Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Size: px
Start display at page:

Download "Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation"

Transcription

1 The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered the theory of electromagnetic radiation (and light) Electric fields Magnetic fields Oscillating charges produce electric and magnetic fields Famous 4 equations (outside the scope of this course) Wave Diffraction Interference Light as a Wave Can describe waves in terms of wavelength and Wavelenth frequency Crest Trough 1 Moving at the speed of light 2 Electromagnetic Radiation Light differs from other forms of electromagnetic radiation by its wavelength Visible light has wavelengths between 400 and 700 nanometers EM radiation with wavelengths just longer than visible light is called infrared radiation (heat) EM radiation with wavelength just shorter than visible light is called ultraviolet radiation (UV) Radio waves have long wavelengths (WKAR FM is 3 meters) Microwaves have about 3 cm wavelength EM Radiation Spectrum EM Radiation Spectrum The frequency/wavelength varies dramatically Most EM radiation cannot penetrate the Earth s atmosphere 3 4

2 View of the Sky with X rays If we could see with X rays instead of visible light and we were above the Earth s atmosphere the sky would look like: Light as a Particle Light (and all EM radiation) exists in quantized units called photons A photon carries a specific amount of energy High frequency EM radiation has high energy photons Gamma rays Low frequency EM radiation has low energy photons Long-wave radio Described by Quantum Mechanics 5 6 Radiation and Temperature The temperature of an object determines what wavelength of EM radiation it will emit The wavelength of the maximum energy emission is given by Wien s Law λ max T = 2.9 x 10-3 mk Energy Emitted by Stars Energy Emitted by Stars The higher the temperature of an object, the more energy is radiated at all wavelengths The higher the temperature, the bluer the star looks The total energy radiated is given by the Stefan- Boltzmann law E = σt 4 where E is the emitted energy, T is the temperature, and σ is a constant 7 8

3 Spectroscopy in Astronomy EM radiation carries information about the nature of astronomical object Visible light is the most used Light can be Reflected From a mirror Refracted Through a lens Dispersed Separated by wavelength Prism Spectrometer Continuous Spectrum When white light (a superposition of light with all wavelengths) is dispersed with a prism or a spectrometer, all colors (wavelengths) are visible Wavelengths shorter than 400 nm are invisible (UV) Wavlengths longer than 700 nm are invisible (IR) 9 10 Discrete Emission Spectra When atoms are heated, they emit light at specific wavelengths characteristic of those atoms Discrete Absorption Spectra Discrete Absorption Spectra When white light passes through atoms light is absorbed at specific wavelengths Several elements were first observed in absorption spectra from the sun 11 12

4 Probing the Atom The electron was discovered by J.J. Thomson in 1897 Related to electricity, lightning In 1911, Ernest Rutherford bombarded a thin foil of gold with alpha particles from naturally occurring radioactive radium Rutherford s s Model of the Atom Rutherford s results showed that most of the mass of the atom was concentrated in the nucleus Rutherford proposed a model similar to the solar system with negative electrons orbiting a positive nucleus The Hydrogen Atom The simplest atom is the hydrogen atom Composed of 1 electron and 1 proton Electron has charge -1 Proton has charge +1 Proton is 2000 times heavier The electron is bound to the proton in its ground state We know now that the electron does not orbit the proton like the Earth orbits the Sun Heisenberg Uncertainty Principle We cannot simultaneously know the position and energy of a particle to arbitrary precision 15 Other Atoms The next most simple atom is helium A helium atom has 2 neutrons and 2 protons in its nucleus with 2 electrons orbiting the nucleus The neutron and proton have almost the same mass but the neutron has not charge Neutron not discovered until 1930 by Chadwick The helium atom is much more complicated than the hydrogen atom because the 2 electrons interact with each other 16

5 Isotopes The chemical properties of atoms are determined by the number protons and the number of electrons Light nuclei have roughly the same number of neutrons and protons Atomic nuclei can have different number of neutrons Isotopes Hydrogen has 3 naturally occurring isotopes Hydrogen, 1 H Stable Deuterium, 2 H Stable Tritium, 3 H Radioactive 17 The Bohr Atom Rutherford s model of the atom had some tragic flaws Orbiting electrons are accelerating and should radiate energy Lifetime of the atom should be seconds! Neils Bohr proposed that the electrons in the hydrogen atom could only exist in certain quantized orbits Jumping between the orbits required the emission or absorption of photons of a specific wavelength 18 Radiation and Absorption Whenever a hydrogen atom changes from one stationary state to another, energy is emitted or absorbed. When that energy takes the form of electromagnetic radiation then it has a frequency f (or as it is often called, ν) given by hν = E f - E i E f and E i are the final and initial energies respectively. If E i > E f, then radiation occurs while if E f > E i, then absorption takes place. In the diagram the first six levels are shown as well as the zero energy level (n = ). If the transition takes place from any n to n =1, it is referred to as a Lyman line. Transitions to n = 2 are called Balmer lines and so on. Four of the Balmer lines are in the visible range. 19 Photon Energies Visible light has wavelengths between 400 and 700 nm Photons have energy E = hf = hc/λ Photons from visible light then have energies between 700 nm E = 6.62 x * 3 x 10 8 / 700 x 10-9 = 2.8 x J = 1.8 ev 400 nm E = 6.62 x * 3 x 10 8 / 400 x 10-9 = 5.0 x J = 3.1 ev 20

6 Three Kinds of Spectra We will consider three kinds of spectra Continuous Light bulb or other source Emission Heated cloud of gas Absorption Continuous spectra passing through a cold cloud of gas Relative motion affects waves If a source of waves is moving toward you, the frequency is higher and the wavelength is shorter Doppler Shift If a source of waves is moving away from you the frequency is lower and the wavelength is longer Toward, shorter wavelength, blue shift Away, longer wavelength, red shift A familiar example is sound Red Shift Most of the objects in the universe seem to be moving away from us Evidence for Big Bang Red shift v = c λ/λ We observe the red shift of specific emission lines from known atoms Hydrogen or calcium have distinctive lines and are almost always present 23

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

The Nature of Electromagnetic Radiation

The Nature of Electromagnetic Radiation II The Nature of Electromagnetic Radiation The Sun s energy has traveled across space as electromagnetic radiation, and that is the form in which it arrives on Earth. It is this radiation that determines

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Suggested Chapter 7 Problems: 37, 39,

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn.

Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Light and radiation Light is a type of electromagnetic (EM) radiation, and light has energy. Many kinds of light exist. Ultraviolet (UV) light causes skin to tan or burn. Infrared (IR) light is used in

More information

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm

nm cm meters VISIBLE UVB UVA Near IR 200 300 400 500 600 700 800 900 nm Unit 5 Chapter 13 Electrons in the Atom Electrons in the Atom (Chapter 13) & The Periodic Table/Trends (Chapter 14) Niels Bohr s Model Recall the Evolution of the Atom He had a question: Why don t the

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

CHM1 Exam 4 Review. Topics. 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits - 0 amu 2.

CHM1 Exam 4 Review. Topics. 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits - 0 amu 2. Topics 1. Structure of the atom a. Proton nucleus + 1 amu b. Neutron nucleus 0 1 amu c. Electron orbits - 0 amu 2. Atomic symbols Mass number (protons + neutrons) 4+ charge 126C atomic number (# protons)

More information

Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions)

Name: Period: Date: Unit 3 Practice Review (the questions on the test are NOT the same as the review questions) Name: Period: Date: Unit 3 Review: things you will need to know 1. Atomic Theories: Know all the scientists in order. What did they discover? What experiment did they use? 2. Development of the periodic

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos Messages Interactions of Light and Matter The interactions determine everything we see, including what we observe in the Universe. What is light?

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above?

Use the following image to answer the next question. 1. Which of the following rows identifies the electrical charge on A and B shown above? Old Science 30 Physics Practice Test A on Fields and EMR Test Solutions on the Portal Site Use the following image to answer the next question 1. Which of the following rows identifies the electrical charge

More information

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh

Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Homework #4 Solutions ASTR100: Introduction to Astronomy Fall 2009: Dr. Stacy McGaugh Chapter 5: #50 Hotter Sun: Suppose the surface temperature of the Sun were about 12,000K, rather than 6000K. a. How

More information

Investigating electromagnetic radiation

Investigating electromagnetic radiation Investigating electromagnetic radiation Announcements: First midterm is 7:30pm on 2/17/09 Problem solving sessions M3-5 and T3-4,5-6. Homework due at 12:50pm on Wednesday. We are covering Chapter 4 this

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers

The Cosmic Perspective Seventh Edition. Light and Matter: Reading Messages from the Cosmos. Chapter 5 Reading Quiz Clickers Reading Quiz Clickers The Cosmic Perspective Seventh Edition Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life How do we experience light? How do light and matter interact?

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation

Physics Open House. Faraday's Law and EM Waves Change in the magnetic field strength in coils generates a current. Electromagnetic Radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic radiation: Light Infrared Ultraviolet Microwaves AM radio FM radio TV signals Cell phone signals

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

Lecture 8: Radiation Spectrum. Radiation. Electromagnetic Radiation

Lecture 8: Radiation Spectrum. Radiation. Electromagnetic Radiation Lecture 8: Radiation Spectrum The information contained in the light we receive is unaffected by distance The information remains intact so long as the light doesn t run into something along the way Since

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

More information

Full window version (looks a little nicer). Click button to get back to small framed version with content indexes.

Full window version (looks a little nicer). Click <Back> button to get back to small framed version with content indexes. Production of Light Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted!. See my copyright

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689

Light and Spectra. COLOR λ, nm COLOR λ, nm violet 405 yellow 579 blue 436 orange 623 green 492 red 689 Light and Spectra INTRODUCTION Light and color have intrigued humans since antiquity. In this experiment, you will consider several aspects of light including: a. The visible spectrum of colors (red to

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

Light, Light Bulbs and the Electromagnetic Spectrum

Light, Light Bulbs and the Electromagnetic Spectrum Light, Light Bulbs and the Electromagnetic Spectrum Spectrum The different wavelengths of electromagnetic waves present in visible light correspond to what we see as different colours. Electromagnetic

More information

Chapter 7. Quantum Theory and Atomic Structure

Chapter 7. Quantum Theory and Atomic Structure Chapter 7. Quantum Theory and Atomic Structure A problem arose in Rutherford s nuclear model. A nucleus and electron attract each other; to remain apart the electron must move. The energy of the electron

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

Solar Energy Production

Solar Energy Production Solar Energy Production We re now ready to address the very important question: What makes the Sun shine? Why is this such an important topic in astronomy? As humans, we see in the visible part of the

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Semester 2. Final Exam Review

Semester 2. Final Exam Review Semester 2 Final Exam Review Motion and Force Vocab Motion object changes position relative to a reference point. Speed distance traveled in a period of time. Velocity speed in a direction. Acceleration

More information

Name: Class: Date: ID: A

Name: Class: Date: ID: A Name: Class: _ Date: _ Practice Quiz 4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What is the wavelength of the longest wavelength light that can

More information

Chapter 2 Electromagnetic Radiation

Chapter 2 Electromagnetic Radiation Chapter 2 Electromagnetic Radiation Bohr demonstrated that information about the structure of hydrogen could be gained by observing the interaction between thermal energy (heat) and the atom. Many analytical

More information

Emission of Light & Atomic Models 1

Emission of Light & Atomic Models 1 Emission of Light & Atomic Models 1 Objective At the end of this activity you should be able to: o Explain what photons are, and be able to calculate their energies given either their frequency or wavelength.

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2 Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right

More information

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts?

Light. Light. Overview. In-class activity. What are waves? In this section: PSC 203. What is it? Your thoughts? Light PSC 203 Overview In this section: What is light? What is the EM Spectrum? How is light created? What can we learn from light? In-class activity Discuss your answers in groups of 2 Think of as many

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

LIGHT AND ELECTROMAGNETIC RADIATION

LIGHT AND ELECTROMAGNETIC RADIATION LIGHT AND ELECTROMAGNETIC RADIATION Light is a Wave Light is a wave motion of radiation energy in space. We can characterize a wave by three numbers: - wavelength - frequency - speed Shown here is precisely

More information

Electromagnetic Radiation

Electromagnetic Radiation Activity 17 Electromagnetic Radiation Why? Electromagnetic radiation, which also is called light, is an amazing phenomenon. It carries energy and has characteristics of both particles and waves. We can

More information

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE

AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE AP CHEMISTRY CHAPTER REVIEW CHAPTER 6: ELECTRONIC STRUCTURE AND THE PERIODIC TABLE You should be familiar with the wavelike properties of light: frequency ( ), wavelength ( ), and energy (E) as well as

More information

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom

Chapter 6 Electromagnetic Radiation and the Electronic Structure of the Atom Chapter 6 In This Chapter Physical and chemical properties of compounds are influenced by the structure of the molecules that they consist of. Chemical structure depends, in turn, on how electrons are

More information

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

More information

Emission Spectra of Elements

Emission Spectra of Elements Fall 2003 Emission Spectra of Elements Purpose: To compare and contrast the emission spectra of various gases. Investigate quantitatively the emission spectrum of hydrogen and relate it to Bohr's theory

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Electromagnetic Radiation (including visible light)

Electromagnetic Radiation (including visible light) An expert is a man who has made all the mistakes, which can be made in a narrow field. Neils Bohr Electromagnetic Radiation (including visible light) Behaves like a particle. light particles are called

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

Waves Sound and Light

Waves Sound and Light Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have

More information

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England

2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered

More information

Electron Energy and Light

Electron Energy and Light Why? Electron Energy and Light How does light reveal the behavior of electrons in an atom? From fireworks to stars, the color of light is useful in finding out what s in matter. The emission of light by

More information

Section 1 Electromagnetic Waves

Section 1 Electromagnetic Waves Section 1 Electromagnetic Waves What are electromagnetic waves? What do microwaves, cell phones, police radar, television, and X-rays have in common? All of them use electromagnetic waves Electromagnetic

More information

Astronomy 114 Summary of Important Concepts #1 1

Astronomy 114 Summary of Important Concepts #1 1 Astronomy 114 Summary of Important Concepts #1 1 1 Kepler s Third Law Kepler discovered that the size of a planet s orbit (the semi-major axis of the ellipse) is simply related to sidereal period of the

More information

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity

AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity AP Chemistry A. Allan Chapter 7 Notes - Atomic Structure and Periodicity 7.1 Electromagnetic Radiation A. Types of EM Radiation (wavelengths in meters) 10-1 10-10 10-8 4 to 7x10-7 10-4 10-1 10 10 4 gamma

More information

The Early History of Quantum Mechanics

The Early History of Quantum Mechanics Chapter 2 The Early History of Quantum Mechanics In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie, Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born,

More information

Nuclear Reactions- chap.31. Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my!

Nuclear Reactions- chap.31. Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my! Nuclear Reactions- chap.31 Fission vs. fusion mass defect..e=mc 2 Binding energy..e=mc 2 Alpha, beta, gamma oh my! Definitions A nucleon is a general term to denote a nuclear particle - that is, either

More information

Newton s laws of motion and gravity

Newton s laws of motion and gravity Newton s laws of motion and gravity 1. Every body continues in a state of rest or uniform motion (constant velocity) in a straight line unless acted on by a force. (A deeper statement of this law is that

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

PRACTICE EXAM IV P202 SPRING 2004

PRACTICE EXAM IV P202 SPRING 2004 PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

Atomic Theory. page 1

Atomic Theory. page 1 Atomic Theory I. Handout: Condensed Unit Notes II. Black Box Model III. Early Theories - 400 B.C. i. Common Greek theory was that all matter consisted of four "elements" - earth, air, fire, and water.

More information

Answer: b. Answer: a. Answer: d

Answer: b. Answer: a. Answer: d Practice Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes

More information

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion

Lecture 7: Light Waves. Newton s Laws of Motion (1666) Newton s First Law of Motion Lecture 7: Light Waves Isaac Newton (1643-1727) was born in the year Galileo died He discovered the Law of Gravitation in 1665 He developed the Laws of Mechanics that govern all motions In order to solve

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Phys 2310 Wed. Sept. 21, 2016 Today s Topics

Phys 2310 Wed. Sept. 21, 2016 Today s Topics Phys 2310 Wed. Sept. 21, 2016 Today s Topics - Brief History of Light & Optics Electromagnetic Spectrum Electromagnetic Spectrum Visible, infrared & ultraviolet Wave/Particle Duality (waves vs. photons)

More information

Chapter 4 Review. Name: Class: Date:

Chapter 4 Review. Name: Class: Date: Name: Class: Date: Chapter 4 Review 1. According to, all matter was made up of four elements: earth, air, fire, and water. 2. Unlike Democritus, Aristotle did not believe that matter was composed of tiny,

More information

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski

WELCOME to Aurorae In the Solar System. J.E. Klemaszewski WELCOME to Aurorae In the Solar System Aurorae in the Solar System Sponsoring Projects Galileo Europa Mission Jupiter System Data Analysis Program ACRIMSAT Supporting Projects Ulysses Project Outer Planets

More information

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.

Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked

More information

Atomic Theory. Unit 3 Development of the Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. Unit 3 Development of the Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? In the nucleus 2. What is located in the nucleus? Neutrons and protons 3. What is the negative particle

More information

Atoms and Photons: Origins of the Quantum Theory

Atoms and Photons: Origins of the Quantum Theory Chapter 1 Atoms and Photons: Origins of the Quantum Theory Atomic and Subatomic Particles The notion that the building blocks of matter are invisibly tiny particles called atoms is usually traced back

More information

The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom

The Atom. Unit 3 Atomic Structure And Nuclear Chemistry. Ancient Ideas of the Atom. Ancient Ideas of the Atom. Ancient Ideas of the Atom 1 The Atom Unit 3 Atomic Structure And Nuclear Chemistry What are the basic parts of an atom? How is an atom identified? What is nuclear chemistry? How is a nuclear equation written? Atom Smallest particle

More information

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves

STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to

More information

Electromagnetic Radiation (EMR) and Remote Sensing

Electromagnetic Radiation (EMR) and Remote Sensing Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through

More information

UNIT: Electromagnetic Radiation and Photometric Equipment

UNIT: Electromagnetic Radiation and Photometric Equipment UNIT: Electromagnetic Radiation and Photometric Equipment 3photo.wpd Task Instrumentation I To review the theory of electromagnetic radiation and the principle and use of common laboratory instruments

More information

Welcome to Chemistry!

Welcome to Chemistry! Welcome to Chemistry! Introduction Lecturer: Dr Adrian George (Chemistry room 224; adrian.george@sydney.edu.au) General administration and course structure Tutorials and tutorial quizzes (3 quizzes 15%

More information

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name: Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007 Name: Directions: Listed below are twenty (20) multiple-choice questions based on the material covered by the lectures this past week. Choose

More information

ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS

ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS ATOMS: ATOMIC STRUCTURE QUESTIONS AND ANSWERS QUESTION ONE: MODELS OF THE ATOM (2011;1) At different times scientists have proposed various descriptions or models of the atom to match experimental evidence

More information

Cosmic Journey: Teacher Packet

Cosmic Journey: Teacher Packet Cosmic Journey: Teacher Packet Compiled by: Morehead State University Star Theatre with help from Bethany DeMoss Table of Contents Table of Contents 1 Corresponding Standards 2 Vocabulary 4 Sizing up the

More information

Flame Tests & Electron Configuration

Flame Tests & Electron Configuration Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the

More information

Physics/Science *P41764A0120* Edexcel GCSE P41764A. Unit P1: Universal Physics. Higher Tier. Thursday 8 November 2012 Morning Time: 1 hour

Physics/Science *P41764A0120* Edexcel GCSE P41764A. Unit P1: Universal Physics. Higher Tier. Thursday 8 November 2012 Morning Time: 1 hour Write your name here Surname Other names Edexcel GCSE Centre Number Physics/Science Unit P1: Universal Physics Thursday 8 November 2012 Morning Time: 1 hour You must have: Calculator, ruler Candidate Number

More information

Grade 8 Science Chapter 4 Notes

Grade 8 Science Chapter 4 Notes Grade 8 Science Chapter 4 Notes Optics the science that deals with the properties of light. Light a form of energy that can be detected by the human eye. The History of Optics (3 Scientists): 1. Pythagoras

More information

Lecture 1. The nature of electromagnetic radiation.

Lecture 1. The nature of electromagnetic radiation. Lecture 1. The nature of electromagnetic radiation. 1. Basic introduction to the electromagnetic field: Dual nature of electromagnetic radiation Electromagnetic spectrum. Basic radiometric quantities:

More information

Preview of Period 3: Electromagnetic Waves Radiant Energy II

Preview of Period 3: Electromagnetic Waves Radiant Energy II Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How

More information

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

5 Early Atomic Theory and Structure. Chapter Outline. Dalton s Model of the Atom. Dalton s Model of the Atom. Dalton s Model of the Atom 10/2/2013

5 Early Atomic Theory and Structure. Chapter Outline. Dalton s Model of the Atom. Dalton s Model of the Atom. Dalton s Model of the Atom 10/2/2013 5 Early Atomic Theory and Structure Chapter Outline 5.1 5.2 Electric Charge A. Discovery of Ions 5.3 Subatomic Parts of the Atom Lightning occurs when electrons move to neutralize charge difference between

More information