Grade 7 Mathematics Item Specification C1 TB Task Model 1
|
|
|
- Amberly Banks
- 9 years ago
- Views:
Transcription
1 Task Model 1 Graphing DOK Level 2 7.NS.A.1b Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. Prompt Features: The student is prompted to construct a model on the number line that corresponds to given information. o Mathematical operations involving addition and subtraction are easier when the summands are positive. o The majority of items written to this task model should use integers. TM1a Stimulus: The student is presented with a number line with a labeled point at a rational number. Example Stem: What numbers are located exactly 3 5 units from point P on the number line? Use the Add Point tool to plot the location of these numbers on the number line. Evidence Required: 1. The student interprets rational number values on a number line, including modeling addition and subtraction expressions. Interaction: Add Point and Delete tools should be provided for students to plot points on the number line containing snap-to regions at every tick mark. Rubric: (1 point) The student plots the exact location of both points 7 (e.g., and 1). 3 Graphing Accessibility Note: Graphing items are not currently able to be Brailled. Minimize the number of items developed to this TM. 6 Version 3.0
2 Task Model 1 Multiple Choice, multiple correct response 7.NS.A.1b Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. 1. The student interprets rational number values on a number line, including modeling addition and subtraction expressions. Prompt Features: The student is prompted to identify the sum or difference of rational numbers given a number line. All numbers should be integers. TM1b Stimulus: The student is presented with a number line with two labeled points at least 3 units apart. Example Stem: Select all expressions that show the distance between P and Q. A. 5 ( 8) B C D. 5 + ( 8) Answer Choices: Answer choices should involve using absolute value signs, such 5+8. Distractors should include using a wrong operation, number, or sign(s). Rubric: (1 point) Student selects all correct expressions and no incorrect expressions (e.g., A and B). Multiple Choice, multiple correct response 7 Version 3.0
3 Task Model 1 Multiple Choice, multiple correct response DOK Level 2 7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, p q = p + ( q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. 1. The student interprets rational number values on a number line, including modeling addition and subtraction expressions. Version 3 Update: Retired TM1c and TM1d and added new TM1e. Prompt Features: The student is prompted to identify equivalent expressions in the form p q = p + ( q). All numbers should be integers. TM1e Stimulus: The student is presented with an expression in the form p q and asked to identify all equivalent expressions. Example Stem: Select all expressions that equal -7 (-12). A. 7+ (-12) B (-12) C D Rubric: (1 point) Student selects all correct expressions and no incorrect expressions (e.g., B and C). Multiple Choice, multiple correct response 8 Version 3.0
4 Task Model 2 Equation/Numeric 7.NS.1d Apply properties of strategies to add and subtract rational 2. The student applies properties of strategies to add and subtract rational Prompt Features: The student is prompted to identify the sum or difference of rational Numbers can be presented on a vertical number line if more than three points with labels are graphed. o Mathematical operations involving addition and subtraction are easier when the summands are positive. o Summands consisting of integers are easier than summands that include rational numbers such as decimals, fractions or mixed o A number line containing whole number scaling is easier than one containing rational number scaling. TM2a Stimulus: The student is presented with a problem in a real-world context involving the addition or subtraction of rational numbers written in the same form on a number line. Example Stem: The number line shows four elevations in Death Valley National Park. Enter the difference, in feet, between the elevation at Zabriskie Point and Furnace Creek. Rubric: (1 point) Correct answer will be a rational number (e.g., 826). Equation/Numeric 9 Version 3.0
5 Task Model 2 Equation/Numeric 7.NS.1d Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. d. Apply properties of strategies to add and subtract rational 2. The student applies properties of strategies to add and subtract rational Version 3 Update: TM2b stimulus guidelines and example stems updated to emphasize the use of strategies and properties of operations. Prompt Features: The student is prompted to apply properties of strategies to add and subtract rational At least one of the numbers must be negative. Items should be designed to encourage use of strategies and properties of operations. o Summands consisting of integers are easier than summands that include rational numbers such as decimals, fractions or mixed TM2b Stimulus: The student is presented with an expression involving the sum or difference of rational Example Stem 1: Enter the value of 14 + (-22) Example Stem 2: Enter the value of (-3) (-0.9). Rubric: (1 point) Student accurately computes the value of the expression, which is a rational number (e.g., -44; 0). Equation/Numeric 10 Version 3.0
6 Task Model 3 Multiple Choice, multiple correct response 7.NS.A.2b Apply and extend previous understandings of multiplication and division and of fractions to multiply b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then (p/q) = ( p)/q = p/( q). Interpret quotients of rational numbers by describing real-world contexts. 3. The student applies properties of strategies to multiply Prompt Features: The student is prompted to identify equivalent representations of fractions involving negative signs. TM3b Stimulus: The student is presented with an expression of the form p p or where p and q are integers, and q 0. q q Example Stem: Select all values equal to A. B. C. D. E Answer Choices: Answer choices are rational numbers in the form of fractions. Distractors should include incorrect values which may be of the form p p p p, q, q,, q q p, q p q. Rubric: (1 point) Student selects all the correct expressions (e.g., B, C, and E). Multiple Choice, multiple correct response Version 3 Update: TM3a retired. 11 Version 3.0
7 Task Model 3 Equation/Numeric Prompt Features: The student is prompted to determine the value of a multiplication or division expression with rational Many of these should be designed to make properties of operations a desirable strategy. 7.NS.A.2c Apply and extend previous understandings of multiplication and division and of fractions to multiply c. Apply properties of strategies to multiply 3. The student applies properties of strategies to multiply Version 3 Update: Added new example stems. Quotients must not result in a repeating decimal. Rational numbers may be in different forms (integer, fraction/mixed number, decimal). o Use integer factors and/or divisors. o Use fractions and/or decimals. o Use of parentheses in mathematical operations. TM3c Stimulus: The student is presented with an expression involving products or quotients of rational Example Stem 1: Enter the value of 1 2 (1.7). Example Stem 2: Enter the value of (-8)(45)( 1 8 ). Example Stem 3: Enter the value of (0.01)(-0.1)(10)(-100). Example Stem 4: Enter the value of (0.45) Rubric: (1 point) Student accurately calculates the product or quotient, which is a rational number (e.g., 0.85; -45; 1; 0.5 or equivalents). Equation/Numeric 12 Version 3.0
8 Task Model 3 Multiple Choice, single correct response 7.NS.2a Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as ( 1)( 1) = 1 and the rules for multiplying signed Interpret products of rational numbers by describing real-world contexts. 3. The student applies properties of strategies to multiply Version 3 Update: Added new TM3d. Prompt Features: The student is prompted to multiply rational numbers in a real-world context. o Mathematical operations involving addition and subtraction are easier when the terms are positive. o Terms consisting of integers are easier than terms which include rational numbers such as decimals, fractions or mixed o Use of parentheses in mathematical operations. TM3d Stimulus: The student is presented with a verbal description of a real-world situation with multiplication of rational Example Stem: If a bank represents deposits with positive numbers and withdrawals as negative numbers, what could 5 ( 20) represent? A. Five deposits of $20. B. Five withdrawals of $20. C. A $5 deposit followed by a $20 withdrawal D. A $5 withdrawal followed by a $20 deposit Rubric: (1 point) The student selects the correct response (e.g., B). Multiple choice, single correct response 13 Version 3.0
9 Task Model 4 Equation/Numeric 7.NS.A.2d Apply and extend previous understandings of multiplication and division and of fractions to multiply d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats. 4. The student converts from a fractional form of rational numbers to a decimal form of rational Prompt Features: The student is prompted to convert a positive or negative fraction to a decimal equivalent. Quotients must not result in a repeating decimal. The number is given in fraction form. o Commonly used fractions vs. not commonly used fractions. o Numerator and/or denominator negative. TM4 Stimulus: The student is presented with a rational number in fraction form. Example Stem: Enter the decimal equivalent of 8 5. Rubric: (1 point) Student gives the correct decimal equivalent (e.g., 0.625). Interaction: Make sure student cannot enter a fraction in the response space. Equation/Numeric 14 Version 3.0
10 Task Model 5 Equation/Numeric DOK Level 2 7.NS.A.3 Solve real-world and mathematical problems involving the four operations with rational Prompt Features: The student is prompted to solve real-world and mathematical problems involving the four operations with rational Rational numbers may be in any form. Quotients must not result in a repeating decimal. o Computations with integers may be easier than computations with non-integer rational numbers such as decimals, fractions or mixed o The number of differing mathematical operations increases difficulty. o Use of parentheses in mathematical operations. 5. The student solves real-world and mathematical problems involving the four operations with rational TM5a Stimulus: The student is presented with a mathematical expression involving a combination of addition/subtraction and multiplication/division with rational Example Stem: Enter the value of ( ). Rubric: (1 point) Student accurately calculates the value, which is a rational number (e.g., or ). Equation/Numeric TM5b Stimulus: The student is presented with a one-step real-world problem involving addition, subtraction, multiplication, or division with rational Example Stem: Mark buys a wooden board that is 7 1 feet long. 2 The cost of the board is $0.50 per foot, including tax. What is the total cost, in dollars, of Mark s board? Rubric: (1 point) Correct answer will be a single numeric value. (e.g., 3.75). Equation/Numeric 15 Version 3.0
HS Mathematics Item Specification C1 TO
Task Model 1 Multiple Choice, single correct response G-SRT.C.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of acute
Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
Fractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
Number Sense and Operations
Number Sense and Operations representing as they: 6.N.1 6.N.2 6.N.3 6.N.4 6.N.5 6.N.6 6.N.7 6.N.8 6.N.9 6.N.10 6.N.11 6.N.12 6.N.13. 6.N.14 6.N.15 Demonstrate an understanding of positive integer exponents
Grade 7 Unit 1: Add, Subtract, Multiply and Divide Rational Numbers (6 Weeks)
Grade 7 Unit : Add, Subtract, Multiply and Divide Rational Numbers (6 Weeks) Stage Desired Results Established Goals Unit Description Apply and extend previous understandings of operations with fractions
Grade 6 Mathematics Common Core State Standards
Grade 6 Mathematics Common Core State Standards Standards for Mathematical Practice HOW make sense of problems, persevere in solving them, and check the reasonableness of answers. reason with and flexibly
Grade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills
Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate
Use order of operations to simplify. Show all steps in the space provided below each problem. INTEGER OPERATIONS
ORDER OF OPERATIONS In the following order: 1) Work inside the grouping smbols such as parenthesis and brackets. ) Evaluate the powers. 3) Do the multiplication and/or division in order from left to right.
Grade 6 Mathematics Performance Level Descriptors
Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this
Paramedic Program Pre-Admission Mathematics Test Study Guide
Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
Florida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower
Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including
Mathematics. Mathematical Practices
Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with
Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.
2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
Negative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
Measurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve real-world and mathematical
Assessment Anchors and Eligible Content
M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
Common Core State Standards for Mathematics Accelerated 7th Grade
A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting
Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.
_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic
of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433
Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
Scope and Sequence KA KB 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B
Scope and Sequence Earlybird Kindergarten, Standards Edition Primary Mathematics, Standards Edition Copyright 2008 [SingaporeMath.com Inc.] The check mark indicates where the topic is first introduced
Mathematics Task Arcs
Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number
Unit 7 The Number System: Multiplying and Dividing Integers
Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
Performance Level Descriptors Grade 6 Mathematics
Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.1-2 Grade 6 Math : Sub-Claim A The student solves problems involving the Major Content for grade/course with
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised For ACCESS TO APPRENTICESHIP
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades
Lesson Plan Warehouse Grade 7 Adding Integers
CCSSM: Grade 7 DOMAIN: The Number System Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. Standard: 7.NS.1: Apply
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions
A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25
2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
Decimals Adding and Subtracting
1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
Common Core Standards for Fantasy Sports Worksheets. Page 1
Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting
Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
Comparing and Plotting Rational Numbers on a Number Line
Comparing and Plotting Rational Numbers on a Number Line Student Probe Plot 4 on the number Lesson Description In this lesson students will plot rational numbers on a number This lesson is limited to positive
Opposites are all around us. If you move forward two spaces in a board game
Two-Color Counters Adding Integers, Part II Learning Goals In this lesson, you will: Key Term additive inverses Model the addition of integers using two-color counters. Develop a rule for adding integers.
Voyager Sopris Learning Vmath, Levels C-I, correlated to the South Carolina College- and Career-Ready Standards for Mathematics, Grades 2-8
Page 1 of 35 VMath, Level C Grade 2 Mathematical Process Standards 1. Make sense of problems and persevere in solving them. Module 3: Lesson 4: 156-159 Module 4: Lesson 7: 220-223 2. Reason both contextually
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
Math Released Set 2015. Algebra 1 PBA Item #13 Two Real Numbers Defined M44105
Math Released Set 2015 Algebra 1 PBA Item #13 Two Real Numbers Defined M44105 Prompt Rubric Task is worth a total of 3 points. M44105 Rubric Score Description 3 Student response includes the following
Florida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
Free Pre-Algebra Lesson 55! page 1
Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
Math. MCC6.RP.1 Understand the concept of a ratio and use
MCC6.RP.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. For example, The ratio of wings to beaks in the bird house at the zoo was 2:1,
Pre-Algebra - Order of Operations
0.3 Pre-Algebra - Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
Multiplication and Division with Rational Numbers
Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up
Quick Reference ebook
This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference ebook Click on Contents or Index in the left panel to locate a topic. The math facts listed
Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
Topic: Unit 1-Variables, Expressions, and Integers
Grade 7th Topic: Unit 1-Variables, Expressions, and Integers Essential Questions/Enduring CC.7.NS.1 Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Common Core Unit Summary Grades 6 to 8
Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations
Adding and Subtracting Positive and Negative Numbers
Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
6 Mathematics Curriculum
New York State Common Core 6 Mathematics Curriculum GRADE Table of Contents 1 Rational Numbers GRADE 6 MODULE 3 Module Overview... 3 Topic A: Understanding Positive and Negative Numbers on the Number Line
2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
Grade 5 Common Core State Standard
2.1.5.B.1 Apply place value concepts to show an understanding of operations and rounding as they pertain to whole numbers and decimals. M05.A-T.1.1.1 Demonstrate an understanding that 5.NBT.1 Recognize
ADDITION. Children should extend the carrying method to numbers with at least four digits.
Y5 AND Y6 ADDITION Children should extend the carrying method to numbers with at least four digits. 587 3587 + 475 + 675 1062 4262 1 1 1 1 1 Using similar methods, children will: add several numbers with
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
Sample Problems. Practice Problems
Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these
Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008. Chapter 1: Place, Value, Adding, and Subtracting
Grade 5 Math Pacing Guide Page 1 of 9 Grade 5 Mathematics Curriculum Guideline Scott Foresman - Addison Wesley 2008 Test Preparation Timeline Recommendation: September - November Chapters 1-5 December
Algebra 1: Basic Skills Packet Page 1 Name: Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14
Algebra 1: Basic Skills Packet Page 1 Name: Number Sense: Add, Subtract, Multiply or Divide without a Calculator Integers 1. 54 + 35 2. 18 ( 30) 3. 15 ( 4) 4. 623 432 5. 8 23 6. 882 14 Decimals 7. 43.21
Accuplacer Arithmetic Study Guide
Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how
Graphic Organizers SAMPLES
This document is designed to assist North Carolina educators in effective instruction of the new Common Core State and/or North Carolina Essential Standards (Standard Course of Study) in order to increase
CONTENTS. Please note:
CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
Tennessee Mathematics Standards 2009-2010 Implementation. Grade Six Mathematics. Standard 1 Mathematical Processes
Tennessee Mathematics Standards 2009-2010 Implementation Grade Six Mathematics Standard 1 Mathematical Processes GLE 0606.1.1 Use mathematical language, symbols, and definitions while developing mathematical
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
New York State Testing Program Grade 3 Common Core Mathematics Test. Released Questions with Annotations
New York State Testing Program Grade 3 Common Core Mathematics Test Released Questions with Annotations August 2013 THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY
Ways We Use Integers. Negative Numbers in Bar Graphs
Ways We Use Integers Problem Solving: Negative Numbers in Bar Graphs Ways We Use Integers When do we use negative integers? We use negative integers in several different ways. Most of the time, they are
3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
DECIMAL COMPETENCY PACKET
DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are
Chapter 111. Texas Essential Knowledge and Skills for Mathematics. Subchapter B. Middle School
Middle School 111.B. Chapter 111. Texas Essential Knowledge and Skills for Mathematics Subchapter B. Middle School Statutory Authority: The provisions of this Subchapter B issued under the Texas Education
Charlesworth School Year Group Maths Targets
Charlesworth School Year Group Maths Targets Year One Maths Target Sheet Key Statement KS1 Maths Targets (Expected) These skills must be secure to move beyond expected. I can compare, describe and solve
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
Major Work of the Grade
Counting and Cardinality Know number names and the count sequence. Count to tell the number of objects. Compare numbers. Kindergarten Describe and compare measurable attributes. Classify objects and count
Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
Mathematics Common Core Sample Questions
New York State Testing Program Mathematics Common Core Sample Questions Grade7 The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and
Prentice Hall: Middle School Math, Course 1 2002 Correlated to: New York Mathematics Learning Standards (Intermediate)
New York Mathematics Learning Standards (Intermediate) Mathematical Reasoning Key Idea: Students use MATHEMATICAL REASONING to analyze mathematical situations, make conjectures, gather evidence, and construct
Students will be able to simplify and evaluate numerical and variable expressions using appropriate properties and order of operations.
Outcome 1: (Introduction to Algebra) Skills/Content 1. Simplify numerical expressions: a). Use order of operations b). Use exponents Students will be able to simplify and evaluate numerical and variable
Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2
4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year
Big Bend Community College. Beginning Algebra MPC 095. Lab Notebook
Big Bend Community College Beginning Algebra MPC 095 Lab Notebook Beginning Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond
