromagnetic energy into space o Reception
Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing
Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2
Radiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
What is Solar Control?
A better environment inside and out. Solar, Safety and Security Window Films: Tech Bulletin Understanding Solar Performance Solar Gard solar control window films use advanced technology to benefit consumers
Yerkes Summer Institute 2002
Before we begin our investigations into radio waves you should review the following material on your trip up to Yerkes. For some of you this will be a refresher, but others may want to spend more time
Lesson 33: Photoelectric Effect
Lesson 33: Photoelectric Effect Hertz Experiment Heinrich Hertz was doing experiments in 1887 to test some of Maxwell's theories of EMR. One of the experiments involved using a coil of wire as a receiver
Tech Bulletin. Understanding Solar Performance
Tech Bulletin Understanding Solar Performance Bekaert solar control window films use advanced technology to benefit consumers with quality solutions that enhance comfort and decrease energy use. By understanding
Quantum Mechanics and Atomic Structure 1
Quantum Mechanics and Atomic Structure 1 INTRODUCTION The word atom is derived from the Greek word, atomos, which means uncut or indivisible. It was Dalton (1808) who established that elementary constituents
ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2
Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right
MCQ - ENERGY and CLIMATE
1 MCQ - ENERGY and CLIMATE 1. The volume of a given mass of water at a temperature of T 1 is V 1. The volume increases to V 2 at temperature T 2. The coefficient of volume expansion of water may be calculated
Take away concepts. What is Energy? Solar Energy. EM Radiation. Properties of waves. Solar Radiation Emission and Absorption
Take away concepts Solar Radiation Emission and Absorption 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wein s Law). Radiation vs. distance
The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
Mobile. Task 1. Report2: Mobile Phones and Radiation Page 1
Mobile 2 Phones and Radiation Starting Point You may have seen headlines in newspapers and stories on TV about the health dangers of mobile phones. Some people have said they may cause cancer and infertility.
XX. Introductory Physics, High School
XX. Introductory Physics, High School High School Introductory Physics Test The spring 2014 high school Introductory Physics test was based on learning standards in the Introductory Physics content strand
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute Jan.kanak@shmu.sk Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
ATM S 111, Global Warming: Understanding the Forecast
ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept
CPI Links Content Guide & Five Items Resource
CPI Links Content Guide & Five Items Resource Introduction The following information should be used as a companion to the CPI Links. It provides clarifications concerning the content and skills contained
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation
ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun
Chapter 2: Forms of Energy
Chapter 2: Forms of Energy Goals of Period 2 Section 2.1: To describe the forms of energy Section 2.2: To illustrate conversions from one form of energy to another Section 2.3 To describe energy storage
Physics PH1FP. (Jun15PH1FP01) General Certificate of Secondary Education Foundation Tier June 2015. Unit Physics P1. Unit Physics P1 TOTAL
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Question Mark Science A Unit Physics P1 Physics Unit Physics P1 Friday 12 June 2015 General
Energy Pathways in Earth s Atmosphere
BRSP - 10 Page 1 Solar radiation reaching Earth s atmosphere includes a wide spectrum of wavelengths. In addition to visible light there is radiation of higher energy and shorter wavelength called ultraviolet
Main properties of atoms and nucleus
Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom
physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.
PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,