(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = = 0

Size: px
Start display at page:

Download "(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0"

Transcription

1 Chapter 3 Homework Soluton P3.-, 4, 6, 0, 3, 7, P3.3-, 4, 6, P3.4-, 3, 6, 9, P3.5- P3.6-, 4, 9, 4,, 3, P 3.- Determne the alues of, 4,, 3, and 6 n Fgure P 3.-. Apply KCL at node a to get Apply KCL at node b to get = + 6 = 0 = 4 A 3 = = -3 A Apply KVL to the loop consstng of elements A and B to get - 6 = 0 = -6 V Apply KVL to the loop consstng of elements C, D, and A to get - 3 (-) 6 = 0 4 = -4 V Apply KVL to the loop consstng of elements E, F and D to get (-) = 0 6 = V Check: The sum of the power suppled by all branches s (6)() (-6)(-4) (-4)(6) + (-)(-3) + (4)(3) + ()(-3) = = 0

2 P 3.-4 Determne the power absorbed by each of the resstors n the crcut shown n Fgure P soluton Power absorbed by the 4 resstor = 4 = 00 W Power absorbed by the 6 resstor = 6 = 4 W Power absorbed by the 8 resstor = 8 = 7 W 4 A A 4 3 A 3 3 A 4 3 (checked usng LNAP 8/6/0) P 3.-6 Determne the power suppled by each oltage source n the crcut of Fgure P Answer: The -V oltage source supples mw and the 3-V oltage source supples 6 mw.

3 Fgure P P ma mw 3 3 P ma mw (checked usng LNAP 8/6/0) P 3.-0 The crcut shown n Fgure P 3.-0 conssts of fe oltage sources and four current sources. Express the power suppled by each source n terms of the oltage source oltages and the current source currents. Fgure P 3.-0 The subscrpts suggest a numberng of the sources. Apply KVL to get and do not adhere to the passe conenton, so p 5 9 6

4 s the power suppled by source. Next, apply KCL to get 4 and do not adhere to the passe conenton, so p 4 s the power suppled by source. Next, apply KVL to get 3 and 3 adhere to the passe conenton, so p s the power suppled by source 3. Next, apply KVL to get and 4 do not adhere to the passe conenton, so p s the power suppled by source 4. Next, apply KCL to get 5 and 5 adhere to the passe conenton, so p s the power suppled by source 5. Next, apply KCL to get 6 and 6 adhere to the passe conenton, so p s the power suppled by source 6. Next, apply KVL to get 7 and 7 adhere to the passe conenton, so 7 6 p s the power suppled by source 7. Next, apply KCL to get

5 8 4 8 and 8 do not adhere to the passe conenton, so p s the power suppled by source 8. Fnally, apply KCL to get 9 and 9 adhere to the passe conenton, so s the power suppled by source p (Check: 9 p n 0.) n P 3.-3 Determne the alue of the current that s measured by the meter n Fgure P We can label the crcut as shown. The subscrpts suggest a numberng of the crcut elements. Apply KVL to node the left mesh to get Fgure P A 40 Apply KVL to node the left mesh to get V

6 Apply KCL to get m. Fnally, apply Ohm s law to the 50 resstor to get A m (Checked: LNAPDC 9//04) P 3.-7 Determne the current n Fgure P Answer: = 4 A Fgure P Apply KCL at node a to determne the current n the horzontal resstor as shown. Apply KVL to the loop consstng of the oltages source and the two resstors to get -4(-) + 4() - 4 = 0 = 4 A P3.- Determne the alue of the oltage 5 for the crcut shown n Fgure P3.-. Fgure P3.-

7 Apply KVL to the left mesh: V Use the element equaton of the dependent source: A Apply KCL at the rght node V 5 P 3.3- Consder the crcuts shown n Fgure P (a) Determne the alue of the resstance n Fgure P 3.3-b that makes the crcut n Fgure P 3.3-b equalent to the crcut n Fgure P 3.3-a. (b) Determne the current n Fgure P 3.3-b. Because the crcuts are equalent, the current n Fgure P 3.3-a s equal to the current n Fgure P 3.3-b. (c) Determne the power suppled by the oltage source. ( a) ( b).867 A 5 c p 8 =8(.867)=5.7 W (8 V and do not adhere to the passe conenton.)

8 P Determne the oltage n the crcut shown n Fgure P Fgure P Voltage dson V V KVL: V (checked usng LNAP 8/6/0) P The nput to the crcut shown n Fgure P s the oltage of the oltage source, a. The output of ths crcut s the oltage measured by the oltmeter, b. Ths crcut produces an output that s proportonal to the nput, that s where k s the constant of proportonalty. b = k a (a) Determne the alue of the output, b, when = 40 Ω and a = 8 V. (b) (c) (d) Determne the alue of the power suppled by the oltage source when = 40 Ω and a = 8 V. Determne the alue of the resstance,, requred to cause the output to be b = V when the nput s a = 8 V. Determne the alue of the resstance,, requred to cause b = 0. a (that s, the alue of the constant of proportonalty s k ). 0

9 Fgure P a.) V b.) 8.08 W 0 80 c.) d.) P 3.3- For the crcut of Fgure P 3.3-, fnd the oltage 3 and the current and show that the power delered to the three resstors s equal to that suppled by the source. Fgure P 3.3-

10 3 From oltage dson 3 3 V 39 then = 3 = A W The power absorbed by the resstors s: The power suppled by the source s ()() = W. P 3.4- Use current dson to determne the currents,, 3, and 4 n the crcut shown n Fgure P Fgure P A A; A A P The deal oltmeter n the crcut shown n Fgure P measures the oltage.

11 Fgure P (a) Suppose = Ω. Determne the alue of and of the current. (b) Suppose, nstead, = Ω. Determne the alue of and of the current. (c) Instead, choose and to mnmze the power absorbed by any one resstor. 8 8 or ( ) or 8 8 a A ; b A ; wll cause = A. The current n both and wll be A. 8 ; c P Fgure P shows a transstor amplfer. The alues of and are to be selected. esstances and are used to bas the transstor, that s, to create useful operatng condtons. In ths problem, we want to select and so that b = 5 V. We expect the alue of b to be approxmately 0 μa. When 0 b, t s customary to treat b as neglgble, that s, to assume b = 0. In that case and comprse a oltage dder.

12 (a) (b) Fgure P Select alues for and so that b = 5 V and the total power absorbed by and s no more than 5 mw. An nferor transstor could cause b to be larger than expected. Usng the alues of and from part (a), determne the alue of b that would result from b = 5 μa. (a) To nsure that b s neglgble we requre so 50 k To nsure that the total power absorbed by and s no more than 5 mw we requre k Next to cause b = 5 V we requre 5 5 b For example, 40 k, 80 k, satsfy all three requrements. (b) 3 KVL ges b b 6 KCL ges b 6 Therefore b Fnally 3.8 3b. 5 b 4.6 V 3

13 P Determne the power suppled by the dependent source n Fgure P Use current dson to get a so ma b V Fgure P The power suppled by the dependent source s gen by 3 p mw P 3.4- Determne the alue of the current measured by the meter n Fgure P eplace the (deal) ammeter wth the equalent short crcut. Label the current measured by the meter. Fgure P 3.4-

14 Apply KCL at the left node of the VCCS to get a.. 0. a 0.3 a a 4 V Use current dson to get m a A P 3.5- Determne the power suppled by each source n the crcut shown n Fgure P Fgure P 3.5- The 0- and 5- resstors are connected n parallel. The equalent resstance s The 7- resstor s connected n parallel wth a short crcut, a 0- resstor. The equalent resstance s 0 7 0, a short crcut. 0 7 The oltage sources are connected n seres and can be replaced by a sngle equalent oltage source. After dong so, and labelng the resstor currents, we hae the crcut shown.

15 The parallel current sources can be replaced by an equalent current source. Apply KVL to get V The power suppled by each sources s: Source Power delered 8-V oltage source W 3-V oltage source W 3-A current source W 0.5-A current source W (Checked usng LNAP, 9/5/04) P 3.6- The crcut shown n Fgure P 3.6-a has been dded nto two parts. In Fgure P 3.6-b, the rght-hand part has been replaced wth an equalent crcut. The left-hand part of the crcut has not been changed. (a) (b) (c) Determne the alue of the resstance n Fgure P 3.6-b that makes the crcut n Fgure P 3.6- b equalent to the crcut n Fgure P 3.6-a. Fnd the current and the oltage shown n Fgure P 3.6-b. Because of the equalence, the current and the oltage shown n Fgure P 3.6-a are equal to the current and the oltage shown n Fgure P 3.6-b. Fnd the current shown n Fgure Fgure P 3.6-

16 P 3.6-a usng current dson. a b V ; A 3 c 48 A P (a) Determne alues of and n Fgure P 3.6-4b that make the crcut n Fgure P 3.6-4b equalent to the crcut n Fgure P 3.6-4a. (b) (c) Analyze the crcut n Fgure P 3.6-4b to determne the alues of the currents a and b Because the crcuts are equalent, the currents a and b shown n Fgure P 3.6-4b are equal to the currents a and b shown n Fgure P 3.6-4a. Use ths fact to determne alues of the oltage and current shown n Fgure P 3.6-4a. Fgure P 3.6-4

17 (a) 4 and 4 8 (b) (c) Frst, apply KVL to the left mesh to get 7 6a 3a 0 a 3 A. Next, apply KVL to the left mesh to get A. b a b P Determne the alue of the current n Fgure Answer: = 0.5 ma Fgure 3.6-9

18

19 P All of the resstances n the crcut shown n Fgure P are multples of. Determne the alue of. So the crcut s equalent to Fgure P

20 Then P 3.6- Determne the alue of the resstance n the crcut shown n Fgure P 3.6-, gen that eq = 9 Ω. Answer: = 5 Ω eplace parallel resstors by an equalent resstor: 8 4 = 6 Fgure P 3.6- A short crcut n parallel wth a resstor s equalent to a short crcut. eplace seres resstors by an equalent resstor: 4+6 = 0

21 Now so eq P The oltmeter n Fgure P measures the oltage across the current source. (a) (b) Fgure P Determne the alue of the oltage measured by the meter. Determne the power suppled by each crcut element. eplace the deal oltmeter wth the equalent open crcut and label the oltage measured by the meter. Label the element oltages and currents as shown n (b). Usng unts of V, A, and W: a.) Determne the alue of the oltage measured by the meter. Krchhoff s laws ge Usng unts of V, ma, k and mw: a.) Determne the alue of the oltage measured by the meter. Krchhoff s laws ge

22 and Ohm s law ges Then m 3 s 0 A V m 50 6 V 3 and s ma m Ohm s law ges Then m V 50 6 V b.) Determne the power suppled by each element. oltage source 3 s W current source resstor total W W b.) Determne the power suppled by each element. oltage source current source s 4 mw 6 4 mw resstor total mw P Consder the crcut shown n Fgure P Gen that the oltage of the dependent oltage source s a 8 V, determne the alues of and o. Fgure P3.6-40

23 Frst, Next, 0 o 8 3. V b then c 40 40

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

+ + + - - This circuit than can be reduced to a planar circuit

+ + + - - This circuit than can be reduced to a planar circuit MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to

More information

The Full-Wave Rectifier

The Full-Wave Rectifier 9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to

More information

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:

Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the

More information

Multiple stage amplifiers

Multiple stage amplifiers Multple stage amplfers Ams: Examne a few common 2-transstor amplfers: -- Dfferental amplfers -- Cascode amplfers -- Darlngton pars -- current mrrors Introduce formal methods for exactly analysng multple

More information

Peak Inverse Voltage

Peak Inverse Voltage 9/13/2005 Peak Inerse Voltage.doc 1/6 Peak Inerse Voltage Q: I m so confused! The brdge rectfer and the fullwae rectfer both prode full-wae rectfcaton. Yet, the brdge rectfer use 4 juncton dodes, whereas

More information

The Bridge Rectifier

The Bridge Rectifier 9/4/004 The Brdge ectfer.doc 1/9 The Brdge ectfer Now consder ths juncton dode rectfer crcut: 1 Lne (t) - O (t) _ 4 3 We call ths crcut the brdge rectfer. Let s analyze t and see what t does! Frst, we

More information

Chapter 6 Inductance, Capacitance, and Mutual Inductance

Chapter 6 Inductance, Capacitance, and Mutual Inductance Chapter 6 Inductance Capactance and Mutual Inductance 6. The nductor 6. The capactor 6.3 Seres-parallel combnatons of nductance and capactance 6.4 Mutual nductance 6.5 Closer look at mutual nductance Oerew

More information

s-domain Circuit Analysis

s-domain Circuit Analysis S-Doman naly -Doman rcut naly Tme doman t doman near rcut aplace Tranform omplex frequency doman doman Tranformed rcut Dfferental equaton lacal technque epone waveform aplace Tranform nvere Tranform -

More information

Faraday's Law of Induction

Faraday's Law of Induction Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy

More information

Mesh-Current Method (Loop Analysis)

Mesh-Current Method (Loop Analysis) Mesh-Current Method (Loop Analysis) Nodal analysis was developed by applying KCL at each non-reference node. Mesh-Current method is developed by applying KVL around meshes in the circuit. A mesh is a loop

More information

Resistive Network Analysis. The Node Voltage Method - 1

Resistive Network Analysis. The Node Voltage Method - 1 esste Network Anlyss he nlyss of n electrcl network conssts of determnng ech of the unknown rnch currents nd node oltges. A numer of methods for network nlyss he een deeloped, sed on Ohm s Lw nd Krchoff

More information

Small-Signal Analysis of BJT Differential Pairs

Small-Signal Analysis of BJT Differential Pairs 5/11/011 Dfferental Moe Sall Sgnal Analyss of BJT Dff Par 1/1 SallSgnal Analyss of BJT Dfferental Pars Now lets conser the case where each nput of the fferental par conssts of an entcal D bas ter B, an

More information

120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1

120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1 IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

Chapter 31B - Transient Currents and Inductance

Chapter 31B - Transient Currents and Inductance Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007 Objectves: After completng ths module, you should be

More information

Resistors in Series and Parallel Circuits

Resistors in Series and Parallel Circuits 69 Resistors in Series and Parallel Circuits E&M: Series and parallel circuits Equipment List DataStudio file: Not Required Qty s Part Numbers 1 C/DC Electronics Lab EM-8656 2 D cell 1.5 volt Introduction

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Current and Voltage Measurements. Current measurement

Current and Voltage Measurements. Current measurement Current and oltage easurements Current measurement ccording to current continuity (i.e. charge conservation) law, the current can be measured in any portion of a single loop circuit. B Circuit Element

More information

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and

Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types

More information

Σ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1)

Σ I in = Σ I out E = IR 1 + IR 2 FXA 2008 KIRCHHOFF S LAWS 1. Candidates should be able to : LAW 1 (K1) UNT G482 Module 3 2.3.1 Series & Parallel Circuits Candidates should be able to : KRCHHOFF S LAWS 1 LAW 1 (K1) State Kirchhoff s second law and appreciate that it is a consequence of conservation of energy.

More information

Experiment NO.3 Series and parallel connection

Experiment NO.3 Series and parallel connection Experiment NO.3 Series and parallel connection Object To study the properties of series and parallel connection. Apparatus 1. DC circuit training system 2. Set of wires. 3. DC Power supply 4. Digital A.V.O.

More information

Safety instructions VEGAVIB VB6*.GI*******

Safety instructions VEGAVIB VB6*.GI******* Safety nstructons VEGAVIB VB6*.GI******* Kosha 14-AV4BO-0107 Ex td A20, A20/21, A21 IP66 T** 0044 Document ID: 48578 Contents 1 Area of applcablty... 3 2 General nformaton... 3 3 Techncal data... 3 4 Applcaton

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

Analysis and Modeling of Magnetic Coupling

Analysis and Modeling of Magnetic Coupling Analyss and Modelng of Magnetc Couplng Bryce Hesterman Adanced Energy Industres Tuesday, Aprl 7 Dscoery earnng Center Unersty Of Colorado, Boulder, Colorado Dener Chapter, IEEE Power Electroncs Socety

More information

Circuit Analysis using the Node and Mesh Methods

Circuit Analysis using the Node and Mesh Methods Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The

More information

Thevenin Equivalent Circuits

Thevenin Equivalent Circuits hevenin Equivalent Circuits Introduction In each of these problems, we are shown a circuit and its hevenin or Norton equivalent circuit. he hevenin and Norton equivalent circuits are described using three

More information

Tutorial 12 Solutions

Tutorial 12 Solutions PHYS000 Tutorial 2 solutions Tutorial 2 Solutions. Two resistors, of 00 Ω and 200 Ω, are connected in series to a 6.0 V DC power supply. (a) Draw a circuit diagram. 6 V 00 Ω 200 Ω (b) What is the total

More information

Series and Parallel Resistive Circuits

Series and Parallel Resistive Circuits Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act

More information

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee

Chapter 5. Parallel Circuits ISU EE. C.Y. Lee Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in

More information

Kirchhoff's Current Law (KCL)

Kirchhoff's Current Law (KCL) Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per

More information

UNILATERALLY INJECTION-LOCKED GUNN OSCILLATOR PAIR ACTING AS A MICROWAVE ACTIVE NOTCH FILTER

UNILATERALLY INJECTION-LOCKED GUNN OSCILLATOR PAIR ACTING AS A MICROWAVE ACTIVE NOTCH FILTER Internatonal Journal of Electroncs and Communcaton Engneerng & Technology (IJECET) Volume 7, Issue, March-Aprl 016, pp. 5-, Artcle ID: IJECET_07_0_004 Aalable onlne at http://www.aeme.com/ijecet/ssues.asp?jtype=ijecet&vtype=7&itype=

More information

Implementation of Deutsch's Algorithm Using Mathcad

Implementation of Deutsch's Algorithm Using Mathcad Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"

More information

J.L. Kirtley Jr. Electric network theory deals with two primitive quantities, which we will refer to as: 1. Potential (or voltage), and

J.L. Kirtley Jr. Electric network theory deals with two primitive quantities, which we will refer to as: 1. Potential (or voltage), and Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.061 Introduction to Power Systems Class Notes Chapter 1: eiew of Network Theory J.L. Kirtley Jr. 1 Introduction

More information

Level Annuities with Payments Less Frequent than Each Interest Period

Level Annuities with Payments Less Frequent than Each Interest Period Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada wellng@cs.toronto.edu Abstract Ths s a note to explan support vector machnes.

More information

Optical Signal-to-Noise Ratio and the Q-Factor in Fiber-Optic Communication Systems

Optical Signal-to-Noise Ratio and the Q-Factor in Fiber-Optic Communication Systems Applcaton ote: FA-9.0. Re.; 04/08 Optcal Sgnal-to-ose Rato and the Q-Factor n Fber-Optc Communcaton Systems Functonal Dagrams Pn Confguratons appear at end of data sheet. Functonal Dagrams contnued at

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

Addendum to: Importing Skill-Biased Technology

Addendum to: Importing Skill-Biased Technology Addendum to: Importng Skll-Based Technology Arel Bursten UCLA and NBER Javer Cravno UCLA August 202 Jonathan Vogel Columba and NBER Abstract Ths Addendum derves the results dscussed n secton 3.3 of our

More information

Section C2: BJT Structure and Operational Modes

Section C2: BJT Structure and Operational Modes Secton 2: JT Structure and Operatonal Modes Recall that the semconductor dode s smply a pn juncton. Dependng on how the juncton s based, current may easly flow between the dode termnals (forward bas, v

More information

Lecture 2: Single Layer Perceptrons Kevin Swingler

Lecture 2: Single Layer Perceptrons Kevin Swingler Lecture 2: Sngle Layer Perceptrons Kevn Sngler kms@cs.str.ac.uk Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

DC mesh current analysis

DC mesh current analysis DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Equivalent Circuits and Transfer Functions

Equivalent Circuits and Transfer Functions R eq isc Equialent Circuits and Transfer Functions Samantha R Summerson 14 September, 009 1 Equialent Circuits eq ± Figure 1: Théenin equialent circuit. i sc R eq oc Figure : Mayer-Norton equialent circuit.

More information

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A/ 161A/ 162A/ 163A are hgh-speed 4-bt synchronous counters. They are edge-trggered, synchronously presettable, and cascadable MSI buldng blocks for

More information

Energies of Network Nastsemble

Energies of Network Nastsemble Supplementary materal: Assessng the relevance of node features for network structure Gnestra Bancon, 1 Paolo Pn,, 3 and Matteo Marsl 1 1 The Abdus Salam Internatonal Center for Theoretcal Physcs, Strada

More information

Chapter 12 Inductors and AC Circuits

Chapter 12 Inductors and AC Circuits hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for

More information

Simulator of Reactor Kinetics

Simulator of Reactor Kinetics Internatonal Journal of Instrumentaton Scence 2014, 3(1): 1-7 DOI: 10.5923/j.nstrument.20140301.01 Smulator of eactor Knetcs S. P. Dashuk *, V. F. Borsov A.P. Alexandrov esearch Insttute of Technology

More information

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W

= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models

Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm

More information

Series-Parallel Circuits. Objectives

Series-Parallel Circuits. Objectives Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 7. Root Dynamcs 7.2 Intro to Root Dynamcs We now look at the forces requred to cause moton of the root.e. dynamcs!!

More information

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.

Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt. Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

8 Algorithm for Binary Searching in Trees

8 Algorithm for Binary Searching in Trees 8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

Loudspeaker Voice-Coil Inductance Losses: Circuit Models, Parameter Estimation, and Effect on Frequency Response

Loudspeaker Voice-Coil Inductance Losses: Circuit Models, Parameter Estimation, and Effect on Frequency Response 44 JOURAL OF THE AUDIO EGIEERIG SOCIETY, VOL. 50, O. 6, 00 JUE Loudspeaker Voce-Col Inductance Losses: Crcut Models, Parameter Estmaton, and Effect on Frequency Response W. Marshall Leach, Jr., Professor

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits Components in a circuit can be connected in series or parallel. A series arrangement of components is where they are inline with each other, i.e. connected end-to-end. A parallel

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

High-frequency response of a CG amplifier

High-frequency response of a CG amplifier Hgh-requency respnse a G apler between surce & grund between dran & grund w-pass lter Md-band p w-pass lter db Input Ple Output Ple n sb Hgh- respnse a G apler Exact Slutn ( db sb ( / : Nde ( / : Nde n

More information

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo. ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) yaoq.feng@yahoo.com Abstract

More information

Calculating the high frequency transmission line parameters of power cables

Calculating the high frequency transmission line parameters of power cables < ' Calculatng the hgh frequency transmsson lne parameters of power cables Authors: Dr. John Dcknson, Laboratory Servces Manager, N 0 RW E B Communcatons Mr. Peter J. Ncholson, Project Assgnment Manager,

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

Laddered Multilevel DC/AC Inverters used in Solar Panel Energy Systems

Laddered Multilevel DC/AC Inverters used in Solar Panel Energy Systems Proceedngs of the nd Internatonal Conference on Computer Scence and Electroncs Engneerng (ICCSEE 03) Laddered Multlevel DC/AC Inverters used n Solar Panel Energy Systems Fang Ln Luo, Senor Member IEEE

More information

The Greedy Method. Introduction. 0/1 Knapsack Problem

The Greedy Method. Introduction. 0/1 Knapsack Problem The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton

More information

Introduction to Statistical Physics (2SP)

Introduction to Statistical Physics (2SP) Introducton to Statstcal Physcs (2SP) Rchard Sear March 5, 20 Contents What s the entropy (aka the uncertanty)? 2. One macroscopc state s the result of many many mcroscopc states.......... 2.2 States wth

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting

Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide

More information

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT

Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Time Value of Money Module

Time Value of Money Module Tme Value of Money Module O BJECTIVES After readng ths Module, you wll be able to: Understand smple nterest and compound nterest. 2 Compute and use the future value of a sngle sum. 3 Compute and use the

More information

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010

Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010 Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value

8.4. Annuities: Future Value. INVESTIGATE the Math. 504 8.4 Annuities: Future Value 8. Annutes: Future Value YOU WILL NEED graphng calculator spreadsheet software GOAL Determne the future value of an annuty earnng compound nterest. INVESTIGATE the Math Chrstne decdes to nvest $000 at

More information

Experiment 4 ~ Resistors in Series & Parallel

Experiment 4 ~ Resistors in Series & Parallel Experiment 4 ~ Resistors in Series & Parallel Objective: In this experiment you will set up three circuits: one with resistors in series, one with resistors in parallel, and one with some of each. You

More information

DC Circuits (Combination of resistances)

DC Circuits (Combination of resistances) Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose

More information

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling

Analysis of Reactivity Induced Accident for Control Rods Ejection with Loss of Cooling Analyss of Reactvty Induced Accdent for Control Rods Ejecton wth Loss of Coolng Hend Mohammed El Sayed Saad 1, Hesham Mohammed Mohammed Mansour 2 Wahab 1 1. Nuclear and Radologcal Regulatory Authorty,

More information

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification

Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson

More information

Circuits 1 M H Miller

Circuits 1 M H Miller Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

More information

University Physics AI No. 11 Kinetic Theory

University Physics AI No. 11 Kinetic Theory Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

Physics 110 Spring 2006 2-D Motion Problems: Projectile Motion Their Solutions

Physics 110 Spring 2006 2-D Motion Problems: Projectile Motion Their Solutions Physcs 110 Sprn 006 -D Moton Problems: Projectle Moton Ther Solutons 1. A place-kcker must kck a football from a pont 36 m (about 40 yards) from the oal, and half the crowd hopes the ball wll clear the

More information

An MILP model for planning of batch plants operating in a campaign-mode

An MILP model for planning of batch plants operating in a campaign-mode An MILP model for plannng of batch plants operatng n a campagn-mode Yanna Fumero Insttuto de Desarrollo y Dseño CONICET UTN yfumero@santafe-concet.gov.ar Gabrela Corsano Insttuto de Desarrollo y Dseño

More information

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP)

1. Fundamentals of probability theory 2. Emergence of communication traffic 3. Stochastic & Markovian Processes (SP & MP) 6.3 / -- Communcaton Networks II (Görg) SS20 -- www.comnets.un-bremen.de Communcaton Networks II Contents. Fundamentals of probablty theory 2. Emergence of communcaton traffc 3. Stochastc & Markovan Processes

More information

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression. Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook

More information

An interactive system for structure-based ASCII art creation

An interactive system for structure-based ASCII art creation An nteractve system for structure-based ASCII art creaton Katsunor Myake Henry Johan Tomoyuk Nshta The Unversty of Tokyo Nanyang Technologcal Unversty Abstract Non-Photorealstc Renderng (NPR), whose am

More information

Resource Scheduling in Desktop Grid by Grid-JQA

Resource Scheduling in Desktop Grid by Grid-JQA The 3rd Internatonal Conference on Grd and Pervasve Computng - Worshops esource Schedulng n Destop Grd by Grd-JQA L. Mohammad Khanl M. Analou Assstant professor Assstant professor C.S. Dept.Tabrz Unversty

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

Viscosity of Solutions of Macromolecules

Viscosity of Solutions of Macromolecules Vscosty of Solutons of Macromolecules When a lqud flows, whether through a tube or as the result of pourng from a vessel, layers of lqud slde over each other. The force f requred s drectly proportonal

More information

PRO-CRIMPER* III Hand Crimping Tool Assembly 90800-1 with Die Assembly 90800-2

PRO-CRIMPER* III Hand Crimping Tool Assembly 90800-1 with Die Assembly 90800-2 PRO-CRIMPER* III Hand Crmpng Tool Assembly 90800-1 wth Assembly 90800-2 Instructon Sheet 408-4007 19 APR 11 PROPER USE GUIDELINES Cumulatve Trauma Dsorders can result from the prolonged use of manually

More information

CHAPTER 28 ELECTRIC CIRCUITS

CHAPTER 28 ELECTRIC CIRCUITS CHAPTER 8 ELECTRIC CIRCUITS 1. Sketch a circuit diagram for a circuit that includes a resistor R 1 connected to the positive terminal of a battery, a pair of parallel resistors R and R connected to the

More information

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum

Goals Rotational quantities as vectors. Math: Cross Product. Angular momentum Physcs 106 Week 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap 11.2 to 3 Rotatonal quanttes as vectors Cross product Torque expressed as a vector Angular momentum defned Angular momentum as a

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

Lecture 12: DC Analysis of BJT Circuits.

Lecture 12: DC Analysis of BJT Circuits. Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information