# A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product

Save this PDF as:

Size: px
Start display at page:

Download "A B = AB sin(θ) = A B = AB (2) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product"

## Transcription

1 1 Dot Product and Cross Products For two vectors, the dot product is a number A B = AB cos(θ) = A B = AB (1) For two vectors A and B the cross product A B is a vector. The magnitude of the cross product A B = AB sin(θ) = A B = AB (2) The direction of the resulting vector is given by the right hand rule. A formula for the cross product of two vectors is î ĵ ˆk A B = A x A y A z B x B y B z (3) 2 Work and Energy The work done by any force in going from position r A up to position r B is W = rb r A F dr (4) For a constant force the work is simply the dot product of the force with the displacement W = F r = F r cos(θ) (5) where θ is the angle between the displacement and the force vector. The work done by all forces where the kinetic energy is W all forces = K = K f K i (6) K = 1 2 mv2 (7) We classify forces as conservative (gravity springs) and non-conservative (friction). For conservative forces we can introduce the potential energy. The change in potential energy is minus the work done by the foce U = U 2 U 1 = The force associated with a given potential energy is 2 1 F dr (8) F = du(x) dx (9) Then the fundamental work energy theorem can be written W non consv + W ext = K + U (10) where U is the change in potential energy of the system. If there are no external or dissipative forces then E = K + U = constant (11) You should understand the logic of how Eq.?? leads to Eq.?? and ultimately Eq.??. 1

2 The potential energy depends on the force that we are considering: For a constant gravitational force F = mg we have where y is the vertical height measured from any agreed upon origin. U = mgy (12) For a spring with spring constant k which is displaced from equilibrium by an amount x, we have a potential energy of For a particle a distance r from the earth the potential energy is U = 1 2 kx2 (13) U = GMm r (14) Power is defined as the rate at which work is done or the rate at which energy is transformed from one form to another. P = dw = de (15) or P = F v (16) 3 Momentum The momentum of an object is In terms of momentum Newtons Law can p = mv (17) F = dp (18) The total momentum transferred to a particle by a force is the known as the impulse (or simply momentum transfer) p = p f p i = If the force last a period t the average force is tf F ave = p t For a system of particles with total mass M, we define the center of mass i x cm = m ix i M For a continuous distribution of mass (e.g. a rod ) x cm = 1 M See Example 9-16 and 9-17 for how to actually do these calculations. The total momentum is of a system of particles t i F = J (19) (20) (21) x dm (22) P tot = m i v i = Mv cm (23) It should be clear how to derive this last equality by differentiating Eq.?? 2

3 Newtons laws for a system of particles is F ext = dp tot = Ma cm (24) If the mass is changing e.g. in Rocket problems one should be careful drawing a picture of before and after a time t see l19. You should feel comfortable deriving e.g. Eq. 9-19b of the book. See examples 9-19, If there are no external forces in a system of particles then (from Eq.??) momentum is conserved P tot = Constant (25) i.e. for 2 2 collisions p A + p B = p A + p B (26) If a collision is totally elastic (there is no internal disaptive or explosive forces). Energy is conserved 1 2 m Av 2 A m Bv 2 B = 1 2 m Av 2 A m Bv 2 B (27) In one dimensional elastic collisons a simplified formula is equivalent to energy conservation v A v B = (v A v B) (28) In an inelastic collision energy is not conserved. 4 Rotational Motion 4.1 Kinematics Use radians most of these formulas assume it. The magnitude of the angular velocity and the angular acceleration of a rigid body are ω = dθ and α = dω (29) And these quantities do not depend on the radius (unlike velocity). The freqency and period (for ω constant is ) f = ω 2π T = 1 f (30) The angular velocity ω and angular acceleration α, point along the axis of rotation. The direction is given by the right hand rule. The velocity and tangential and radial accelerations are v = Rω (31) a tan = Rα (32) a R = v2 R = ω2 R (33) The total acceleration is a vector sum of thse For an object spinning counter clockwise and speeding up the picture is 3

4 v a tan ar For constant angular acceleration the following formulas are valid (in analogy) θ = θ o + ω o t αt2 (34) ω = ω o + αt (35) ω 2 = ωo 2 + 2α θ (36) 4.2 1D-Dynamics and Energetics The torque is When limitted to rotation in the xy plane we have τ = R F (37) τ = ±R F ˆk = ±RF ˆk (38) +ˆk indicates a a counter-clockwise rotation while ˆk indicates a clockwise rotation. For xy rotations the ˆk is usually not written down, but is understood. The moment of inertia of a solid body is I = i m i R 2 I = R 2 dm (39) To compute the moment of inertia one can: Perform the integral. Break it up into pieces whose moment of inertial you know Look it up (If I want you to look up I will provide a table) Use the parallel axis theorem: I A = I cm + Md 2 (40) where d is the distance from the desired parallel axis to the center of mass. Torques create angular acceleration. For spinning around a natural axis of a body one has τ = Iα (41) this applies around a fixed axis or around the center of mass if the body is accelerating. The rotational kinetic energy is K rot = 1 2 Iω2 (42) If an object is moving there is rotational kinetic energy around the center of mass and there is translational kinetic energy K tot = 1 2 Mv2 cm I cmω 2 (43) 4

5 When a wheel is rolling is without slipping the point at the bottom of the wheel is instanteously not moving (it has non zero acceleration however). Thus what actually keeps a tire from slipping is the coefficient of static and not kinetic friction. If a an object is rolling without slipping we have ω = v cm R Otherwise ω and v cm are separate quantities to be determined by F net = Ma cm and τ = I dω. 4.3 Angular Momentum The angular momentum of a rigid body rotating about a principle axis is The angular momentum of a particle is L = Iω (44) L = r p L = r mv (45) The total angular momentum of a system is the sum of the angular momenta of its different components. It depends on the axis of rotation For example: 1. Ball rolling Calculate L cm and L O L cm = I cm ω r v cm O L O = r M tot v cm + I cm ω 2. Rod just moving to right with speed v. Calculate L cm and L O L O = r mv cm O r L O = R mv cm R v L cm = 0 The net external torque on a system (about a fixed axis or about the center of mass if the object is accelerating) determines the rate of change in angular momenta τext = dl tot (46) 5

6 If there is no net external torque then the total angular momentum is conserved 5 Oscillations We derived several examples of small oscillations For a mass connected to a spring the equation of motion become You should know how to derive this using F = Ma. L init = L final (47) d 2 x 2 = k M x (48) Similarly we showed (using sin(θ) θ for small angles) that for a small blob connected to a string of length l, The equation of motion is d 2 θ 2 = g l θ (49) You should know how to derive this from F = ma Finally we showed (using sin(θ) θ for small angles) that for a solid pendulum of moment of inertia I, pivoted a distance h above the center of mass the angle obeys d 2 θ 2 = mgh θ (50) I You should know how to derive this from τ = Iα. Or memorize the period, etc if you must. The generic formula is d 2 u 2 = ω2 ou (51) where u is the thing thats ocillating and ω o is the angular oscillation frequency. The preceding equations are all the same with the subsitutions (e.g. x θ and k/m g/l). We will take the spring for simplicity but these remarks to apply to the other cases as well. The spring is released from position x 0 with velocity v 0 at time t = 0. The free constants in the general solution x(t) = C 1 cos(ω o t) + C 2 sin(ω o t) are adjusted so that x(0) = x 0 and ẋ(0) = v 0. You should be able to show that in this case C 1 = x o and C 2 = v o /ω o x(t) = x 0 cos(ωt) + v 0 ω o sin(ω o t) ω o = k M (52) It often instructive to write this in amplitude + phase form. We showed in class that Eq.?? can be rewritten (you should be able to show this) x(t) = A cos(ωt φ) (53) where The frequency and period of the oscillation are A = ( ) x 2 o + (v o /ω o ) 2 and φ = tan 1 vo ω o x o (54) f = ω o 2π T = 1 f (55) Analgous formulas hold for the other cases. For example for a simple pendulum released from and initial angle θ o with iniitial angular velocity Ω o = θ(0) the analgous formulas are θ(t) = θ o cos(ω o t) + Ω o ω o sin(ω o t) ω o = g l (56) 6

7 During simple harmonic motion, the energy of a spring changes between kinetic and potential energies. The total energy is constant E = 1 2 Mv kx2 (57) For a harmonic oscillator with non-zero damping force F D = bv you should be able to derive the following equation of motion d 2 x 2 + b dx M + k M x = 0 (58) which has a general solution x(t) = Ae b 2m t cos(ωt φ) where k ω = M b2 4m 2 (59) The constants A and φ are as usual adjusted to reproduce the initial conditions. We will keep the discussion fairly elementary, at the level of Example of the book. For a vertical spring, when mass is added, the equilbirium point is shifted downward (derive): x eq = mg k If we measure the deviation from this equilibrium point we have the classic equation of motion (show) (60) y = x x eq (61) d 2 y 2 = k M y (62) The potential energy measures both the gravitational potential energy and the spring potential energy (show): U = 1 2 ky2 = 1 2 kx2 + mgx + constant (63) 6 Gravitation The universal law of gravitational attraction is a force attracting mass M with mass m. F = GMm r 2 (64) The direction of this force is along the line joining the two particles and is always attractvie. You should be able to show that g = GM E R 2 E You should be able to compute the properties of circular orbits in this kind of force field, e.g. The kinetic energy for an orbit of radius R. You should be able to compute the escape velocity from the earth etc. 7 Statics Section 12-1, Section 12-2 (65) For static equilibrium one has only equation Fi = 0 τ = 0 (66) This when carefully applied is all you need. 7

### Chapter 24 Physical Pendulum

Chapter 4 Physical Pendulum 4.1 Introduction... 1 4.1.1 Simple Pendulum: Torque Approach... 1 4. Physical Pendulum... 4.3 Worked Examples... 4 Example 4.1 Oscillating Rod... 4 Example 4.3 Torsional Oscillator...

### 5.2 Rotational Kinematics, Moment of Inertia

5 ANGULAR MOTION 5.2 Rotational Kinematics, Moment of Inertia Name: 5.2 Rotational Kinematics, Moment of Inertia 5.2.1 Rotational Kinematics In (translational) kinematics, we started out with the position

### Chapter 13, example problems: x (cm) 10.0

Chapter 13, example problems: (13.04) Reading Fig. 13-30 (reproduced on the right): (a) Frequency f = 1/ T = 1/ (16s) = 0.0625 Hz. (since the figure shows that T/2 is 8 s.) (b) The amplitude is 10 cm.

### PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

### Physics 41 HW Set 1 Chapter 15

Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

### Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

Week 8 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### Rotational inertia (moment of inertia)

Rotational inertia (moment of inertia) Define rotational inertia (moment of inertia) to be I = Σ m i r i 2 or r i : the perpendicular distance between m i and the given rotation axis m 1 m 2 x 1 x 2 Moment

### Physics 1A Lecture 10C

Physics 1A Lecture 10C "If you neglect to recharge a battery, it dies. And if you run full speed ahead without stopping for water, you lose momentum to finish the race. --Oprah Winfrey Static Equilibrium

### Problem 6.40 and 6.41 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani

Problem 6.40 and 6.4 Kleppner and Kolenkow Notes by: Rishikesh Vaidya, Physics Group, BITS-Pilani 6.40 A wheel with fine teeth is attached to the end of a spring with constant k and unstretched length

### Lecture 17. Last time we saw that the rotational analog of Newton s 2nd Law is

Lecture 17 Rotational Dynamics Rotational Kinetic Energy Stress and Strain and Springs Cutnell+Johnson: 9.4-9.6, 10.1-10.2 Rotational Dynamics (some more) Last time we saw that the rotational analog of

### Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability

S. Widnall 16.07 Dynamics Fall 2009 Version 1.0 Lecture L19 - Vibration, Normal Modes, Natural Frequencies, Instability Vibration, Instability An important class of problems in dynamics concerns the free

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### 11. Rotation Translational Motion: Rotational Motion:

11. Rotation Translational Motion: Motion of the center of mass of an object from one position to another. All the motion discussed so far belongs to this category, except uniform circular motion. Rotational

### Lecture L22-2D Rigid Body Dynamics: Work and Energy

J. Peraire, S. Widnall 6.07 Dynamics Fall 008 Version.0 Lecture L - D Rigid Body Dynamics: Work and Energy In this lecture, we will revisit the principle of work and energy introduced in lecture L-3 for

### 1.10 Using Figure 1.6, verify that equation (1.10) satisfies the initial velocity condition. t + ") # x (t) = A! n. t + ") # v(0) = A!

1.1 Using Figure 1.6, verify that equation (1.1) satisfies the initial velocity condition. Solution: Following the lead given in Example 1.1., write down the general expression of the velocity by differentiating

### Practice Exam Three Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 Practice Exam Three Solutions Problem 1a) (5 points) Collisions and Center of Mass Reference Frame In the lab frame,

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

### Center of Gravity. We touched on this briefly in chapter 7! x 2

Center of Gravity We touched on this briefly in chapter 7! x 1 x 2 cm m 1 m 2 This was for what is known as discrete objects. Discrete refers to the fact that the two objects separated and individual.

### Lab M1: The Simple Pendulum

Lab M1: The Simple Pendulum Introduction. The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are usually regarded as the beginning of

### Bead moving along a thin, rigid, wire.

Bead moving along a thin, rigid, wire. odolfo. osales, Department of Mathematics, Massachusetts Inst. of Technology, Cambridge, Massachusetts, MA 02139 October 17, 2004 Abstract An equation describing

### Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

### Dynamics of Rotational Motion

Chapter 10 Dynamics of Rotational Motion PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 5_31_2012 Goals for Chapter

### Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 21.1 Introduction... 1 21.2 Translational Equation of Motion... 1 21.3 Translational and Rotational Equations of Motion... 1

### Lab 5: Conservation of Energy

Lab 5: Conservation of Energy Equipment SWS, 1-meter stick, 2-meter stick, heavy duty bench clamp, 90-cm rod, 40-cm rod, 2 double clamps, brass spring, 100-g mass, 500-g mass with 5-cm cardboard square

### PHY231 Section 1, Form B March 22, 2012

1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

### 8.012 Physics I: Classical Mechanics Fall 2008

MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

### Torque Analyses of a Sliding Ladder

Torque Analyses of a Sliding Ladder 1 Problem Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (May 6, 2007) The problem of a ladder that slides without friction while

### Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

### Chapter 10 Rotational Motion. Copyright 2009 Pearson Education, Inc.

Chapter 10 Rotational Motion Angular Quantities Units of Chapter 10 Vector Nature of Angular Quantities Constant Angular Acceleration Torque Rotational Dynamics; Torque and Rotational Inertia Solving Problems

### Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.

Chapter 3 Mechanical Systems Dr. A.Aziz. Bazoune 3.1 INTRODUCTION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENTS Any mechanical

### Rotation: Moment of Inertia and Torque

Rotation: Moment of Inertia and Torque Every time we push a door open or tighten a bolt using a wrench, we apply a force that results in a rotational motion about a fixed axis. Through experience we learn

### Physics 1120: Simple Harmonic Motion Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

### Physics 1120: Work & Energy Solutions

Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Physics 1120: Work & Energy Solutions Energy 1. In the diagram below, the spring has a force constant of 5000

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### Unit 4 Practice Test: Rotational Motion

Unit 4 Practice Test: Rotational Motion Multiple Guess Identify the letter of the choice that best completes the statement or answers the question. 1. How would an angle in radians be converted to an angle

### Work, Kinetic Energy and Potential Energy

Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy

### 7. Kinetic Energy and Work

Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

### AP Physics C. Oscillations/SHM Review Packet

AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Equipment: Ballistic pendulum apparatus, 2 meter ruler, 30 cm ruler, blank paper, carbon paper, masking tape, scale. Caution In this experiment a steel ball is projected horizontally

### PHYSICS 111 HOMEWORK SOLUTION #10. April 10, 2013

PHYSICS 111 HOMEWORK SOLUTION #10 April 10, 013 0.1 Given M = 4 i + j 3 k and N = i j 5 k, calculate the vector product M N. By simply following the rules of the cross product: i i = j j = k k = 0 i j

### Chapter 11. h = 5m. = mgh + 1 2 mv 2 + 1 2 Iω 2. E f. = E i. v = 4 3 g(h h) = 4 3 9.8m / s2 (8m 5m) = 6.26m / s. ω = v r = 6.

Chapter 11 11.7 A solid cylinder of radius 10cm and mass 1kg starts from rest and rolls without slipping a distance of 6m down a house roof that is inclined at 30 degrees (a) What is the angular speed

### Angular acceleration α

Angular Acceleration Angular acceleration α measures how rapidly the angular velocity is changing: Slide 7-0 Linear and Circular Motion Compared Slide 7- Linear and Circular Kinematics Compared Slide 7-

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### Rotation. Moment of inertia of a rotating body: w I = r 2 dm

Rotation Moment of inertia of a rotating body: w I = r 2 dm Usually reasonably easy to calculate when Body has symmetries Rotation axis goes through Center of mass Exams: All moment of inertia will be

### Hooke s Law and Simple Harmonic Motion

Hooke s Law and Simple Harmonic Motion OBJECTIVE to measure the spring constant of the springs using Hooke s Law to explore the static properties of springy objects and springs, connected in series and

### Problem Solving Guide

Problem Solving Guide 1 Introduction Are you having trouble with solving dynamics problems? Do you often haven t got a clue where to start? Then this problem solving guide might come in handy for you.

### Tennessee State University

Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

### Homework 4. problems: 5.61, 5.67, 6.63, 13.21

Homework 4 problems: 5.6, 5.67, 6.6,. Problem 5.6 An object of mass M is held in place by an applied force F. and a pulley system as shown in the figure. he pulleys are massless and frictionless. Find

### Lecture L13 - Conservative Internal Forces and Potential Energy

S. Widnall, J. Peraire 16.07 Dynamics Fall 008 Version.0 Lecture L13 - Conservative Internal Forces and Potential Energy The forces internal to a system are of two types. Conservative forces, such as gravity;

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Simple Harmonic Motion

Simple Harmonic Motion 1 Object To determine the period of motion of objects that are executing simple harmonic motion and to check the theoretical prediction of such periods. 2 Apparatus Assorted weights

### Lecture-VIII. Work and Energy

Lecture-VIII Work and Energy The problem: As first glance there seems to be no problem in finding the motion of a particle if we know the force; starting with Newton's second law, we obtain the acceleration,

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7)

Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the following

### Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 13, 2014 1:00PM to 3:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

### Linear Motion vs. Rotational Motion

Linear Motion vs. Rotational Motion Linear motion involves an object moving from one point to another in a straight line. Rotational motion involves an object rotating about an axis. Examples include a

### Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion

Ph\sics 2210 Fall 2012 - Novcmbcr 21 David Ailion Unid: Discussion T A: Bryant Justin Will Yuan 1 Place answers in box provided for each question. Specify units for each answer. Circle correct answer(s)

### Lecture 16. Newton s Second Law for Rotation. Moment of Inertia. Angular momentum. Cutnell+Johnson: 9.4, 9.6

Lecture 16 Newton s Second Law for Rotation Moment of Inertia Angular momentum Cutnell+Johnson: 9.4, 9.6 Newton s Second Law for Rotation Newton s second law says how a net force causes an acceleration.

### D Alembert s principle and applications

Chapter 1 D Alembert s principle and applications 1.1 D Alembert s principle The principle of virtual work states that the sum of the incremental virtual works done by all external forces F i acting in

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### VIII. Magnetic Fields - Worked Examples

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 003 VIII. Magnetic Fields - Worked Examples Example : Rolling rod A rod with a mass m and a radius R is mounted on two parallel rails

### Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations

Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring

### 1 of 10 11/23/2009 6:37 PM

hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

### OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS. You should judge your progress by completing the self assessment exercises.

Unit 60: Dynamics of Machines Unit code: H/601/1411 QCF Level:4 Credit value:15 OUTCOME 2 KINEMATICS AND DYNAMICS TUTORIAL 2 PLANE MECHANISMS 2 Be able to determine the kinetic and dynamic parameters of

### 226 Chapter 15: OSCILLATIONS

Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

### Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

### PHY411. PROBLEM SET 3

PHY411. PROBLEM SET 3 1. Conserved Quantities; the Runge-Lenz Vector The Hamiltonian for the Kepler system is H(r, p) = p2 2 GM r where p is momentum, L is angular momentum per unit mass, and r is the

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

### CHAPTER 11. The total energy of the body in its orbit is a constant and is given by the sum of the kinetic and potential energies

CHAPTER 11 SATELLITE ORBITS 11.1 Orbital Mechanics Newton's laws of motion provide the basis for the orbital mechanics. Newton's three laws are briefly (a) the law of inertia which states that a body at

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### Chapter 8 Conservation of Linear Momentum. Conservation of Linear Momentum

Chapter 8 Conservation of Linear Momentum Physics 201 October 22, 2009 Conservation of Linear Momentum Definition of linear momentum, p p = m v Linear momentum is a vector. Units of linear momentum are

### Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

### Chapter 13 - Gravity. David J. Starling Penn State Hazleton Fall Chapter 13 - Gravity. Objectives (Ch 13) Newton s Law of Gravitation

The moon is essentially gray, no color. It looks like plaster of Paris, like dirty beach sand with lots of footprints in it. -James A. Lovell (from the Apollo 13 mission) David J. Starling Penn State Hazleton

### Lab 7: Rotational Motion

Lab 7: Rotational Motion Equipment: DataStudio, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME-9472), string with loop at one end and small white bead at the other end (125

### Chapter 7 Homework solutions

Chapter 7 Homework solutions 8 Strategy Use the component form of the definition of center of mass Solution Find the location of the center of mass Find x and y ma xa + mbxb (50 g)(0) + (10 g)(5 cm) x

### F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

### EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 3 - ROTATING SYSTEMS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA FURTHER MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 11 - NQF LEVEL 3 OUTCOME 3 - ROTATING SYSTEMS TUTORIAL 1 - ANGULAR MOTION CONTENT Be able to determine the characteristics

### Problem Set V Solutions

Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3

### No Brain Too Small PHYSICS. 2 kg

MECHANICS: ANGULAR MECHANICS QUESTIONS ROTATIONAL MOTION (2014;1) Universal gravitational constant = 6.67 10 11 N m 2 kg 2 (a) The radius of the Sun is 6.96 10 8 m. The equator of the Sun rotates at a

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### Rotational Inertia Demonstrator

WWW.ARBORSCI.COM Rotational Inertia Demonstrator P3-3545 BACKGROUND: The Rotational Inertia Demonstrator provides an engaging way to investigate many of the principles of angular motion and is intended

### Copyright 2011 Casa Software Ltd. www.casaxps.com

Table of Contents Variable Forces and Differential Equations... 2 Differential Equations... 3 Second Order Linear Differential Equations with Constant Coefficients... 6 Reduction of Differential Equations

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Physics 201 Homework 8

Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the

### 3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

### Exam 3 Review Questions PHY Exam 3

Exam 3 Review Questions PHY 2425 - Exam 3 Section: 8 1 Topic: Conservation of Linear Momentum Type: Numerical 1 An automobile of mass 1300 kg has an initial velocity of 7.20 m/s toward the north and a

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### A1. An object of mass m is projected vertically from the surface of a planet of radius R p and mass M p with an initial speed v i.

OBAFMI AWOLOWO UNIVRSITY, IL-IF, IF, NIGRIA. FACULTY OF SCINC DPARTMNT OF PHYSICS B.Sc. (Physics) Degree xamination PHY GNRAL PHYSICS I TUTORIAL QUSTIONS IN GRAVITATION, FLUIDS AND OSCILLATIONS SCTION

### Rotational Kinetic Energy

Objective: The kinetic energy of a rotating disk and falling mass are found; the change in their kinetic energy is compared with the change in potential energy of the falling mass. The conservation of

### PHYSICS 149: Lecture 15

PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus

### Determination of Acceleration due to Gravity

Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

### Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

### Chapter 18 Static Equilibrium

Chapter 8 Static Equilibrium 8. Introduction Static Equilibrium... 8. Lever Law... Example 8. Lever Law... 4 8.3 Generalized Lever Law... 5 8.4 Worked Examples... 7 Example 8. Suspended Rod... 7 Example