Physics B AP Review Packet: Mechanics Name:

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Physics B AP Review Packet: Mechanics Name:"

Transcription

1 Name: Position Location of a particle in space. (x) or (x,y) or (x,y,z) Distance The total length of the path traveled by an object. Does not depend upon direction. Displacement The change in position of an object. Depends only on the initial and final positions, not on path. Includes direction. Represented by Δx. Problem: Distance versus Displacement 1. A hiker hikes 5 miles due north and then all the way back to the starting point. a) How far does the hiker hike? Show your work. Simple, 5 m up and 5 back is = 50 m total b) What is the hiker s displacement? Show your work. Zero, returns to start Acceleration A change in velocity. Acceleration can be speeding up, slowing down, or turning. The SI unit for acceleration is m/s. If the sign of the velocity and the sign of the acceleration is the same, the object speeds up. If the sign of the velocity and the sign of the acceleration are different, the object slows down. Uniformly Accelerated Motion a ave = v/ t Problem: Acceleration (1993) 1. In which of the following situations would an object be accelerated? I. It moves in a straight line at constant speed. II. It moves with uniform circular motion. III. It travels as a projectile in a gravitational field with negligible air resistance. (A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III Explain your answer: Change direction = accelerate, projectile accelerates at -9.8 Average speed v ave = d / t Average Velocity v ave = d/ t Problem: Average Velocity (1988) 6. A truck traveled 400 meters north in 80 seconds, and then it traveled 300 meters east in 70 seconds. The magnitude of the average velocity of the truck was most nearly (A) 1. m/s (B) 3.3 m/s (C) 4.6 m/s (D) 6.6 m/s (E) 9.3 m/s Kinematic Equations v = v o + at x = x o + v o t + 1/ at v = v o + a( x) Problem: Kinematic Equations (1984) 65. A body moving in the positive x direction passes the origin at time t = 0. Between t = 0 and t = 1 second, the body has a constant speed of 4 meters per second. At t = 1 second, the body is given a constant acceleration of 6 meters per second squared in the negative x direction. The position x of the body at t = 11 seconds is (A) +99 m (B) +36 m (C) -36 m (D) -75 m (E) -99 m D= (V 1 T 1 ) + (V I T +.5 a t ) plug in, V1=4, Vi=4, T1=1, T=10, a= - 6 1

2 Problem: Sketch the Kinematic Graphs Stationary particle d vs t v vs t a vs t Particle moving with constant velocity (A) Between O and 1 s (B) 1 s (C) Between 1 and s (D) s (E) Between and 3 s The area is the distance moved. Its ALL negative in the first 1 second, so have to make an equal positive area to bring back to 0 in the next section. seconds would be too much area d vs t v vs t a vs t Particle moving with constant non-zero acceleration d vs t v vs t a vs t Problem: Kinematic Graphs (1988) 1. The displacement x of an object moving along the x-axis is shown above as a function of time t. The acceleration of this object must be (A) zero (B) constant but not zero (C) increasing (D) decreasing (E) equal to g Explain your answer: Slope = velocity, slope is constant so velocity is constant so that means a=0 Problem: Kinematic Graphs (1984) 3. The graph shows the velocity versus time for an object moving in a straight line. At what time after time = 0 does the abject again pass through its initial position? Free Fall Occurs when an object falls unimpeded. Gravity accelerates the object toward the earth. g = 9.8 m/s downward. a = -g if up is positive. acceleration is down when ball is thrown up EVERYWHERE in the balls flight. Problem: Free Fall (1993) 5. An object is released from rest on a planet that has no atmosphere. The object falls freely for 3.0 meters in the first second. What is the magnitude of the acceleration due to gravity on the planet? (A) l.5 m/s (B) 3.0 m/s (C) 6.0 m/s (D) 10.0 m/s (E) 1.0 m/s D=vi t +.5 a t T = 1, D = 3m, Vi=0, solve for a Projectile Motion An example of -dimensional motion. Something is fired, thrown, shot, or hurled near the earth s surface. Horizontal velocity is constant. Vertical velocity is accelerated. Air resistance is ignored. Trajectory of Projectile The trajectory of a projectile is the path it follows. It is defined by a parabola. The RANGE of the projectile is how far it travels horizontally. The MAXIMUM HEIGHT of the projectile occurs halfway through its range, provided the projectile is fired over level ground. Acceleration points down at 9.8 m/s for the entire trajectory. Velocity is tangent to the path for the entire trajectory. The vertical velocity changes while the horizontal velocity remains constant.

3 Problem: Draw Graphs for D Projectiles Problem: Graphs of Projectile Motion (1988) x-component of motion d vs t v vs t a vs t y-component of motion d vs t v vs t a vs t Problems: Projectile Motion (1993) 63. A projectile is fired with initial velocity v 0 at an angle θ with the horizontal and follows the trajectory shown above. Which of the following pairs of graphs best represents the vertical components of the velocity and acceleration, v and a, respectively, of the projectile as functions of time t? Explain your reasoning: Veritcal component is influenced by gravity so gets less on the way up and is + sin ce going up but then move down so is negative and gets faster. Accel is always How do the speeds of the ball at the three points compare? (A) v P < v Q < v R (B) v R < v Q < v P (C) v Q < v R < v P (D) v Q < v P = v R (E) v P = v R < v Q Explain your choice: Speeds at equal points are the same (fact). At top you have the lowest speed 65. Which of the following diagrams best shows the direction of the acceleration of the ball at point P? Explain your choice: Gravity only acts in y direction D Motion problems Resolve vectors into components. Work as one-dimensional problems. Horizontal Component of Velocity Not accelerated Not influence by gravity Follows equation: x = V o,x t Problem: Horizontal Component (1988) 9. A diver initially moving horizontally with speed v dives off the edge of a vertical cliff and lands in the water a distance d from the base of the cliff. How far from the base of the cliff would the diver have landed if the diver initially had been moving horizontally with speed v? (A) d (B) d (C) d (D) 4d (E) It cannot be determined unless the height of the cliff is known. Show your work or explain your reasoning: In x direction. Dx = vx * t. T is based on y direction which is unchanged. Vx is doubled so Dx will be doubles also 3

4 Vertical Component of Velocity Accelerated by gravity (9.8 m/s down) V y = V o,y - gt y = y o + V o,y t - 1 / gt V y = V o,y - g(y y o ) Problem: Vertical Component (1988) 5. A -kilogram block rests at the edge of a platform that is 10 meters above level ground. The block is launched horizontally from the edge of the platform with an initial speed of 3 meters per second. Air resistance is negligible. The time it will take for the block to reach the ground is most nearly (A) 0.3 s (B) 1.0 s (C) 1.4 s (D).0 s (E) 3.0 s Y direction motion. Viy = 0. Dy=Viy T +.5 a t Find t Problem: Vertical Component (1998) Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in motion stays in motion at constant velocity and a body at rest stays at rest unless acted upon by an external force. Problem: Newton s 1 st Law (1998) 7. Three forces act on an object. If the object is in translational equilibrium, which of the following must be true? I. The vector sum of the three forces must equal zero. II. The magnitudes of the three forces must be equal III. All three forces must be parallel (A) I only (B) II only (C) I and III only (D) II and III only (E) I, II, and III Explain your reasoning Equilibrium means Fnet=0. That defines # I. II and III are wrong based on the following example possibly making Fnet = 0 Problem: Newton s 1 st Law (1998) A rock of mass m is thrown horizontally off a building from a height h, as shown above. The speed of the rock as it leaves the thrower's hand at the edge of the building is υ How much time does it take the rock to travel from the edge of the building to the ground? (A) hυ 0 (B) h υ 0 (C) hυ 0 g (D) h g (E) h g Y direction motion. Viy = 0. Dy=Viy T +.5 a t Rearrange for t 44. The sum of the forces on the object is zero in which of the cases? (A) II only (B) III only (C) I and II only (D) I and III only (E) I, II, and III Explain your reasoning Fnet = 0 means a = 0. d vst t graph accelerates when curved, so only III is not possible 4

5 Problem: Newton s 1 st Law (1984) 5. A hall of mass m is suspended from two strings of unequal length as shown above. The tensions T 1 and T in the strings must satisfy which of the following relations? (A) T 1 = T (B) T 1 >T (C) T 1 <T (D) T 1 +T =mg (E) T 1 -T =mg X components must be equal so ball does not move. Since T is at a higher angle it would have a larger y component for the same x component as T1, making the resultant of T bigger. Problem: Newton s 1 st Law (1988) 58. When an object of weight W is suspended from the center of a massless string as shown above, the tension at any point in the string is (A) W cosθ (B) W cosθ (C) W cosθ W (D) cosθ W (E) cosθ A little big of math involved. Both Y components are identical with equal angle so = MG/. Then using cos we have cos()=a/h. Sub in the MG/ and you get the answer General Procedure for Solving Second Law Problems Step 1: Draw the problem Step : Free Body Diagram Step 3: Set up equations ΣF = ma ΣF x = ma x ΣF y = ma y Step 4: Substitute Make a list of givens from the word problem. Substitute in what you know. Step 5: Solve Problem: Second Law (1984) 11. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension in the string between the blocks is (A) F (B) F (C) 3 F (D) 1 F 1 (E) 3 F Use the whole FBD to get F = (3m) a, so a = F/3m. Then do FBD of only the 1 kg mass, and get F T = ma. Sub in a and get F T = m ( F / 3m) = 1/3 F Problem: Second Law (1993). A ball falls straight down through the air under the influence of gravity. There is a retarding force F on the ball with magnitude given by F = bv, where v is the speed of the ball and b is a positive constant. The magnitude of the acceleration a of the ball at any time is equal to which of the following? (A) g (B) g (C) g b bv m + bv m Ball is moving down so make down +. FBD has mg down and force BV up.. Fnet = ma MG-BV = m a a = ( mg bv ) / m Newton s Second Law ΣF = ma (D) g b (E) bv m 5

6 Problem: Second Law (1993) (A) W - Fcos θ (B) W - Fsin θ (C) W (D) W + Fsin θ (E) W + Fcos θ Show your work Fy = Fsin() upwards, Fn upwards, mg down. Fnet(y) gives Fn = MG Fsin(). 45. A block of mass 3m can move without friction on a horizontal table. This block is attached to another block of mass m by a cord that passes over a frictionless pulley, as shown above. If the masses of the cord and the pulley are negligible, what is the magnitude of the acceleration of the descending block? (A) Zero (B) g/4 (C) g/3 (D) g/3 (E) g Use the whole FBD, F = ma mg = (4m) a so a = g/4 Newton s Third Law For every action there exists an equal and opposite reaction. If A exerts a force F on B, then B exerts a force of -F on A. Weight W = mg Normal Force Force that prevents objects from penetrating each other Reaction to other forces Commonly a reaction to gravity Problem: Normal Force Flat (1988) Problem: Normal Force Ramp (1993) A plane 5 meters in length is inclined at an angle of 37, as shown above. A block of weight 0 newtons is placed at the top of the plane and allowed to slide down. 6. The magnitude of the normal force exerted on the block by the plane is most nearly (A) l0 N (B) 1N (C) l6 N (D) 0 N (E) 33 N Show your work Some fancy math helps solve without calculator. Fn = y component of weight. = mg cos (). Using cos() = a/h and the triangle provided, we have cos () = 4/5. Now sub this in. MG cos() = (0) (4/5) = 16 N Problem: Elevators and Normal Force (PAB). A 50-kg middle school student stands on a scale in an elevator that is moving downward, but slowing with an acceleration of magnitude.0 m/s. What does the scale read (in N)? a) 300 b) 400 c) 500 d) 600 e) 700 Show your work 4. A block of weight W is pulled along a horizontal surface at constant speed v by a force F. which acts at an angle of θ with the horizontal, as shown above. The normal force exerted on the block by the surface has magnitude Elevator method. Fscale points up, MG points down. Move down so down is +. Fnet = ma. Sub in gives MG Fsc = Ma (plug in, use a = - ) solve and get 600 Friction The force that opposes a sliding motion. Static friction exists before sliding occurs Kinetic friction exists after sliding occurs In general Kinetic friction <= Static friction 6

7 Calculating Static Friction f s μ s N Static friction increases as the force trying to push an object increases up to a point! Calculating Kinetic Friction f k = μ k N Problems: Friction on Flat Surface (1984) Explain your Reasoning: FBD s duh 7. The magnitude of the frictional force along the plane is most nearly (A).5 N (B) 5N (C) 6 N (D) 10 N (E) 16 N Fnet = ma. Mg sin () f K = m a. plug in and solve 61. A push broom of mass m is pushed across a rough horizontal floor by a force of magnitude T directed at angle θ as shown above. The coefficient of friction between the broom and the floor is µ. The frictional force on the broom has magnitude (A) μ(mg +Tsinθ) (B) μ(mg -Tsinθ) (C) μ(mg +Tcosθ) (D) μ(mg -Tcosθ) (E) μmg Show your work Fnet(y) gives Fn = mg + Tsin(). Then f = u Fn and your done. Problems: Friction on Ramp(1984) Questions 6-7 A -kilogram block slides down a 30 incline as shown above with an acceleration of meters per second squared. 6. Which of the following diagrams best represents the gravitational force W, the frictional force f, and the normal force N that act on the block? Uniform Circular Motion An object moves at uniform speed in a circle of constant radius. Acceleration in Uniform Circular Motion Turns object; doesn t speed it up or slow it down. Acceleration points toward center of the circle. Called centripetal acceleration. Centripetal Acceleration a c = v /r Force in Uniform Circular Motion Any force or responsible for uniform circular motion is referred to as a centripetal force. Centripetal force can arise from one force, or from a combination of sources. F c = ΣF = ma c F c = ΣF = m v / r Centripetal forces always arise from other forces. Since speed of object remains constant, kinetic energy remains constant, and work is zero. Friction, tension, normal force, gravity and the magnetic force are common forces that can act centripetally to cause uniform circular motion. Problem: Centripetal Force (1993) 46. A car initially travels north and then turns to the left along a circular curve. This causes a package on the seat of the car to slide toward the right side of the car. Which of the following is true of the net force on the package while it is sliding? (A) The force is directed away from the center of the circle. (B) The force is directed north. (C) There is not enough force directed north to keep the package from sliding. (D) There is not enough force tangential to the car's path to keep the package from sliding. (E) There is not enough force directed toward the center of the circle to keep the package from sliding. Fc points towards center and is friction in this case. The lack of friction towards center is the lack of centripetal force needed to make the box go in the circle with the car 7

8 Problem: Centripetal Force (1988). The horizontal turntable shown below rotates at a constant rate. As viewed from above, a coin on the turntable moves counterclockwise in a circle as shown. Which of the following vectors best represents the direction of the frictional force exerted on the coin by the turntable when the coin is in the position shown? Friction acts as the centripetal force allowing the coin to go in the circle so it must point to center SIDE BAR Time to learn a little something new. Two topics were skipped over, they are not on the midterm but as long as we are reviewing, might as well introduce these two very minor areas of study. Technically, they are on the AP exam but very rare and usually a single multiple choice question. Problem: Angular Momentum (1998) 6. A kg object moves in a circle of radius 4 m at a constant speed of 3 m/s. A net force of 4.5 N acts on the object. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? (A) N m 9 kg (B) 1 m s (C) kg m 135. s (D) N m 18 kg (E) kg m 4 s Based on the new concept discussed in the side bar, Angular momentum (L) = mvr simply plug in and solve Problem: Angular Momentum (1984) I.) ANGULAR MOMENTUM The tendency of a spinning body to remain spinning. It is similar o to Torque. L: angular momentum (kg m /s) Angular momentum is found by the equation: L = p x r L = (mv) x r Where momentum (mv) is perpendicular to the distance r Angular momentum, like linear momentum is conserved and when objects move in a circle, the angular momentum stays the same unless outside force acts. For an elliptical orbit, as the velocity changes, the radius changes as well to make the quantity (L=mvr) a constant II. Gravitaional Potential Energy for space systems U g = -GM e m/r (close to earth s surface) U g has been defined to be zero when an object is infinitely far from the earth, and it gets increasingly negative as an object approaches the earth. 14. An asteroid moves in an elliptic orbit with the Sun at one focus as shown above. Which of the following quantities increases as the asteroid moves from point P in its orbit to point Q? (A) Speed (B) Angular momentum (C) Total energy (D) Kinetic energy (E) Potential energy Angular momentum is conserved so that s not it, Closer to planet = faster so speed is wrong. Energy is also conserved so that s wrong. Going from P to Q, you slow down so lose K which mean U must be gained 8

9 Universal Law of Gravity F g = -Gm 1 m /r The negative sign simply means the force is attractive. Most orbit problems can be solved by setting the gravitational force equal to the centripetal force. Gm 1 m / r = m 1 v / r (a good starting point for most problems!) Orbit the above equation simplifies to v = GM/r for velocity in an orbit which also = πr/t if period is known Acceleration of gravity g is found by equating mg=gmm/r Problem: Orbit (1988) 6l. A satellite of mass M moves in a circular orbit of radius R at a constant speed v. Which of the following must be true? I. The net force on the satellite is equal to mv /R and is directed toward the center of the orbit. II. The net work done on the satellite by gravity in one revolution is zero. III. The angular momentum of the satellite is a constant. (A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III Angular momentum is conserved so III is good, There is a circle so the force would be centripetal so I is good, and work is always zero when in a circle since the force is always perpendicular to motion. Problem: Orbit (1998) 40. What is the kinetic energy of a satellite of mass m that orbits the Earth, of mass M, in a circular orbit of radius R? (A) Zero (B) 1 GMm R (D) 1 GMm (E) GMm R R (C) 1 4 GMm R Velocity in orbit is sqrt(gm/r). Then KE = 1/ m v then plug in orbit velocity and you get B Problem: Law of Gravity and Weight (1998) 39. An object has a weight W when it is on the surface of a planet of radius R. What will be the gravitational force on the object after it has been moved to a distance of 4R from the center of the planet? (A) 16W Show your work ; (B) 4W Based on Fg = G M M / r (C) W so 4 x R (D) 1 gives 1/16 the force. 4 W Problem: Law of Gravity and Accel. (1993) 48. The planet Mars has mass 6.4 x 10 3 kilograms and radius 3.4 x 10 6 meters. The acceleration of an object in free-fall near the surface of Mars is most nearly (A) zero (B) l.0 m/s (C) 1.9 m/s (D) 3.7 m/s (E) 9.8 m/s This problem was given before calculators were banned on multiple choice so you simply plug into g = G M / R Alternatively if you are really smart you can estimate the answer by knowing mass of earth 6x10 4 and radius of earth 6.4x10 6 m we can see that mars has about 1/10 the mass and 1/ the radius, so based on the formula it should have 4/10 the value of g on earth. Periodic Motion Repeats itself over a fixed and reproducible period of time. Mechanical devices that do this are known as oscillators. Simple Harmonic Motion (SHM) Periodic motion described by a sine or cosine function. Springs and pendulums are common examples of Simple Harmonic Oscillators (SHOs). All SHO s experience a restoring force. Restoring Force: F = -kx (basic form of restoring force) Restoring force is greatest at maximum displacement and zero at equilibrium Equilibrium The midpoint of the oscillation of a simple harmonic oscillator. Position of minimum potential energy and maximum kinetic energy. Amplitude (A) How far the oscillating mass is from equilibrium at its maximum displacement. Period (T) The length of time it takes for one cycle of periodic motion to complete itself. Frequency (f): How fast the oscillation is occurring. Frequency is inversely related to period. f = 1/T The units of frequency is the Herz (Hz) where 1 Hz = 1 s -1. (E) 1 16 W 9

10 Problem: Simple Harmonic Motion (1993) 43. A particle oscillates up and down in simple harmonic motion. Its height y as a function of time t is shown in the diagram above. At what time t does the particle achieve its maximum positive acceleration? (A) 1s (B) s (C) 3s (D) 4s (E) None of the above, because the acceleration is constant When the mass on the spring is below equibrium at a negative displacement the force points upwards and is + and is at a maximum so gives maximum + acceleration there at max stretch. Springs A common Simple Harmonic Oscillator. F s = -kx (Hooke s Law) Problem: Hooke s Law (1993) 3. An ideal spring obeys Hooke's law, F = - kx. A mass of 0.50 kilogram hung vertically from this spring stretches the spring meter. The value or the force constant for the spring is most nearly (A) 0.33 N/m (B) 0.66 N/m (C) 6.6 N/m (D) 33 N/m (E) 66 N/m Simply plug it in. Use fractions. 5/10 and 75/1000 to ease calculation Period of a spring T = π m/k Potential Energy of a Spring U s = ½ k x Pendulum The pendulum can be thought of as an oscillator. The displacement needs to be small for it to work properly. Pendulum Forces: Gravity and tension Period of a pendulum T = π l/g Potential Energy of a Pendulum U g = mgh Problem: Period of Pendulum (1988) 8. The length of a simple pendulum with a period on Earth of one second is most nearly (A) 0.1 m (B) 0.5 m (C) 0.50 m (D) 1.0 m (E) 10.0 m T= pi * rad (L/g) rearrange for L, use g = 10 and use pi = 3. Get estimated value closest to 0.5 Problem: Period of Spring and of Pendulum (1988) 44. An object swings on the end of a cord as a simple pendulum with period T. Another object oscillates up and down on the end of a vertical spring, also with period T. If the masses of both objects are doubled, what are the new values for the periods? Pendulum Spring (A) T T (B) T T (C) T T (D) T T (E) T T Actually quite simple, mass does not change the pendulum period so it must be B. Based on spring formula, you get rad T as change for spring system. Work The bridge between force and energy. Work is a scalar. W = F Δx cos θ SI Unit: Joule (N m) Counterintuitive Results There is no work if there is no displacement. Forces perpendicular to displacement don t work. By doing positive work on an object, a force or collection of forces increases its mechanical energy in some way. The two forms of mechanical energy are called potential and kinetic energy. 10

11 Problem: Work (B-1988) 6. A horizontal force F is used to pull a 5-kilogran block across a floor at a constant speed of 3 meters per second. The frictional force between the block and the floor is 10 newtons. The work done by the force F in 1 minute is most nearly (A) 0 J (B) 30 J (C) 600 J (D) 1,350 J (E) 1,800 J W = F d. Constant speed of F pull = friction = 10 N, v = 3 m/s, t = 60 sec, so d=vt, d = 180 m. Now W = F d = 10 (180) = 1800 J Problem: Power (B-1998). A student weighing 700 N climbs at constant speed to the top of an 8 m vertical rope in 10 s. The average power expended by the student to overcome gravity is most nearly (A) 1.1 W (B) 87.5 W (C) 560 W (D) 875 W (E) 5,600 W Kinetic Energy Energy due to motion K = ½ m v P = F d / t simply plug in. Force to lift = weight Problem: Kinetic Energy (B-1988) 3. Which of the following quantities is a scalar that is always positive or zero? (A) Power (B) Work (C) Kinetic energy (D) Linear momentum (F) Angular momentum State your reasoning: K = 1/ m v there is no way this could be negative. The Work-Energy Theorem W net = ΔK Net work is used in this theorem. This is work due to ALL FORCES acting upon object. When net work is positive, the kinetic energy of the object will increase (it will speed up). When net work is negative, the kinetic energy of the object will decrease (it will slow down). When there is no net work, the kinetic energy is unchanged (constant speed). Work and graphs The area under the curve of a graph of force vs displacement gives the work done by the force in performing the displacement. Springs: stretching Springs:compressing Problem: Power (B-1998) 9. A child pushes horizontally on a box of mass m which moves with constant speed υ across a horizontal floor. The coefficient of friction between the box and the floor is μ. At what rate does the child do work on the box? (A) μmgυ (B) mgυ (C) υ/μmg (D) μmg/υ (E) μmυ Rate of work = W / t = Power. Power = F v constant speed of F = friction = u Fn P = u Fn v = u mg v Power The rate of which work is done. When we run upstairs, t is small so P is big. When we walk upstairs, t is large so P is small. P = W/t work/time P = F V (force )(velocity) SI unit for Power is the Watt. 1 Watt = 1 Joule/s 11

12 Force Types Conservative forces: Work in moving an object is path independent. Work in moving an object along a closed path is zero. Work done against conservative forces increases potential energy; work done by them decreases it. Ex: gravity, springs Non-conservative forces: Work is path dependent. Work along a closed path is NOT zero. Work may be related to a change in total energy (including thermal energy). Ex: friction, drag Potential energy Energy an object possesses by virtue of its position or configuration. Examples: Gravitational Potential Energy Spring Potential Energy Potential energy is related to work done by CONSERVATIVE FORCES only. ΔU g = -W g (gravity) ΔU g = -W s (spring) Spring potential energy Springs also can possess potential energy (U s ). U s = ½ kx U s is zero when a spring is in its preferred, or equilibrium, position where the spring is neither compressed or extended. Problem: Conservation of Energy and Springs(B-1988) A block oscillates without friction on the end of a spring as shown above. The minimum and maximum lengths of the spring as it oscillates are, respectively, x min and x max The graphs below can represent quantities associated with the oscillation as functions of the length x of the spring. Gravitational potential energy close to earth s surface. W g = -mgh (close to earth s surface) ΔU = -W g = mgh Note: we calculate changes in potential energy only using this method. We assign the potential energy to be zero at some certain point, usually the surface of the earth. Problem: Work due to gravity (B-1993) 11. Which graph can represent the total mechanical energy of the block-spring system as a function of x? (A) A (B) B (C) C (D) D (E) E A plane 5 meters in length is inclined at an angle of 37, as shown above. A block of weight 0 newtons is placed at the top of the plane and allowed to slide down. 63. The work done on the block by the gravitational force during the 5-meter slide down the plane is most nearly (A) 0 J (B) 60 J (C) 80 (D) 100 J (E) l30 J Work of gravity is work of Fgx. Fgx = mg sin (). Using the triangle provided and that sin() = o/h, we get sin() = 3/5. Then work = W=Fgx * D = mgsin() d = (0)*(3/5)*(5) Energy is conserved so ME is always the same 1. Which graph can represent the kinetic energy of the block as a function of x? (A) A (B) B (C) C (D) D (E) E State your reasoning: At the max displacement the block stops so there cant be any K there. C or D are the only ones left. Since K and Usp are both squared relationships, as displacement changes it should not be linear, so it D. 1

13 Law of Conservation of Mechanical Energy U + K = Constant ΔU + ΔK = 0 ΔU = -ΔK Note: Sometimes conservation of energy problems can be best worked with potential energy alone, such as in the problem below. Conservation of Energy and Dissipative Forces. Dissipative forces cause loss of mechanical energy by producing heat. W nc = ΔU + ΔK Problem: Conservation of Energy (B-1998) height to which the block rises on the other side of the track? (A) It is equal to h/π. (B) It is equal to h/4. (C) It is equal to h/. (D) It is equal to h. (E) It is between zero and h; the exact height depends on how much energy is lost to friction. Work of friction equals the change in the energy which controls how high it goes. We don t know anything about speeds or forces or distance so there is no way of knowing how much the friction work is. Problem: Conservation of Energy (B-1998) 38. A block of mass 3.0 kg is hung from a spring, causing it to stretch 1 cm at equilibrium, as shown above. The 3.0 kg block is then replaced by a 4.0 kg block, and the new block is released from the position shown above, at which the spring is unstretched. How far will the 4.0 kg block fall before its direction is reversed? (A) 9 cm (B) 18 cm (C) 4 cm (D) 3 cm (E) 48 cm First use 3 kg mass situation. F = 3 N, /\x = 1/100 so F=kx gives us k = 3000/1. Then looking at 4 kg mass we do energy conservation. Ugrav at start = Usp at end. And h= /\x so mgh = ½ kx mgx = ½ k x mg = k x / so x = mg /k = (4)(10) / (3000/1) = 960 / 3000 = 30/1000 = 0.3 done. A rock of mass m is thrown horizontally off a building from a height h, as shown above. The speed of the rock as it leaves the thrower's hand at the edge of the building is υ How much time does it take the rock to travel from the edge of the building to the ground? (F) hυ 0 h υ 0 (G) hυ 0 g h g Problem: Conservation of Energy (B-1993) (H) h g 4. The figure above shows a rough semicircular track whose ends are at a vertical height h. A block placed at point P at one end of the track is released from rest and slides past the bottom of the track. Which of the following is true of the Simple projectile problem using Y direction stuff. Viy is zero since it goes horizontal. 13

14 60. What is the kinetic energy of the rock just before it hits the ground? Problem: Conservation of Energy and Pendulums (B-1988) (A) mgh (B) 1 mυ 0 (C) 1 mυ 0 mgh (D) 1 mυ 0 + mgh (E) mgh 1 m υ 0 ME top = ME bottom. At top its moving with height do is both K and U, and bottom its just K, so the K = the energy at the top which is K and U = choice D Problem: Conservation of Energy (B-1993) 47. A block of mass m slides on a horizontal frictionless table with an initial speed v 0. It then compresses a spring of force constant k and is brought to rest. How much is the spring compressed from its natural length? (A) v 0 g (B) mg k (C) m k v 0 (D) (E) m k v 0 k m v 0 A ball swings freely back and forth in an arc from point I to point IV, as shown above. Point II is the lowest point in the path, III is located 0.5 meter above II, and IV is l meter above II. Air resistance is negligible. 51. If the potential energy is zero at point II, where will the kinetic and potential energies of the ball be equal? (A) At point II (B) At some point between II and III (C) At point III (D) At some point between III and IV (E) At point IV State your reasoning: U = mgh, so comparing 1m to 0.5 m it s the half way point for energy, so if half the energy is potential the other half is kinetic 5. The speed of the ball at point II is most nearly (A) 3.0 m/s (B) 4.5 m/s (C) 9.8 m/s (D) l4 m/s (E) 0 m/s Pt II is all K, and Pt I is all U, so U1 = K so mgh I = ½ mv m cancels, plug in, V = rad ( (10) (1) ) = rad (0). 4.5 is best estimate ME = ME, start with K then become Usp. Plug in formulas and rearrange. 14

15 Momentum How hard it is to stop a moving object. Related to both mass and velocity. For one particle p = mv For a system of multiple particles P = Σp i = Σm i v i Units: N s or kg m/s Momentum is a vector! Problem: Momentum (1998) Problem: Impulse (1998) 57. A ball of mass 0.4 kg is initially at rest on the ground. It is kicked and leaves the kicker's foot with a speed of 5.0 m/s in a direction 60 above the horizontal. The magnitude of the impulse imparted by the ball to the foot is most nearly (A) 1N s (B) 3 N s (C) N s (D) 3 N s (E) 4N s 43. The magnitude of the momentum of the object is increasing in which of the cases? (A) II only (B) III only (C) I and II only (D) I and III only (E) I, II, and III Momentum increases when velocity increases. Slope is velocity and only in III is velocity increasing. Impulse (J) The product of an external force and time, which results in a change in momentum J = F t J = ΔP Units: N s or kg m/s Problem: Impulse (1984) 56. Two planets have the same size, but different masses, and no atmospheres. Which of the following would be the same for objects with equal mass on the surfaces of the two planets? I. The rate at which each would fall freely II. The amount of mass each would balance on an equalarm balance III. The amount of momentum each would acquire when given a certain impulse (A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III More massive planet has a larger value of g. I cant be same. For balancing, the weight of the mass balanced would be more but as long as masses are equal it will balance and total mass is equivalent in both places. Impulse is Ft and equals chance in momentum, this is not affected by gravity so also is same The angle is irrelevant. Impulse (Ft) equals momentum change so simply plug in Ft Law of Conservation of Momentum If the resultant external force on a system is zero, then the momentum of the system will remain constant. The sum of the momentums before a collision is equal to the sum of the momentums after a collision. ΣP b = ΣP a Problem: Conservation of Momentum (1998) 4. An open cart on a level surface is rolling without frictional loss through a vertical downpour of rain, as shown above. As the cart rolls, an appreciable amount of rainwater accumulates in the cart. The speed of the cart will (A) increase because of conservation of momentum (B) increase because of conservation of mechanical energy (C) decrease because of conservation of momentum (D) decrease because of conservation of mechanical energy (E) remain the same because the raindrops are falling perpendicular to the direction of the cart's motion Momentum must be conserved. Increasing the mass required v to decrease to have the same momentum 15

16 Collisions Follow Newton s Third Law which tells us that the force exerted by body A on body B in a collision is equal and opposite to the force exerted on body B by body A. During a collision, external forces are ignored. The time frame of the collision is very short. The forces are impulsive forces (high force, short duration). Collision Types Elastic: P is conserved, K is conserved Inelastic: P is conserved, K is NOT conserved Perfectly Inelastic means the bodies stick together Problem: Collisions (1993) 10. Which of the following is true when an object of mass m moving on a horizontal frictionless surface hits and sticks to an object of mass M > m, which is initially at rest on the surface? (A) The collision is elastic. (B) All of the initial kinetic energy of the less-massive object is lost. (C) The momentum of the objects that are stuck together has a smaller magnitude than the initial momentum of the less-massive object. (D) The speed of the objects that are stuck together will be less than the initial speed of the less-massive object. (E) The direction of motion of the objects that are stuck together depends on whether the hit is a head-on collision. Based on collision P before = P after. m v = (M+m) v clearly to conserve momentum the speed must drop Problem: Collision (1998) 3. A railroad car of mass m is moving at speed υ when it collides with a second railroad car of mass M which is at rest. The two cars lock together instantaneously and move along the track. What is the speed of the cars immediately after the collision? (A) υ (B) mυ M (C) Mυ m (D) (m + M) υ m (E) mv m+m Collision P before = P after. m v = (M+m) v solve for v Problem: Momentum Change (1988) Problem: Collisions (1993) 11. Two objects having the same mass travel toward each other on a flat surface, each with a speed of 10 meter per second relative to the surface. The objects collide head-on and are reported to rebound after the collision, each with a speed of 0 meters per second relative to the surface. Which of the following assessments of this report is most accurate? (A) Momentum was not conserved, therefore the report is false. (B) If potential energy was released to the objects during the collision, the report could be true. (C) If the objects had different masses, the report could be true. (D) If the surface was inclined, the report could be true. (E) If there was no friction between the objects and the surface, the report could be true. Before the collision, each has momentum and energy based on velocity of 10 m/s. After, there is more velocity so a gain of energy. The only way to gain energy is to have some sort of input of energy into the system 7. A tennis ball of mass m rebounds from a racquet with the same speed v as it had initially, as shown above. The magnitude of the momentum change of the ball is (A) 0 (B) mv (C) mv (D) mv sin θ (E) mv cos θ D collision must be analized in X and Y directions. In y direction there is no change, the racket only hits in x direction. Also the velocity in y diriection is unchanged. So the momentum change occurs in the X direction. Before we have MVx = mv cos() then after we have - mv cos (). Change in momentum = pf pi = - mv cos() - mv cos () done. 16

17 Problem: Collision (1998) Problem: Explosion (1998) 41. Two objects of mass 0. kg and 0.1 kg, respectively, move parallel to the x-axis, as shown above. The 0. kg object overtakes and collides with the 0. 1 kg object. Immediately after the collision, the y-component of the velocity of the 0. kg object is 1 m/s upward. What is the y-component of the velocity of the 0.1 kg object immediately after the collision? (A) m/s downward (B) 0.5 m/s downward (C) 0 m/s (D) 0.5 m/s upward (E) m/s upward A D collision, we look in y direction.. Before there is no y momentum so there can be any after either. Since the 0. kg object goes up and has momentum (0.)*(1) the 0.1 kg mass must go down at m/s to have an equal negative momentum to cancel out and give zero Explosion Mathematically, handled just like an ordinary perfectly inelastic collision. Momentum is conserved, kinetic energy is not. 67. A stationary object explodes, breaking into three pieces of masses m, m, and 3m. The two pieces of mass m move off at right angles to each other with the same magnitude of momentum mv, as shown in the diagram above. What are the magnitude and direction of the velocity of the piece having mass 3m? Before explosion, momentum is zero, so it must be zero after also. In the x direction there is mv and in the y direction there is mv. So mass 3m must have momentum mv in both x and v direction. For 3m to have momentum = mv, the velocity needs to be V/3. It moves at V/3 in the x and y direction now use Pythagorean theorem to solve = v = sqrt (a + b ) v = sqrt ( (v/3) + (v/3) ) = sqrt ( v / 9) 17

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Physics B AP Review Packet: Mechanics (B Taylor version) Name:

Physics B AP Review Packet: Mechanics (B Taylor version) Name: (B Taylor version) Name: Position Location of a particle in space. (x) or (x,y) or (x,y,z) Distance The total length of the path traveled by an object. Does not depend upon direction. Displacement The

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J 1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

More information

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

More information

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

More information

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true?

PHY231 Section 2, Form A March 22, 2012. 1. Which one of the following statements concerning kinetic energy is true? 1. Which one of the following statements concerning kinetic energy is true? A) Kinetic energy can be measured in watts. B) Kinetic energy is always equal to the potential energy. C) Kinetic energy is always

More information

Concept Review. Physics 1

Concept Review. Physics 1 Concept Review Physics 1 Speed and Velocity Speed is a measure of how much distance is covered divided by the time it takes. Sometimes it is referred to as the rate of motion. Common units for speed or

More information

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled. Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

More information

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

7. Kinetic Energy and Work

7. Kinetic Energy and Work Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

More information

PHYS 211 FINAL FALL 2004 Form A

PHYS 211 FINAL FALL 2004 Form A 1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

PHYSICS 149: Lecture 15

PHYSICS 149: Lecture 15 PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus

More information

PHY231 Section 1, Form B March 22, 2012

PHY231 Section 1, Form B March 22, 2012 1. A car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate

More information

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

More information

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity. 5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

More information

PHYSICS MIDTERM REVIEW

PHYSICS MIDTERM REVIEW 1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

More information

M OTION. Chapter2 OUTLINE GOALS

M OTION. Chapter2 OUTLINE GOALS Chapter2 M OTION OUTLINE Describing Motion 2.1 Speed 2.2 Vectors 2.3 Acceleration 2.4 Distance, Time, and Acceleration Acceleration of Gravity 2.5 Free Fall 2.6 Air Resistence Force and Motion 2.7 First

More information

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc. Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces Units of Chapter 5 Applications of Newton s Laws Involving Friction Uniform Circular Motion Kinematics Dynamics of Uniform Circular

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath

Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath Physics 271 FINAL EXAM-SOLUTIONS Friday Dec 23, 2005 Prof. Amitabh Lath 1. The exam will last from 8:00 am to 11:00 am. Use a # 2 pencil to make entries on the answer sheet. Enter the following id information

More information

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

AP Physics 1 Midterm Exam Review

AP Physics 1 Midterm Exam Review AP Physics 1 Midterm Exam Review 1. The graph above shows the velocity v as a function of time t for an object moving in a straight line. Which of the following graphs shows the corresponding displacement

More information

2.2 NEWTON S LAWS OF MOTION

2.2 NEWTON S LAWS OF MOTION 2.2 NEWTON S LAWS OF MOTION Sir Isaac Newton (1642-1727) made a systematic study of motion and extended the ideas of Galileo (1564-1642). He summed up Galileo s observation in his three laws of motion

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Chapter 3.8 & 6 Solutions

Chapter 3.8 & 6 Solutions Chapter 3.8 & 6 Solutions P3.37. Prepare: We are asked to find period, speed and acceleration. Period and frequency are inverses according to Equation 3.26. To find speed we need to know the distance traveled

More information

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science.

BHS Freshman Physics Review. Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. BHS Freshman Physics Review Chapter 2 Linear Motion Physics is the oldest science (astronomy) and the foundation for every other science. Galileo (1564-1642): 1 st true scientist and 1 st person to use

More information

Practice Test SHM with Answers

Practice Test SHM with Answers Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one

More information

10.1 Quantitative. Answer: A Var: 50+

10.1 Quantitative. Answer: A Var: 50+ Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

More information

Physics Midterm Review Packet January 2010

Physics Midterm Review Packet January 2010 Physics Midterm Review Packet January 2010 This Packet is a Study Guide, not a replacement for studying from your notes, tests, quizzes, and textbook. Midterm Date: Thursday, January 28 th 8:15-10:15 Room:

More information

KE =? v o. Page 1 of 12

KE =? v o. Page 1 of 12 Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

More information

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79

Ch 6 Forces. Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Ch 6 Forces Question: 9 Problems: 3, 5, 13, 23, 29, 31, 37, 41, 45, 47, 55, 79 Friction When is friction present in ordinary life? - car brakes - driving around a turn - walking - rubbing your hands together

More information

1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true?

1) The gure below shows the position of a particle (moving along a straight line) as a function of time. Which of the following statements is true? Physics 2A, Sec C00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to ll your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

First Semester Learning Targets

First Semester Learning Targets First Semester Learning Targets 1.1.Can define major components of the scientific method 1.2.Can accurately carry out conversions using dimensional analysis 1.3.Can utilize and convert metric prefixes

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

1 of 10 11/23/2009 6:37 PM

1 of 10 11/23/2009 6:37 PM hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

More information

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013

PHYSICS 111 HOMEWORK SOLUTION #10. April 8, 2013 PHYSICS HOMEWORK SOLUTION #0 April 8, 203 0. Find the net torque on the wheel in the figure below about the axle through O, taking a = 6.0 cm and b = 30.0 cm. A torque that s produced by a force can be

More information

At the skate park on the ramp

At the skate park on the ramp At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

More information

Work, Energy and Power Practice Test 1

Work, Energy and Power Practice Test 1 Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

More information

226 Chapter 15: OSCILLATIONS

226 Chapter 15: OSCILLATIONS Chapter 15: OSCILLATIONS 1. In simple harmonic motion, the restoring force must be proportional to the: A. amplitude B. frequency C. velocity D. displacement E. displacement squared 2. An oscillatory motion

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Sample Questions for the AP Physics 1 Exam

Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Sample Questions for the AP Physics 1 Exam Multiple-choice Questions Note: To simplify calculations, you may use g 5 10 m/s 2 in all problems. Directions: Each

More information

AP Physics - Chapter 8 Practice Test

AP Physics - Chapter 8 Practice Test AP Physics - Chapter 8 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A single conservative force F x = (6.0x 12) N (x is in m) acts on

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion

Physics 211 Week 12. Simple Harmonic Motion: Equation of Motion Physics 11 Week 1 Simple Harmonic Motion: Equation of Motion A mass M rests on a frictionless table and is connected to a spring of spring constant k. The other end of the spring is fixed to a vertical

More information

Physics Exam 1 Review - Chapter 1,2

Physics Exam 1 Review - Chapter 1,2 Physics 1401 - Exam 1 Review - Chapter 1,2 13. Which of the following is NOT one of the fundamental units in the SI system? A) newton B) meter C) kilogram D) second E) All of the above are fundamental

More information

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION 1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

More information

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER 1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

More information

Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.

Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion. Work-Energy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:

More information

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis

Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis * By request, but I m not vouching for these since I didn t write them Exam 2 is at 7 pm tomorrow Conflict is at 5:15 pm in 151 Loomis There are extra office hours today & tomorrow Lots of practice exams

More information

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

More information

Explaining Motion:Forces

Explaining Motion:Forces Explaining Motion:Forces Chapter Overview (Fall 2002) A. Newton s Laws of Motion B. Free Body Diagrams C. Analyzing the Forces and Resulting Motion D. Fundamental Forces E. Macroscopic Forces F. Application

More information

Steps to Solving Newtons Laws Problems.

Steps to Solving Newtons Laws Problems. Mathematical Analysis With Newtons Laws similar to projectiles (x y) isolation Steps to Solving Newtons Laws Problems. 1) FBD 2) Axis 3) Components 4) Fnet (x) (y) 5) Subs 1 Visual Samples F 4 1) F 3 F

More information

What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact?

What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Chapter 4: Forces What is a force? Identifying forces. What is the connection between force and motion? How are forces related when two objects interact? Application different forces (field forces, contact

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Version PREVIEW Practice 8 carroll (11108) 1

Version PREVIEW Practice 8 carroll (11108) 1 Version PREVIEW Practice 8 carroll 11108 1 This print-out should have 12 questions. Multiple-choice questions may continue on the net column or page find all choices before answering. Inertia of Solids

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion Restating Hooke s law The equation of motion Phase, frequency, amplitude Simple Pendulum Damped and Forced oscillations Resonance Harmonic Motion A lot of motion in the real world

More information

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Force. Zero Net Force. Lectures 9 and 10 The Laws of Motion. Dr Tay Seng Chuan PC1221 Fundamentals of Physics I Lectures 9 and 10 he Laws of Motion Dr ay Seng Chuan 1 Ground Rules Switch off your handphone and pager Switch off your laptop computer and keep it No talking while lecture

More information

Physics 41 HW Set 1 Chapter 15

Physics 41 HW Set 1 Chapter 15 Physics 4 HW Set Chapter 5 Serway 8 th OC:, 4, 7 CQ: 4, 8 P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59, 67, 74 OC CQ P: 4, 5, 8, 8, 0, 9,, 4, 9, 4, 5, 5 Discussion Problems:, 57, 59,

More information

Physics 2101, First Exam, Fall 2007

Physics 2101, First Exam, Fall 2007 Physics 2101, First Exam, Fall 2007 September 4, 2007 Please turn OFF your cell phone and MP3 player! Write down your name and section number in the scantron form. Make sure to mark your answers in the

More information

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía. 1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Problem Set #8 Solutions

Problem Set #8 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

Principles and Laws of Motion

Principles and Laws of Motion 2009 19 minutes Teacher Notes: Ian Walter DipAppChem; TTTC; GDipEdAdmin; MEdAdmin (part) Program Synopsis This program begins by looking at the different types of motion all around us. Forces that cause

More information

AP Physics C. Oscillations/SHM Review Packet

AP Physics C. Oscillations/SHM Review Packet AP Physics C Oscillations/SHM Review Packet 1. A 0.5 kg mass on a spring has a displacement as a function of time given by the equation x(t) = 0.8Cos(πt). Find the following: a. The time for one complete

More information

Reavis High School Physics Honors Curriculum Snapshot

Reavis High School Physics Honors Curriculum Snapshot Reavis High School Physics Honors Curriculum Snapshot Unit 1: Mathematical Toolkit Students will be able to: state definition for physics; measure length using a meter stick; measure the time with a stopwatch

More information

UNIT 2D. Laws of Motion

UNIT 2D. Laws of Motion Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

More information

Chapter 3: Force and Motion

Chapter 3: Force and Motion Force and Motion Cause and Effect Chapter 3 Chapter 3: Force and Motion Homework: All questions on the Multiple- Choice and the odd-numbered questions on Exercises sections at the end of the chapter. In

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Rotation, Rolling, Torque, Angular Momentum

Rotation, Rolling, Torque, Angular Momentum Halliday, Resnick & Walker Chapter 10 & 11 Rotation, Rolling, Torque, Angular Momentum Physics 1A PHYS1121 Professor Michael Burton Rotation 10-1 Rotational Variables! The motion of rotation! The same

More information

Described by Isaac Newton

Described by Isaac Newton Described by Isaac Newton States observed relationships between motion and forces 3 statements cover aspects of motion for single objects and for objects interacting with another object An object at rest

More information

Units DEMO spring scales masses

Units DEMO spring scales masses Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Simple Harmonic Motion Concepts

Simple Harmonic Motion Concepts Simple Harmonic Motion Concepts INTRODUCTION Have you ever wondered why a grandfather clock keeps accurate time? The motion of the pendulum is a particular kind of repetitive or periodic motion called

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

More information

Newton s Laws of Motion

Newton s Laws of Motion Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The following four forces act on a 4.00 kg object: 1) F 1 = 300 N east F 2 = 700 N north

More information

Summary Notes. to avoid confusion it is better to write this formula in words. time

Summary Notes. to avoid confusion it is better to write this formula in words. time National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

More information

Chapter 8: Conservation of Energy

Chapter 8: Conservation of Energy Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I

More information

f max s = µ s N (5.1)

f max s = µ s N (5.1) Chapter 5 Forces and Motion II 5.1 The Important Stuff 5.1.1 Friction Forces Forces which are known collectively as friction forces are all around us in daily life. In elementary physics we discuss the

More information

Physics 1120: Simple Harmonic Motion Solutions

Physics 1120: Simple Harmonic Motion Solutions Questions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Physics 1120: Simple Harmonic Motion Solutions 1. A 1.75 kg particle moves as function of time as follows: x = 4cos(1.33t+π/5) where distance is measured

More information

AP Physics Newton's Laws Practice Test

AP Physics Newton's Laws Practice Test AP Physics Newton's Laws Practice Test Answers: A,D,C,D,C,E,D,B,A,B,C,C,A,A 15. (b) both are 2.8 m/s 2 (c) 22.4 N (d) 1 s, 2.8 m/s 16. (a) 12.5 N, 3.54 m/s 2 (b) 5.3 kg 1. Two blocks are pushed along a

More information

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion) Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

More information

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law.

AP1 Dynamics. Answer: (D) foot applies 200 newton force to nose; nose applies an equal force to the foot. Basic application of Newton s 3rd Law. 1. A mixed martial artist kicks his opponent in the nose with a force of 200 newtons. Identify the action-reaction force pairs in this interchange. (A) foot applies 200 newton force to nose; nose applies

More information

Phys 111 Fall P111 Syllabus

Phys 111 Fall P111 Syllabus Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from

More information

Mechanics 2. Revision Notes

Mechanics 2. Revision Notes Mechanics 2 Revision Notes November 2012 Contents 1 Kinematics 3 Constant acceleration in a vertical plane... 3 Variable acceleration... 5 Using vectors... 6 2 Centres of mass 8 Centre of mass of n particles...

More information