CHAPTER 10. Rotation Motion. Dr. Abdallah M. Azzeer Angular velocity and angular acceleration

Size: px
Start display at page:

Download "CHAPTER 10. Rotation Motion. Dr. Abdallah M. Azzeer Angular velocity and angular acceleration"

Transcription

1 CHAPTER 10 Rotaton Moton D. Abdallah M. Azzee Angula velocty and angula acceleaton A compact dsc otatng about a fxed axs though O pependcula to the plane of the fgue. (a) In ode to defne angula poston fo the dsc, a fxed efeence lne s chosen. A patcle at P s located at a dstance fom the otaton axs at O. (b) As the dsc otates, pont P moves though an ac length s on a ccula path of adus. Angle s θ = The SI unt of θ s adan (ad), whch s a pue numbe because t s a ato. D. Abdallah M. Azzee Page 1

2 ONE adan s the angle subtended by an ac length equal to the adus of the ac π 1 ev = 360 o = = π ad 1 ad = 57.3 o = ev π θ ( ad ) = θ (deg) o 180 The angle n ad s postve f t s counteclockwse wth espect to the postve x axs. The angula dsplacement s : θ = θ θ f D. Abdallah M. Azzee 3 The aveage angula speed s : θ θ θ f ω = = t f t t The nstantaneous angula velocty s : θ d θ ω = lm = t 0 t dt The SI unt of ω s ad/s The angula velocty ω s postve f the otaton s counteclockwse (when θ s nceasng). D. Abdallah M. Azzee 4 Page

3 The aveage angula acceleaton s : α ω ω ω t t t f = = f The nstantaneous angula velocty s : ω d ω α = lm = t 0 t d t The SI unt of α s ad/s D. Abdallah M. Azzee otatonal knematcs Rotatonal Moton wth Constant acceleaton Analogy between lnea and angula quanttes: x θ v ω a α D. Abdallah M. Azzee 6 Page 3

4 Example 10.1 A wheel otates wth a constant angula acceleaton of 3.50 ad/s. (a) If the angula speed of the wheel s.00 ad/s at t =0, though what angle does the wheel otate n.00s?and (b) how many ev has done dung ths nteval? 1 θf θ = ωt + αt = (.00) 11.0 = ev = 1.75 ev π o (c) What s the angula speed =630at t=.00 s? ω = ω + αt f = = 9.00 ad / s READ the est of example D. Abdallah M. Azzee Relatonshp Between Angula and Lnea Quanttes The poston : s = θ ( adan measue ) Note that fo all lnea-angula elatons, we must use the adan unt. The speed : ds dθ = dt dt v = ω ( adan measue ) The peod of evoluton T s π T = v π T = ω ( adan measue) D. Abdallah M. Azzee 8 Page 4

5 The acceleaton dv dω = dt dt a = α ( adan measue) t Fo a patcle n a ccula path, the centpetal acceleaton s : v a = = ω ( adan measue) a ponts adally nwad As a gd object otates about a fxed axs though O, the pont P expeences a tangental component of lnea acceleaton at and a adal component of lnea acceleaton a. The total lnea acceleaton of ths pont s a = a t + a. D. Abdallah M. Azzee 9 Dffeences between a and a t a s known as the adal component of lnea acceleaton, a t s known as the tangental component of the lnea acceleaton. a = ω s ponted adally nwad. It s non-zeo even f thee s no angula acceleaton. a = α s tangental to the otatonal path of the patcle, t s zeo f the t angula velocty s constant. Total lnea acceleaton s ( ) ( ) 4 t a = a + a = α + ω = α + ω D. Abdallah M. Azzee 10 Page 5

6 Example 10. Audo nfomaton on compact dscs ae tansmtted dgtally though the eadout system consstng of lase and lenses. The dgtal nfomaton on the dsc ae stoed by the pts and flat aeas on the tack. Snce the speed of eadout system s constant, t eads out the same numbe of pts and flats n the same tme nteval. In othe wods, the lnea speed s the same no matte whch tack s played. (a) Assumng the lnea speed s 1.3 m/s, fnd the angula speed of the dsc n evolutons pe mnute when the nne most (=3 mm) and oute most tacks (=58mm) ae ead. Usng the elatonshp between angula and tangental speed v = ω D. Abdallah M. Azzee 11 = 3 mm = 58 mm v 1.3 m / s 1.3 ω = = = = 56.5 ad / s = 9.00 ev / s = ev / mn 3 3 mm m / s 1.3 ω = = =.4 ad / s =.1 10 ev / mn 3 58 mm (b) The maxmum playng tme of a standad musc CD s 74 mnutes and 33 seconds. How many evolutons does the dsk make dung that tme? ( + ) ( + ) ω ω ev / mn 375 / mn θf = θ + ω t = 0 + ev / s 4473 s =.8 10 ev 60 f ω = = = ev (c) What s the total length of the tack past though the eadout mechansm? l = v t = 1.3 m/ s 4473 s= m t (d) What s the angula acceleaton of the CD ove the 4473 s tme nteval, assumng constant α? ( ω ω ) ( ) ad / s f 3 α = = = ad s t 4473s / D. Abdallah M. Azzee 1 Page 6

7 10-4. Rotatonal Knetc Enegy We teat the gd body as a collecton of patcles wth dffeent speeds, m s the mass of the th patcle and v s ts speed. The patcles move wth dffeent v but the same ω. Knetc enegy of a masslet, m, movng at a tangental speed, v, s 1 K = m v Snce a gd body s a collecton of masslets, the total knetc enegy of the gd object s K = m1v1 + mv + m3v = mv D. Abdallah M. Azzee K = K = m v = m ω = m ω 1 R 1 K R == m ω Snce moment of Ineta, I, s defned as I m Moment of Ineta The above expesson s smplfed as KR 1 = Iω Rotatonal Knetc Enegy: D. Abdallah M. Azzee 14 Page 7

8 Example 10.3 Oxygen Molecule d = m m = kg 1 1 ( ) ( ) 46 I = m = m d + m d = kg m d ω = ad/sec. 1 1 K R = Iω = J Cf) Aveage lnea knetc enegy at RT: 1 1 K L = Mv = J = 3K R D. Abdallah M. Azzee 15 Example 10.4 In a system conssts of fou small sphees as shown n the fgue, assumng the ad ae neglgble and the ods connectng the patcles ae massless, compute the moment of neta and the otatonal knetc enegy when the system otates about the y-axs at ω. Snce the otaton s about y axs, the moment of neta about y axs, I y, s I = m = Ma + Ma + m 0 + m 0 = Ma y 1 1 K R = Iω = ( Ma ) ω = Ma ω D. Abdallah M. Azzee 16 Page 8

9 Fnd the moment of neta and otatonal knetc enegy when the system otates on the x-y plane about the z-axs that goes though the ogn O. ( ) I = m = Ma + Ma + mb + mb = Ma + mb z 1 1 K R = Iω = ( Ma + mb ) ω = ( Ma + mb ) ω READ THE REST OF THE EXAMPLE D. Abdallah M. Azzee Calculaton of Moment of Ineta We defned the moment of neta as I m Moments of neta fo lage objects can be computed, f we assume the object conssts of small volume elements wth mass, m. The moment of neta fo the lage gd object s I = lm m = dm m 0 Usng the volume densty, ρ, eplace dm n the above equaton wth dv. dm ρ = dm = ρdv dv UNIT; kg.m D. Abdallah M. Azzee 18 Page 9

10 The moments of neta becomes I = ρ dv Example 10.5 Fnd the moment of neta of a unfom hoop of mass M and adus R about an axs pependcula to the plane of the hoop and passng though ts cente. The moment of neta s I = dm= R dm= MR What do you notce fom ths esult? The moment of neta fo ths object s the same as that of a pont of mass M at the dstance R. D. Abdallah M. Azzee 19 Example 10.6 Calculate the moment of neta of a unfom gd od of length L and mass M about an axs pependcula to the od and passng though ts cente of mass. The lne densty of the od s M λ = L M so the masslet s dm = λdx = dx L The moment of neta s L / x M M 1 3 I y = dm = dx = x L / L L M L L = 3L M L ML = = 3L L / L / D. Abdallah M. Azzee 0 Page 10

11 What s the moment of neta when the otatonal axs s at one end of the od. L x M M 1 3 I ' = dm dx x y = = 0 L L 3 0 M 3 M 3 = ( L ) 0 = ( L ) 3L 3L ML = 3 Wll ths be the same as the above. Why o why not? Snce the moment of neta s esstance to moton, t makes pefect sense fo t to be hade to move when t s otatng about the axs at one end. L D. Abdallah M. Azzee 1 Example 10.7 Ineta of Moment of a unfom sold cylnde Densty ρ M ρ πr l = M ρ = πr l l R di = dm = ρ π d l = πρl 3 d R 3 I πρl d = = ρπlr = MR 0 I = 1 MR D. Abdallah M. Azzee Page 11

12 Moments of Ineta of Homogeneous Rgd Objects wth Dffeent Geometes D. Abdallah M. Azzee 3 Page 1

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field

Gravitation. Definition of Weight Revisited. Newton s Law of Universal Gravitation. Newton s Law of Universal Gravitation. Gravitational Field Defnton of Weght evsted Gavtaton The weght of an object on o above the eath s the gavtatonal foce that the eath exets on the object. The weght always ponts towad the cente of mass of the eath. On o above

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

Electric Potential. otherwise to move the object from initial point i to final point f

Electric Potential. otherwise to move the object from initial point i to final point f PHY2061 Enched Physcs 2 Lectue Notes Electc Potental Electc Potental Dsclame: These lectue notes ae not meant to eplace the couse textbook. The content may be ncomplete. Some topcs may be unclea. These

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

More information

12. Rolling, Torque, and Angular Momentum

12. Rolling, Torque, and Angular Momentum 12. olling, Toque, and Angula Momentum 1 olling Motion: A motion that is a combination of otational and tanslational motion, e.g. a wheel olling down the oad. Will only conside olling with out slipping.

More information

Orbit dynamics and kinematics with full quaternions

Orbit dynamics and kinematics with full quaternions bt dynamcs and knematcs wth full quatenons Davde Andes and Enco S. Canuto, Membe, IEEE Abstact Full quatenons consttute a compact notaton fo descbng the genec moton of a body n the space. ne of the most

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

Phys 2101 Gabriela González. cos. sin. sin

Phys 2101 Gabriela González. cos. sin. sin 1 Phys 101 Gabiela González a m t t ma ma m m T α φ ω φ sin cos α τ α φ τ sin m m α τ I We know all of that aleady!! 3 The figue shows the massive shield doo at a neuton test facility at Lawence Livemoe

More information

PY1052 Problem Set 8 Autumn 2004 Solutions

PY1052 Problem Set 8 Autumn 2004 Solutions PY052 Poblem Set 8 Autumn 2004 Solutions H h () A solid ball stats fom est at the uppe end of the tack shown and olls without slipping until it olls off the ight-hand end. If H 6.0 m and h 2.0 m, what

More information

Rotation and Conservation of Angular Momentum

Rotation and Conservation of Angular Momentum Chapter 4. Rotaton and Conservaton of Angular Momentum Notes: Most of the materal n ths chapter s taken from Young and Freedman, Chaps. 9 and 0. 4. Angular Velocty and Acceleraton We have already brefly

More information

PCA vs. Varimax rotation

PCA vs. Varimax rotation PCA vs. Vamax otaton The goal of the otaton/tansfomaton n PCA s to maxmze the vaance of the new SNP (egensnp), whle mnmzng the vaance aound the egensnp. Theefoe the dffeence between the vaances captued

More information

Perturbation Theory and Celestial Mechanics

Perturbation Theory and Celestial Mechanics Copyght 004 9 Petubaton Theoy and Celestal Mechancs In ths last chapte we shall sketch some aspects of petubaton theoy and descbe a few of ts applcatons to celestal mechancs. Petubaton theoy s a vey boad

More information

Bending Stresses for Simple Shapes

Bending Stresses for Simple Shapes -6 Bendng Stesses fo Smple Sapes In bendng, te maxmum stess and amount of deflecton can be calculated n eac of te followng stuatons. Addtonal examples ae avalable n an engneeng andbook. Secton Modulus

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Exam 3: Equation Summary

Exam 3: Equation Summary MASSACHUSETTS INSTITUTE OF TECHNOLOGY Depatment of Physics Physics 8.1 TEAL Fall Tem 4 Momentum: p = mv, F t = p, Fext ave t= t f t= Exam 3: Equation Summay total = Impulse: I F( t ) = p Toque: τ = S S,P

More information

AP Physics C: Mechanics 2011 Free-Response Questions

AP Physics C: Mechanics 2011 Free-Response Questions AP Phyc C: Mechanc Fee-Repone Queton About the College Boa The College Boa a mon-ven not-fo-poft oganzaton that connect tuent to college ucce an oppotunty. Foune n 9, the College Boa wa ceate to epan acce

More information

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere.

Chapter 22. Outside a uniformly charged sphere, the field looks like that of a point charge at the center of the sphere. Chapte.3 What is the magnitude of a point chage whose electic field 5 cm away has the magnitude of.n/c. E E 5.56 1 11 C.5 An atom of plutonium-39 has a nuclea adius of 6.64 fm and atomic numbe Z94. Assuming

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter 11 Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand

A New replenishment Policy in a Two-echelon Inventory System with Stochastic Demand A ew eplenshment Polcy n a wo-echelon Inventoy System wth Stochastc Demand Rasoul Haj, Mohammadal Payesh eghab 2, Amand Babol 3,2 Industal Engneeng Dept, Shaf Unvesty of echnology, ehan, Ian (haj@shaf.edu,

More information

Experiment 6: Centripetal Force

Experiment 6: Centripetal Force Name Section Date Intoduction Expeiment 6: Centipetal oce This expeiment is concened with the foce necessay to keep an object moving in a constant cicula path. Accoding to Newton s fist law of motion thee

More information

Molecular Dynamics. r F. r dt. What is molecular dynamics?

Molecular Dynamics. r F. r dt. What is molecular dynamics? What s molecula dynamcs? Molecula Dynamcs Molecula dynamcs (MD) s a compute smulaton technque that allows one to pedct the tme evoluton of a system of nteactng patcles (atoms, molecules, ganules, etc.).

More information

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary

7 Circular Motion. 7-1 Centripetal Acceleration and Force. Period, Frequency, and Speed. Vocabulary 7 Cicula Motion 7-1 Centipetal Acceleation and Foce Peiod, Fequency, and Speed Vocabulay Vocabulay Peiod: he time it takes fo one full otation o evolution of an object. Fequency: he numbe of otations o

More information

Multiple choice questions [60 points]

Multiple choice questions [60 points] 1 Multiple choice questions [60 points] Answe all o the ollowing questions. Read each question caeully. Fill the coect bubble on you scanton sheet. Each question has exactly one coect answe. All questions

More information

Thick-Walled Cylinders and Press Fits. 2004 by W.H.Dornfeld PressCylinder:

Thick-Walled Cylinders and Press Fits. 2004 by W.H.Dornfeld PressCylinder: Thck-Walled Cylndes and Pess Fts 004 by W.H.Dnfeld PessCylnde: 1 Stesses n Thck-Walled Cylndes Thck-Walled cylndes have an aveage adus less than 0 tmes the wall thckness. σ σl They ae essuzed ntenally

More information

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization.

Keywords: Transportation network, Hazardous materials, Risk index, Routing, Network optimization. IUST Intenatonal Jounal of Engneeng Scence, Vol. 19, No.3, 2008, Page 57-65 Chemcal & Cvl Engneeng, Specal Issue A ROUTING METHODOLOGY FOR HAARDOUS MATIALS TRANSPORTATION TO REDUCE THE RISK OF ROAD NETWORK

More information

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses,

2 r2 θ = r2 t. (3.59) The equal area law is the statement that the term in parentheses, 3.4. KEPLER S LAWS 145 3.4 Keple s laws You ae familia with the idea that one can solve some mechanics poblems using only consevation of enegy and (linea) momentum. Thus, some of what we see as objects

More information

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to

4a 4ab b 4 2 4 2 5 5 16 40 25. 5.6 10 6 (count number of places from first non-zero digit to . Simplify: 0 4 ( 8) 0 64 ( 8) 0 ( 8) = (Ode of opeations fom left to ight: Paenthesis, Exponents, Multiplication, Division, Addition Subtaction). Simplify: (a 4) + (a ) (a+) = a 4 + a 0 a = a 7. Evaluate

More information

Lagrangian Dynamics: Virtual Work and Generalized Forces

Lagrangian Dynamics: Virtual Work and Generalized Forces Admssble Varatons/Vrtual Dsplacements 1 2.003J/1.053J Dynamcs and Control I, Sprng 2007 Paula Echeverr, Professor Thomas Peacock 4/4/2007 Lecture 14 Lagrangan Dynamcs: Vrtual Work and Generalzed Forces

More information

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2 Chapte 5 Example The helium atom has 2 electonic enegy levels: E 3p = 23.1 ev and E 2s = 20.6 ev whee the gound state is E = 0. If an electon makes a tansition fom 3p to 2s, what is the wavelength of the

More information

Gravitation. AP Physics C

Gravitation. AP Physics C Gavitation AP Physics C Newton s Law of Gavitation What causes YOU to be pulled down? THE EARTH.o moe specifically the EARTH S MASS. Anything that has MASS has a gavitational pull towads it. F α Mm g What

More information

A Coverage Gap Filling Algorithm in Hybrid Sensor Network

A Coverage Gap Filling Algorithm in Hybrid Sensor Network A Coveage Ga Fllng Algothm n Hybd Senso Netwok Tan L, Yang Mnghua, Yu Chongchong, L Xuanya, Cheng Bn A Coveage Ga Fllng Algothm n Hybd Senso Netwok 1 Tan L, 2 Yang Mnghua, 3 Yu Chongchong, 4 L Xuanya,

More information

Jet Engine. Figure 1 Jet engine

Jet Engine. Figure 1 Jet engine Jet Engne Prof. Dr. Mustafa Cavcar Anadolu Unversty, School of Cvl Avaton Esksehr, urkey GROSS HRUS INAKE MOMENUM DRAG NE HRUS Fgure 1 Jet engne he thrust for a turboet engne can be derved from Newton

More information

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013

PHYSICS 111 HOMEWORK SOLUTION #13. May 1, 2013 PHYSICS 111 HOMEWORK SOLUTION #13 May 1, 2013 0.1 In intoductoy physics laboatoies, a typical Cavendish balance fo measuing the gavitational constant G uses lead sphees with masses of 2.10 kg and 21.0

More information

I = Prt. = P(1+i) n. A = Pe rt

I = Prt. = P(1+i) n. A = Pe rt 11 Chapte 6 Matheatcs of Fnance We wll look at the atheatcs of fnance. 6.1 Sple and Copound Inteest We wll look at two ways nteest calculated on oney. If pncpal pesent value) aount P nvested at nteest

More information

11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Rotational Motion: 11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

More information

The Can-Order Policy for One-Warehouse N-Retailer Inventory System: A Heuristic Approach

The Can-Order Policy for One-Warehouse N-Retailer Inventory System: A Heuristic Approach Atcle Te Can-Ode Polcy fo One-Waeouse N-Retale Inventoy ystem: A Heustc Appoac Vaapon Pukcanon, Paveena Caovaltongse, and Naagan Pumcus Depatment of Industal Engneeng, Faculty of Engneeng, Culalongkon

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27

Magnetic Field and Magnetic Forces. Young and Freedman Chapter 27 Magnetic Field and Magnetic Foces Young and Feedman Chapte 27 Intoduction Reiew - electic fields 1) A chage (o collection of chages) poduces an electic field in the space aound it. 2) The electic field

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Drag force acting on a bubble in a cloud of compressible spherical bubbles at large Reynolds numbers

Drag force acting on a bubble in a cloud of compressible spherical bubbles at large Reynolds numbers Euopean Jounal of Mechancs B/Fluds 24 2005 468 477 Dag foce actng on a bubble n a cloud of compessble sphecal bubbles at lage Reynolds numbes S.L. Gavlyuk a,b,,v.m.teshukov c a Laboatoe de Modélsaton en

More information

Strength of Materials and Failure Theories 2010

Strength of Materials and Failure Theories 2010 Stength of Mateals and Falue Theoes 010 State of Stess y xy z x Ths s a D state of stess only the ndependent stess components ae named. A sngle stess component z can exst on the z-axs and the state of

More information

Uniform Rectilinear Motion

Uniform Rectilinear Motion Engineeing Mechanics : Dynamics Unifom Rectilinea Motion Fo paticle in unifom ectilinea motion, the acceleation is zeo and the elocity is constant. d d t constant t t 11-1 Engineeing Mechanics : Dynamics

More information

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review

Vector Calculus: Are you ready? Vectors in 2D and 3D Space: Review Vecto Calculus: Ae you eady? Vectos in D and 3D Space: Review Pupose: Make cetain that you can define, and use in context, vecto tems, concepts and fomulas listed below: Section 7.-7. find the vecto defined

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

Lab M4: The Torsional Pendulum and Moment of Inertia

Lab M4: The Torsional Pendulum and Moment of Inertia M4.1 Lab M4: The Tosional Pendulum and Moment of netia ntoduction A tosional pendulum, o tosional oscillato, consists of a disk-like mass suspended fom a thin od o wie. When the mass is twisted about the

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

LINES ON BRIESKORN-PHAM SURFACES

LINES ON BRIESKORN-PHAM SURFACES LIN ON BRIKORN-PHAM URFAC GUANGFNG JIANG, MUTUO OKA, DUC TAI PHO, AND DIRK IRMA Abstact By usng toc modfcatons and a esult of Gonzalez-pnbeg and Lejeune- Jalabet, we answe the followng questons completely

More information

The difference between voltage and potential difference

The difference between voltage and potential difference Slavko Vjevć 1, Tonć Modrć 1 and Dno Lovrć 1 1 Unversty of Splt, Faclty of electrcal engneerng, mechancal engneerng and naval archtectre Splt, Croata The dfference between voltage and potental dfference

More information

Mean Molecular Weight

Mean Molecular Weight Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

1 What is a conservation law?

1 What is a conservation law? MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2015 2016, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,

More information

Lecture Topics. 6. Sensors and instrumentation 7. Actuators and power transmission devices. (System and Signal Processing) DR.1 11.12.

Lecture Topics. 6. Sensors and instrumentation 7. Actuators and power transmission devices. (System and Signal Processing) DR.1 11.12. Lecture Tocs 1. Introducton 2. Basc knematcs 3. Pose measurement and Measurement of Robot Accuracy 4. Trajectory lannng and control 5. Forces, moments and Euler s laws 5. Fundamentals n electroncs and

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

Displacement, Velocity And Acceleration

Displacement, Velocity And Acceleration Displacement, Velocity And Acceleation Vectos and Scalas Position Vectos Displacement Speed and Velocity Acceleation Complete Motion Diagams Outline Scala vs. Vecto Scalas vs. vectos Scala : a eal numbe,

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 9 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch

An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch An Integrated Semantcally Correct 2.5D Object Orented TIN Andreas Koch Unverstät Hannover Insttut für Photogrammetre und GeoInformaton Contents Introducton Integraton of a DTM and 2D GIS data Semantcs

More information

Review C: Work and Kinetic Energy

Review C: Work and Kinetic Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physcs 8.2 Revew C: Work and Knetc Energy C. Energy... 2 C.. The Concept o Energy... 2 C..2 Knetc Energy... 3 C.2 Work and Power... 4 C.2. Work Done by

More information

(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0

(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0 Chapter 3 Homework Soluton P3.-, 4, 6, 0, 3, 7, P3.3-, 4, 6, P3.4-, 3, 6, 9, P3.5- P3.6-, 4, 9, 4,, 3, 40 ---------------------------------------------------- P 3.- Determne the alues of, 4,, 3, and 6

More information

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it.

FXA 2008. Candidates should be able to : Describe how a mass creates a gravitational field in the space around it. Candidates should be able to : Descibe how a mass ceates a gavitational field in the space aound it. Define gavitational field stength as foce pe unit mass. Define and use the peiod of an object descibing

More information

Episode 401: Newton s law of universal gravitation

Episode 401: Newton s law of universal gravitation Episode 401: Newton s law of univesal gavitation This episode intoduces Newton s law of univesal gavitation fo point masses, and fo spheical masses, and gets students pactising calculations of the foce

More information

4.1 - Trigonometric Functions of Acute Angles

4.1 - Trigonometric Functions of Acute Angles 4.1 - Tigonometic Functions of cute ngles a is a half-line that begins at a point and etends indefinitel in some diection. Two as that shae a common endpoint (o vete) fom an angle. If we designate one

More information

Shielding Equations and Buildup Factors Explained

Shielding Equations and Buildup Factors Explained Sheldng Equatons and uldup Factors Explaned Gamma Exposure Fluence Rate Equatons For an explanaton of the fluence rate equatons used n the unshelded and shelded calculatons, vst ths US Health Physcs Socety

More information

(Semi)Parametric Models vs Nonparametric Models

(Semi)Parametric Models vs Nonparametric Models buay, 2003 Pobablty Models (Sem)Paametc Models vs Nonpaametc Models I defne paametc, sempaametc, and nonpaametc models n the two sample settng My defnton of sempaametc models s a lttle stonge than some

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

Continuous Compounding and Annualization

Continuous Compounding and Annualization Continuous Compounding and Annualization Philip A. Viton Januay 11, 2006 Contents 1 Intoduction 1 2 Continuous Compounding 2 3 Pesent Value with Continuous Compounding 4 4 Annualization 5 5 A Special Poblem

More information

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360!

Figure 2. So it is very likely that the Babylonians attributed 60 units to each side of the hexagon. Its resulting perimeter would then be 360! 1. What ae angles? Last time, we looked at how the Geeks intepeted measument of lengths. Howeve, as fascinated as they wee with geomety, thee was a shape that was much moe enticing than any othe : the

More information

An Algorithm For Factoring Integers

An Algorithm For Factoring Integers An Algothm Fo Factong Integes Yngpu Deng and Yanbn Pan Key Laboatoy of Mathematcs Mechanzaton, Academy of Mathematcs and Systems Scence, Chnese Academy of Scences, Bejng 100190, People s Republc of Chna

More information

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6

Chapter 19: Electric Charges, Forces, and Fields ( ) ( 6 )( 6 Chapte 9 lectic Chages, Foces, an Fiels 6 9. One in a million (0 ) ogen molecules in a containe has lost an electon. We assume that the lost electons have been emove fom the gas altogethe. Fin the numbe

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

VIRTUAL PROTOTYPING OF MECHANICAL SYSTEMS USING MULTIBODY SOFTWARE

VIRTUAL PROTOTYPING OF MECHANICAL SYSTEMS USING MULTIBODY SOFTWARE VIRTUAL PROTOTPING O MECHANICAL SSTEMS USING MULTIBOD SOTWARE Cãtãln ALEANDRU Unvesty Tanslvana of Basov, Depatment of Poduct Desgn and Robotcs 9 Bd. Eolo, 00 Basov, Romana, Tel.: +40 68 496, ax: +40 68

More information

An Introduction to Omega

An Introduction to Omega An Intoduction to Omega Con Keating and William F. Shadwick These distibutions have the same mean and vaiance. Ae you indiffeent to thei isk-ewad chaacteistics? The Finance Development Cente 2002 1 Fom

More information

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C

The Electric Potential, Electric Potential Energy and Energy Conservation. V = U/q 0. V = U/q 0 = -W/q 0 1V [Volt] =1 Nm/C Geneal Physics - PH Winte 6 Bjoen Seipel The Electic Potential, Electic Potential Enegy and Enegy Consevation Electic Potential Enegy U is the enegy of a chaged object in an extenal electic field (Unit

More information

Physics 110 Spring 2006 2-D Motion Problems: Projectile Motion Their Solutions

Physics 110 Spring 2006 2-D Motion Problems: Projectile Motion Their Solutions Physcs 110 Sprn 006 -D Moton Problems: Projectle Moton Ther Solutons 1. A place-kcker must kck a football from a pont 36 m (about 40 yards) from the oal, and half the crowd hopes the ball wll clear the

More information

A PARTICLE-BASED LAGRANGIAN CFD TOOL FOR FREE-SURFACE SIMULATION

A PARTICLE-BASED LAGRANGIAN CFD TOOL FOR FREE-SURFACE SIMULATION C A N A L D E E X P E R I E N C I A S H I D R O D I N Á M I C A S, E L P A R D O Publcacón núm. 194 A PARTICLE-BASED LAGRANGIAN CFD TOOL FOR FREE-SURFACE SIMULATION POR D. MUÑOZ V. GONZÁLEZ M. BLAIN J.

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 Voltage ( = Electic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage is

More information

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r

Moment and couple. In 3-D, because the determination of the distance can be tedious, a vector approach becomes advantageous. r r Moment and couple In 3-D, because the detemination of the distance can be tedious, a vecto appoach becomes advantageous. o k j i M k j i M o ) ( ) ( ) ( + + M o M + + + + M M + O A Moment about an abita

More information

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of

(a) The centripetal acceleration of a point on the equator of the Earth is given by v2. The velocity of the earth can be found by taking the ratio of Homewok VI Ch. 7 - Poblems 15, 19, 22, 25, 35, 43, 51. Poblem 15 (a) The centipetal acceleation of a point on the equato of the Eath is given by v2. The velocity of the eath can be found by taking the

More information

Damage detection in composite laminates using coin-tap method

Damage detection in composite laminates using coin-tap method Damage detecton n composte lamnates usng con-tap method S.J. Km Korea Aerospace Research Insttute, 45 Eoeun-Dong, Youseong-Gu, 35-333 Daejeon, Republc of Korea yaeln@kar.re.kr 45 The con-tap test has the

More information

University Physics AI No. 11 Kinetic Theory

University Physics AI No. 11 Kinetic Theory Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

More information

TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS

TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS TRUCK ROUTE PLANNING IN NON- STATIONARY STOCHASTIC NETWORKS WITH TIME-WINDOWS AT CUSTOMER LOCATIONS Hossen Jula α, Maged Dessouky β, and Petos Ioannou γ α School of Scence, Engneeng and Technology, Pennsylvana

More information

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

More information

Forces & Magnetic Dipoles. r r τ = μ B r

Forces & Magnetic Dipoles. r r τ = μ B r Foces & Magnetic Dipoles x θ F θ F. = AI τ = U = Fist electic moto invented by Faaday, 1821 Wie with cuent flow (in cup of Hg) otates aound a a magnet Faaday s moto Wie with cuent otates aound a Pemanent

More information

Deflection of Electrons by Electric and Magnetic Fields

Deflection of Electrons by Electric and Magnetic Fields Physics 233 Expeiment 42 Deflection of Electons by Electic and Magnetic Fields Refeences Loain, P. and D.R. Coson, Electomagnetism, Pinciples and Applications, 2nd ed., W.H. Feeman, 199. Intoduction An

More information

Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuity Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

More information

Chapter 31B - Transient Currents and Inductance

Chapter 31B - Transient Currents and Inductance Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007 Objectves: After completng ths module, you should be

More information

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE

AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL MODEL OF BUILDING BLOCKAGE Radoengneeng Aea Coveage Smulatons fo Mllmete Pont-to-Multpont Systems Usng Buldng Blockage 43 Vol. 11, No. 4, Decembe AREA COVERAGE SIMULATIONS FOR MILLIMETER POINT-TO-MULTIPOINT SYSTEMS USING STATISTICAL

More information

Chapter 4: Fluid Kinematics

Chapter 4: Fluid Kinematics Oveview Fluid kinematics deals with the motion of fluids without consideing the foces and moments which ceate the motion. Items discussed in this Chapte. Mateial deivative and its elationship to Lagangian

More information

PREVENTIVE AND CORRECTIVE SECURITY MARKET MODEL

PREVENTIVE AND CORRECTIVE SECURITY MARKET MODEL REVENTIVE AND CORRECTIVE SECURITY MARKET MODEL Al Ahmad-hat Rachd Cheaou and Omd Alzadeh Mousav Ecole olytechnque Fédéale de Lausanne Lausanne Swzeland al.hat@epfl.ch achd.cheaou@epfl.ch omd.alzadeh@epfl.ch

More information

Viscosity of Solutions of Macromolecules

Viscosity of Solutions of Macromolecules Vscosty of Solutons of Macromolecules When a lqud flows, whether through a tube or as the result of pourng from a vessel, layers of lqud slde over each other. The force f requred s drectly proportonal

More information

UNIT CIRCLE TRIGONOMETRY

UNIT CIRCLE TRIGONOMETRY UNIT CIRCLE TRIGONOMETRY The Unit Cicle is the cicle centeed at the oigin with adius unit (hence, the unit cicle. The equation of this cicle is + =. A diagam of the unit cicle is shown below: + = - - -

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

CONSTRUCTION PROJECT SCHEDULING WITH IMPRECISELY DEFINED CONSTRAINTS

CONSTRUCTION PROJECT SCHEDULING WITH IMPRECISELY DEFINED CONSTRAINTS Management an Innovaton fo a Sustanable Bult Envonment ISBN: 9789052693958 20 23 June 2011, Amsteam, The Nethelans CONSTRUCTION PROJECT SCHEDULING WITH IMPRECISELY DEFINED CONSTRAINTS JANUSZ KULEJEWSKI

More information

Chapter 7: Answers to Questions and Problems

Chapter 7: Answers to Questions and Problems 19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter

More information

Experiment 5 Elastic and Inelastic Collisions

Experiment 5 Elastic and Inelastic Collisions PHY191 Experment 5: Elastc and Inelastc Collsons 8/1/014 Page 1 Experment 5 Elastc and Inelastc Collsons Readng: Bauer&Westall: Chapter 7 (and 8, or center o mass deas) as needed 1. Goals 1. Study momentum

More information