# Chapter 31B - Transient Currents and Inductance

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007

2 Objectves: After completng ths module, you should be able to: Defne and calculate nductance n terms of a changng current. Calculate the energy stored n an nductor and fnd the energy densty. Dscuss and solve problems nvolvng the rse and decay of current n capactors and nductors.

3 Self-Inductance Consder a col connected to to resstance and voltage V.. When swtch s s closed, the rsng current I I ncreases flux, producng an nternal back emf n n the col. Open swtch reverses emf. Increasng I Lenz s s Law: The back emf (red arrow) must oppose change n flux: Decreasng I

4 Inductance The back emf E nduced n a col s proportonal to the rate of change of the current I/ I/t. E L t ; Lnductance Increasng / t An nductance of one henry (H) means that current changng at the rate of one ampere per second wll nduce a back emf of one volt. 1 V 1 H 1 A/s

5 Example 1: A col havng 0 turns has an nduced emf of 4 mv when the current s changng at the rate of A/s.. What s the nductance? / t = A/s 4 mv L E E L ; L t / t ( V) A/s L =.00 mh Note: We are followng the practce of of usng lower case for transent or or changng current and upper case I for steady current.

6 Calculatng the Inductance ecall two ways of fndng E: E N t E L t Settng these terms equal gves: N t L t Thus, the nductance L can be found from: Increasng / t Inductance L N L I

7 B Inductance of a Solenod Solenod l Inductance L Combnng the last two equatons gves: The B-feld created by a current I for length l s: B 0NI 0 NIA and = BA L L 0NA N I

8 Example : A solenod of area 0.00 m and length 30 cm,, has 100 turns.. If the current ncreases from 0 to A n 0.1 s, what s the nductance of the solenod? Frst we fnd the nductance of the solenod: L NA (4 x 10 )(100) (0.00 m ) -7 Tm 0 A l A m L = 8.38 x H Note: L does NOT depend on current,, but on physcal parameters of of the col.

9 Example (Cont.): If the current n the H solenod ncreased from 0 to A n 0.1 s, s what s the nduced emf? l A L = 8.38 x H E L t E -5 (8.38 x 10 H)( A - 0) s E 1.68 mv

10 Energy Stored n an Inductor At an nstant when the current s changng at / /t,, we have: E L ; PE L t t Snce the power P = Work/t, Work = P t.. Also the average value of L s L/ durng rse to the fnal current I. Thus, the total energy stored s: Potental energy stored n nductor: U 1 L

11 Example 3: What s the potental energy stored n a 0.3 H nductor f the current rses from 0 to a fnal value of A? A L = 0.3 H U 1 L U 1 (0.3 H)( A) J I = A U = J Ths energy s equal to the work done n reachng the fnal current I; ; t s returned when the current decreases to zero.

12 Energy Densty (Optonal) l A The energy densty u s the energy U per unt volume V 0N A 1 L ; U LI ; V A Substtuton gves u = U/V : N AI 0 1 0N A U ; U I u V A u 0N I

13 Energy Densty (Contnued) l A Energy densty: u 0N I ecall formula for B-feld: B NI NI B 0 B 0 u 0 NI 0 B 0 u B 0

14 Example 4: The fnal steady current n a solenod of 40 turns and length 0 cm s 5 A. What s the energy densty? NI B u -7 0 (4 x 10 )(40)(5 A) B = 1.6 mt 0.00 m -3 B (1.6 x 10 T) (4 x 10 ) -7 Tm 0 A u = 0.68 J/m 3 l A Energy densty s mportant for the study of electro- magnetc waves.

15 The -L L Crcut An nductor L and resstor are connected n seres and swtch 1 s closed: V E = E L t V L t S 1 S E V L Intally, /t s s large, makng the back emf large and the current small. The current rses to to ts maxmum value II when rate of of change s s zero.

16 The se of Current n L V ( / L) t (1 ) e I At t = 0, I = 0 At t =,, I = V/ The tme constant L 0.63 I Current se Tme, t In an nductor, the current wll rse to to 63% of of ts maxmum value n n one tme constant = = L/.

17 The -L L Decay Now suppose we close S after energy s n nductor: E = E L t For current decay n L: L t S 1 S E V L Intally, /t s s large and the emf E drvng the current s s at at ts maxmum value I. I.. The current decays to to zero when the emf plays out.

18 The Decay of Current n L V e ( / L) t I At t = 0, = V/ At t =, = 0 The tme constant L 0.37 I Current Decay Tme, t In an nductor, the current wll decay to to 37% of of ts maxmum value n n one tme constant

19 Example 5: The crcut below has a 40-mH nductor connected to a 5- resstor and a 16-V battery. What s the tme constant and what s the current after one tme constant? 16 V 5 L = 0.04 H After tme = 0.63(V/) L H 5 Tme constant: = 8 ms 16V V ( / L) t (1 ) e =.0 A

20 The -C C Crcut V Close S 1. Then as charge Q bulds on capactor C,, a back emf E results: Q V E = E C Q V C S 1 S C E Intally, Q/C s s small, makng the back emf small and the current s s a maxmum I. I. As the charge Q bulds, the current decays to to zero when E b = V. V.

21 se of Charge V Q C t = 0, Q = 0, I = V/ t =, =, Q m = C V QCV e t/ C (1 ) Q max 0.63 I q Capactor Increase n Charge Tme, t The tme constant C In a capactor, the charge Q wll rse to to 63% of of ts maxmum value n n one tme constant Of course, as charge rses, the current wll decay.

22 The Decay of Current n C V e t/ C At t = 0, = V/ At t =, = 0 The tme constant C I 0.37 I Capactor Current Decay Tme, t As charge Q ncreases The current wll decay to to 37% of of ts maxmum value n n one tme constant the charge rses.

23 The -C C Dscharge V Now suppose we close S and allow C to dscharge: Q E = E C For current decay n L: Q C S 1 S C E Intally, Q s s large and the emf E drvng the current s s at at ts maxmum value I. I.. The current decays to to zero when the emf plays out.

24 Current Decay V e t/ C At t = 0, I = V/ At t =,, I = 0 C As the current decays, the charge also decays: 0.37 I I Capactor Q CVe Current Decay Tme, t t/ C In a dschargng capactor, both current and charge decay to to 37% of of ther maxmum values n n one tme constant = = C.

25 Example 6: The crcut below has a 4-F capactor connected to a 3- resstor and a 1-V battery. The swtch s opened. What s the current after one tme constant? 1 V = C = (3 )(4 F) 3 Tme constant: = 1 s C = 4 F V e t/ C (1 ) After tme = 0.63(V/) 1V =.5 A

26 E L t L 0NA Summary ; Lnductance L N I l A Potental Energy Energy Densty: U 1 L u B 0

27 Summary V e ( / L) t (1 ) I 0.63I Inductor Current se L Tme, t In an nductor, the current wll rse to to 63% of of ts maxmum value n n one tme constant = = L/. The ntal current s s zero due to to fast-changng current n n col. Eventually, nduced emf becomes zero, resultng n n the maxmum current V/.

28 Summary (Cont.) V e ( / L) t The ntal current, I = V/,, decays to to zero as emf n n col dsspates. I 0.37I Inductor Current Decay Tme, t The current wll decay to to 37% of of ts maxmum value n n one tme constant = = L/.

29 Summary (Cont.) When chargng a capactor the charge rses to to 63% of of ts maxmum whle the current decreases to to 37% of of ts maxmum value. Q max q Capactor I Capactor 0.63 I Increase n Charge 0.37 I Current Decay Tme, t Tme, t Q CV e t/ C (1 ) C V e t/ C

30 CONCLUSION: Chapter 31B Transent Current - Inductance

### Chapter 6 Inductance, Capacitance, and Mutual Inductance

Chapter 6 Inductance Capactance and Mutual Inductance 6. The nductor 6. The capactor 6.3 Seres-parallel combnatons of nductance and capactance 6.4 Mutual nductance 6.5 Closer look at mutual nductance Oerew

### Chapter 12 Inductors and AC Circuits

hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for

Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

### Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

### EE201 Circuit Theory I 2015 Spring. Dr. Yılmaz KALKAN

EE201 Crcut Theory I 2015 Sprng Dr. Yılmaz KALKAN 1. Basc Concepts (Chapter 1 of Nlsson - 3 Hrs.) Introducton, Current and Voltage, Power and Energy 2. Basc Laws (Chapter 2&3 of Nlsson - 6 Hrs.) Voltage

### Passive Filters. References: Barbow (pp 265-275), Hayes & Horowitz (pp 32-60), Rizzoni (Chap. 6)

Passve Flters eferences: Barbow (pp 6575), Hayes & Horowtz (pp 360), zzon (Chap. 6) Frequencyselectve or flter crcuts pass to the output only those nput sgnals that are n a desred range of frequences (called

### Induced voltages and Inductance Faraday s Law

Induced voltages and Inductance Faraday s Law concept #1, 4, 5, 8, 13 Problem # 1, 3, 4, 5, 6, 9, 10, 13, 15, 24, 23, 25, 31, 32a, 34, 37, 41, 43, 51, 61 Last chapter we saw that a current produces a magnetic

### The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

### Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

### Laws of Electromagnetism

There are four laws of electromagnetsm: Laws of Electromagnetsm The law of Bot-Savart Ampere's law Force law Faraday's law magnetc feld generated by currents n wres the effect of a current on a loop of

### Lecture 3: Force of Interest, Real Interest Rate, Annuity

Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and

### Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering

Homework #11 203-1-1721 Physics 2 for Students of Mechanical Engineering 2. A circular coil has a 10.3 cm radius and consists of 34 closely wound turns of wire. An externally produced magnetic field of

### (6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0

Chapter 3 Homework Soluton P3.-, 4, 6, 0, 3, 7, P3.3-, 4, 6, P3.4-, 3, 6, 9, P3.5- P3.6-, 4, 9, 4,, 3, 40 ---------------------------------------------------- P 3.- Determne the alues of, 4,, 3, and 6

### Financial Mathemetics

Fnancal Mathemetcs 15 Mathematcs Grade 12 Teacher Gude Fnancal Maths Seres Overvew In ths seres we am to show how Mathematcs can be used to support personal fnancal decsons. In ths seres we jon Tebogo,

### Physics 2102 Lecture 19. Physics 2102

Physics 2102 Jonathan Dowling Physics 2102 Lecture 19 Ch 30: Inductors and RL Circuits Nikolai Tesla What are we going to learn? A road map Electric charge Electric force on other electric charges Electric

### 8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

### 1E6 Electrical Engineering AC Circuit Analysis and Power Lecture 12: Parallel Resonant Circuits

E6 Electrcal Engneerng A rcut Analyss and Power ecture : Parallel esonant rcuts. Introducton There are equvalent crcuts to the seres combnatons examned whch exst n parallel confguratons. The ssues surroundng

### + + + - - This circuit than can be reduced to a planar circuit

MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

### Level Annuities with Payments Less Frequent than Each Interest Period

Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach

### Section 5.3 Annuities, Future Value, and Sinking Funds

Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

### 12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance?

12. The current in an inductor is changing at the rate of 100 A/s, and the inductor emf is 40 V. What is its self-inductance? From Equation 32-5, L = -E=(dI =dt) = 40 V=(100 A/s) = 0.4 H. 15. A cardboard

### Interleaved Power Factor Correction (IPFC)

Interleaved Power Factor Correcton (IPFC) 2009 Mcrochp Technology Incorporated. All Rghts Reserved. Interleaved Power Factor Correcton Slde 1 Welcome to the Interleaved Power Factor Correcton Reference

### Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

### SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

### 10.2 Future Value and Present Value of an Ordinary Simple Annuity

348 Chapter 10 Annutes 10.2 Future Value and Present Value of an Ordnary Smple Annuty In compound nterest, 'n' s the number of compoundng perods durng the term. In an ordnary smple annuty, payments are

### PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

### Finite Math Chapter 10: Study Guide and Solution to Problems

Fnte Math Chapter 10: Study Gude and Soluton to Problems Basc Formulas and Concepts 10.1 Interest Basc Concepts Interest A fee a bank pays you for money you depost nto a savngs account. Prncpal P The amount

### Application Note Using a Shunt Resistor to Dissipate Energy

1-10 Alcaton Note Usng a Shunt esstor to Dsspate Energy ev. Jan. 011 Scope hen a movng motor and load are requred to decelerate rapdly, the knetc energy of the load drves the motor's shaft to generate

### ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING

ANALYZING THE RELATIONSHIPS BETWEEN QUALITY, TIME, AND COST IN PROJECT MANAGEMENT DECISION MAKING Matthew J. Lberatore, Department of Management and Operatons, Vllanova Unversty, Vllanova, PA 19085, 610-519-4390,

### 10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest

1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve

### Jet Engine. Figure 1 Jet engine

Jet Engne Prof. Dr. Mustafa Cavcar Anadolu Unversty, School of Cvl Avaton Esksehr, urkey GROSS HRUS INAKE MOMENUM DRAG NE HRUS Fgure 1 Jet engne he thrust for a turboet engne can be derved from Newton

### CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

### AS 2553a Mathematics of finance

AS 2553a Mathematcs of fnance Formula sheet November 29, 2010 Ths ocument contans some of the most frequently use formulae that are scusse n the course As a general rule, stuents are responsble for all

### Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

### 7.5. Present Value of an Annuity. Investigate

7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

### Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

ecure 4 nducon evew nducors Self-nducon crcus nergy sored n a Magnec Feld 1 evew nducon end nergy Transfers mf Bv Mechancal energy ransform n elecrc and hen n hermal energy P Fv B v evew eformulaon of

### Slide 1 / 26. Inductance. 2011 by Bryan Pflueger

Slide 1 / 26 Inductance 2011 by Bryan Pflueger Slide 2 / 26 Mutual Inductance If two coils of wire are placed near each other and have a current passing through them, they will each induce an emf on one

### Direction of Induced Current

Direction of Induced Current Bar magnet moves through coil Current induced in coil A S N v Reverse pole Induced current changes sign B N S v v Coil moves past fixed bar magnet Current induced in coil as

### CIRCUIT ELEMENTS AND CIRCUIT ANALYSIS

EECS 4 SPING 00 Lecture 9 Copyrght egents of Unversty of Calforna CICUIT ELEMENTS AND CICUIT ANALYSIS Lecture 5 revew: Termnology: Nodes and branches Introduce the mplct reference (common) node defnes

### Using Series to Analyze Financial Situations: Present Value

2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated

### On some special nonlevel annuities and yield rates for annuities

On some specal nonlevel annutes and yeld rates for annutes 1 Annutes wth payments n geometrc progresson 2 Annutes wth payments n Arthmetc Progresson 1 Annutes wth payments n geometrc progresson 2 Annutes

### Eðlisfræði 2, vor 2007

[ Assignment View ] [ Print ] Eðlisfræði 2, vor 2007 30. Inductance Assignment is due at 2:00am on Wednesday, March 14, 2007 Credit for problems submitted late will decrease to 0% after the deadline has

### FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant

### Recurrence. 1 Definitions and main statements

Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

### 1. Math 210 Finite Mathematics

1. ath 210 Fnte athematcs Chapter 5.2 and 5.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

### The Full-Wave Rectifier

9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to

### benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

### Calculation of Sampling Weights

Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

### Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

### Thursday, December 10, 2009 Noon - 1:50 pm Faraday 143

1. ath 210 Fnte athematcs Chapter 5.2 and 4.3 Annutes ortgages Amortzaton Professor Rchard Blecksmth Dept. of athematcal Scences Northern Illnos Unversty ath 210 Webste: http://math.nu.edu/courses/math210

### Peak Inverse Voltage

9/13/2005 Peak Inerse Voltage.doc 1/6 Peak Inerse Voltage Q: I m so confused! The brdge rectfer and the fullwae rectfer both prode full-wae rectfcaton. Yet, the brdge rectfer use 4 juncton dodes, whereas

### Last time : energy storage elements capacitor.

Last time : energy storage elements capacitor. Charge on plates Energy stored in the form of electric field Passive sign convention Vlt Voltage drop across real capacitor can not change abruptly because

### FORCED CONVECTION HEAT TRANSFER IN A DOUBLE PIPE HEAT EXCHANGER

FORCED CONVECION HEA RANSFER IN A DOUBLE PIPE HEA EXCHANGER Dr. J. Mchael Doster Department of Nuclear Engneerng Box 7909 North Carolna State Unversty Ralegh, NC 27695-7909 Introducton he convectve heat

### An Alternative Way to Measure Private Equity Performance

An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

### Solution Derivations for Capa #11

Solution Derivations for Capa #11 Caution: The symbol E is used interchangeably for energy and EMF. 1) DATA: V b = 5.0 V, = 155 Ω, L = 8.400 10 2 H. In the diagram above, what is the voltage across the

### Laddered Multilevel DC/AC Inverters used in Solar Panel Energy Systems

Proceedngs of the nd Internatonal Conference on Computer Scence and Electroncs Engneerng (ICCSEE 03) Laddered Multlevel DC/AC Inverters used n Solar Panel Energy Systems Fang Ln Luo, Senor Member IEEE

### "Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

Iranan Journal of Scence & Technology, Transacton B, Engneerng, ol. 30, No. B6, 789-794 rnted n The Islamc Republc of Iran, 006 Shraz Unversty "Research Note" ALICATION OF CHARGE SIMULATION METHOD TO ELECTRIC

### NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A

BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A/ 161A/ 162A/ 163A are hgh-speed 4-bt synchronous counters. They are edge-trggered, synchronously presettable, and cascadable MSI buldng blocks for

### Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

Analyss of Reactvty Induced Accdent for Control Rods Ejecton wth Loss of Coolng Hend Mohammed El Sayed Saad 1, Hesham Mohammed Mohammed Mansour 2 Wahab 1 1. Nuclear and Radologcal Regulatory Authorty,

### Section 2.3 Present Value of an Annuity; Amortization

Secton 2.3 Present Value of an Annuty; Amortzaton Prncpal Intal Value PV s the present value or present sum of the payments. PMT s the perodc payments. Gven r = 6% semannually, n order to wthdraw \$1,000.00

### Number of Levels Cumulative Annual operating Income per year construction costs costs (\$) (\$) (\$) 1 600,000 35,000 100,000 2 2,200,000 60,000 350,000

Problem Set 5 Solutons 1 MIT s consderng buldng a new car park near Kendall Square. o unversty funds are avalable (overhead rates are under pressure and the new faclty would have to pay for tself from

### EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR

EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly

### Chapter 27 Electromagnetic Induction

For us, who took in Faraday s ideas so to speak with our mother s milk, it is hard to appreciate their greatness and audacity. Albert Einstein 27.1 ntroduction Since a current in a wire produces a magnetic

### Fall 12 PHY 122 Homework Solutions #10

Fall 12 PHY 122 Homework Solutions #10 HW10: Ch.30 Q5, 8, 15,17, 19 P 1, 3, 9, 18, 34, 36, 42, 51, 66 Chapter 30 Question 5 If you are given a fixed length of wire, how would you shape it to obtain the

### SETTLEMENT PREDICTION OF PILE-SUPPORTED STRUCTURES IN LIQUEFIABLE SOILS DURING EARTHQUAKE

SETTLEMENT PREDICTION OF PILE-SUPPORTED STRUCTURES IN LIQUEFIABLE SOILS DURING EARTHQUAKE Chandra Dev Raman 1, Subhamoy Bhattacharya 2 and A Blakeborough 3 1 Research Scholar, Department of Engneerng Scence,Unversty

### Inductors & Inductance. Electronic Components

Electronic Components Induction In 1824, Oersted discovered that current passing though a coil created a magnetic field capable of shifting a compass needle. Seven years later, Faraday and Henry discovered

### Time Value of Money Module

Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

### EE301 Lesson 14 Reading: 10.1-10.4, 10.11-10.12, 11.1-11.4 and 11.11-11.13

CAPACITORS AND INDUCTORS Learning Objectives EE301 Lesson 14 a. Define capacitance and state its symbol and unit of measurement. b. Predict the capacitance of a parallel plate capacitor. c. Analyze how

### Analysis and Modeling of Buck Converter in Discontinuous-Output-Inductor-Current Mode Operation *

Energy and Power Engneerng, 3, 5, 85-856 do:.436/ee.3.54b63 Publshed Onlne July 3 (htt://www.scr.org/journal/ee) Analyss and Modelng of Buck Converter n Dscontnuous-Outut-Inductor-Current Mode Oeraton

### Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

### Rotation Kinematics, Moment of Inertia, and Torque

Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

### 8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value

8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest \$000 at

### Rate Monotonic (RM) Disadvantages of cyclic. TDDB47 Real Time Systems. Lecture 2: RM & EDF. Priority-based scheduling. States of a process

Dsadvantages of cyclc TDDB47 Real Tme Systems Manual scheduler constructon Cannot deal wth any runtme changes What happens f we add a task to the set? Real-Tme Systems Laboratory Department of Computer

### 0.02t if 0 t 3 δ t = 0.045 if 3 < t

1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve

### ESCI 341 Atmospheric Thermodynamics Lesson 9 Entropy

ESCI 341 Atmosherc hermodynamcs Lesson 9 Entroy References: An Introducton to Atmosherc hermodynamcs, sons Physcal Chemstry (4 th edton), Levne hermodynamcs and an Introducton to hermostatstcs, Callen

### Chapter 15: Debt and Taxes

Chapter 15: Debt and Taxes-1 Chapter 15: Debt and Taxes I. Basc Ideas 1. Corporate Taxes => nterest expense s tax deductble => as debt ncreases, corporate taxes fall => ncentve to fund the frm wth debt

### CHAPTER 9 SECOND-LAW ANALYSIS FOR A CONTROL VOLUME. blank

CHAPTER 9 SECOND-LAW ANALYSIS FOR A CONTROL VOLUME blank SONNTAG/BORGNAKKE STUDY PROBLEM 9-1 9.1 An deal steam turbne A steam turbne receves 4 kg/s steam at 1 MPa 300 o C and there are two ext flows, 0.5

### The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

### Section 5.4 Annuities, Present Value, and Amortization

Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

### Loudspeaker Voice-Coil Inductance Losses: Circuit Models, Parameter Estimation, and Effect on Frequency Response

44 JOURAL OF THE AUDIO EGIEERIG SOCIETY, VOL. 50, O. 6, 00 JUE Loudspeaker Voce-Col Inductance Losses: Crcut Models, Parameter Estmaton, and Effect on Frequency Response W. Marshall Leach, Jr., Professor

### Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

### On the Optimal Control of a Cascade of Hydro-Electric Power Stations

On the Optmal Control of a Cascade of Hydro-Electrc Power Statons M.C.M. Guedes a, A.F. Rbero a, G.V. Smrnov b and S. Vlela c a Department of Mathematcs, School of Scences, Unversty of Porto, Portugal;

### Simple Interest Loans (Section 5.1) :

Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

### where the coordinates are related to those in the old frame as follows.

Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

### Hollinger Canadian Publishing Holdings Co. ( HCPH ) proceeding under the Companies Creditors Arrangement Act ( CCAA )

February 17, 2011 Andrew J. Hatnay ahatnay@kmlaw.ca Dear Sr/Madam: Re: Re: Hollnger Canadan Publshng Holdngs Co. ( HCPH ) proceedng under the Companes Credtors Arrangement Act ( CCAA ) Update on CCAA Proceedngs

### BERNSTEIN POLYNOMIALS

On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

### Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money

Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important

### University Physics AI No. 11 Kinetic Theory

Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

### greatest common divisor

4. GCD 1 The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no

### FINANCIAL MATHEMATICS

3 LESSON FINANCIAL MATHEMATICS Annutes What s an annuty? The term annuty s used n fnancal mathematcs to refer to any termnatng sequence of regular fxed payments over a specfed perod of tme. Loans are usually

### Scott Hughes 7 April 2005. Massachusetts Institute of Technology Department of Physics 8.022 Spring 2005. Lecture 15: Mutual and Self Inductance.

Scott Hughes 7 April 2005 151 Using induction Massachusetts nstitute of Technology Department of Physics 8022 Spring 2005 Lecture 15: Mutual and Self nductance nduction is a fantastic way to create EMF;

### Module 22: Inductance and Magnetic Field Energy

Module 22: Inductance and Magnetic Field Energy 1 Module 22: Outline Self Inductance Energy in Inductors Circuits with Inductors: RL Circuit 2 Faraday s Law of Induction dφ = B dt Changing magnetic flux

### Agent-based Micro-Storage Management for the Smart Grid

Agent-based Mcro-Storage Management for the Smart Grd Perukrshnen Vytelngum, Thomas D. Voce, Sarvapal D. Ramchurn, Alex Rogers, and Ncholas R. Jennngs Intellgence, Agents, Multmeda Group, School of Electroncs

### 1. Measuring association using correlation and regression

How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

### Safety instructions VEGAVIB VB6*.GI*******

Safety nstructons VEGAVIB VB6*.GI******* Kosha 14-AV4BO-0107 Ex td A20, A20/21, A21 IP66 T** 0044 Document ID: 48578 Contents 1 Area of applcablty... 3 2 General nformaton... 3 3 Techncal data... 3 4 Applcaton

### Stock Profit Patterns

Stock Proft Patterns Suppose a share of Farsta Shppng stock n January 004 s prce n the market to 56. Assume that a September call opton at exercse prce 50 costs 8. A September put opton at exercse prce

### Institute of Informatics, Faculty of Business and Management, Brno University of Technology,Czech Republic

Lagrange Multplers as Quanttatve Indcators n Economcs Ivan Mezník Insttute of Informatcs, Faculty of Busness and Management, Brno Unversty of TechnologCzech Republc Abstract The quanttatve role of Lagrange