Chapter 9: Hypothesis Testing GBS221, Class April 15, 2013 Notes Compiled by Nicolas C. Rouse, Instructor, Phoenix College


 Ashlee Collins
 2 years ago
 Views:
Transcription
1 Chapter Objectives 1. Learn how to formulate and test hypotheses about a population mean and a population proportion. 2. Be able to use an Excel worksheet to conduct hypothesis tests about population means and proportions. 3. Understand the types of errors possible when conducting a hypothesis test. 4. Be able to determine the probability of making various errors in hypothesis tests. 5. Know how to compute and interpret pvalues. 6. Know the definition of the following terms: null hypothesis, alternative hypothesis, type I error, type II error, critical value, level of significance, onetailed test, twotailed test, pvalue 1. Developing Null and Alternative Hypotheses Hypothesis testing can be used to determine whether a statement about the value of a population parameter should or should not be rejected. The null hypothesis, denoted by H 0, is a tentative assumption about a population parameter. The alternative hypothesis, denoted by H a. is the opposite of what is stated in the null. Hypothesis testing is similar to a criminal trial. The hypotheses are: o H 0 : The defendant is innocent o H a : The defendant is guilty. Testing the Validity of a Claim o Manufacturers' claims are usually given the benefit of the doubt and stated as the null hypothesis. o The conclusion that the claim is false comes from sample data that contradict the null hypothesis. Testing in DecisionMaking Situations o A decision maker might have to choose between two courses of action, one associated with the null hypothesis and another associated with the alternative hypothesis. o Example: Accepting a shipment of goods from a supplier or returning the shipment of goods to the supplier. Summary of Forms for Null and Alternative Hypotheses: Population Mean o The equality part of the hypotheses always appears in the null hypothesis. o In general, a hypothesis test about the value of a population mean must take one of the following three forms (where H 0 is the hypothesized value of the population mean). H 0 : µ > µ 0 H 0 : µ < µ 0 H 0 : µ = µ 0 H a : µ < µ 0 H a : µ > µ 0 H a : µ!= µ 0 2. Using Excel for Hypothesis Tests Excel does not provide builtin routines for the hypothesis tests presented in this chapter. To handle these situations, we present Excel worksheets that we designed to use as templates
2 for testing hypotheses about a population mean and a population proportion. The worksheets are easy to use and can be modified to handle any sample data. For the population mean when σ is known (Data File: Hyp Sigma Known.xlsx) o We illustrate using the MaxFlight golf ball distance example in Section 9.3. The data are in column A of an Excel worksheet. The population standard deviation σ = 12 is assumed known and the level of significance is α =.05. The following steps can be used to test the hypothesis H 0 : μ = 295 versus H a : μ!= 295. (!= means not equal) o Refer to Figure 9.8 as we describe the procedure. The worksheet in the background shows the cell formulas used to compute the results shown in the foreground worksheet. o The data are entered into cells A2:A51. The following steps are necessary to use the template for this data set. Step 1. Enter the data range A2:A51 into the =COUNT cell formula in cell D4 Step 2. Enter the data range A2:A51 into the =AVERAGE cell formula in cell D5 Step 3. Enter the population standard deviation σ = 12 into cell D6 Step 4. Enter the hypothesized value for the population mean 295 into cell D8 o The remaining cell formulas automatically provide the standard error, the value of the test statistic z, and three pvalues. Because the alternative hypothesis ( μ 0!= 295) indicates a twotailed test, the pvalue (Two Tail) in cell D15 is used to make the rejection decision. o With pvalue =.1255 = α >.05, the null hypothesis cannot be rejected. The pvalues in cells D13 or D14 would be used if the hypotheses involved a onetailed test. For the population mean when σ is unknown (Data File: Hyp Sigma Unknown.xlsx) o We illustrate using the Heathrow Airport rating example in Section 9.4. The data are in column A of an Excel worksheet. The population standard deviation σ is unknown and will be estimated by the sample standard deviation s. The level of significance is α =.05. The following steps can be used to test the hypothesis H 0 : μ < 7 versus H a : μ > 7. o Refer to Figure 9.9 as we describe the procedure. The background worksheet shows the cell formulas used to compute the results shown in the foreground version of the worksheet. The data are entered into cells A2:A61. The following steps are necessary to use the template for this data set. Step 1. Enter the data range A2:A61 into the =COUNT cell formula in cell D4 Step 2. Enter the data range A2:A61 into the =AVERAGE cell formula in cell D5 Step 3. Enter the data range A2:A61 into the =STDEV cell formula in cell D6 Step 4. Enter the hypothesized value for the population mean 7 into cell D8 o The remaining cell formulas automatically provide the standard error, the value of the test statistic t, the number of degrees of freedom, and three pvalues. Because the alternative hypothesis (μ > 7) indicates an upper tail test, the pvalue (Upper Tail) in cell D15 is used to make the decision. With pvalue =.0353 < α =.05, the null hypothesis is rejected. The pvalues in cells D14 or D16 would be used if the hypotheses involved a lower tail test or a twotailed test.
3 o This template can be used to make hypothesis testing computations for other applications. For instance, to conduct a hypothesis test for a new data set, enter the new sample data into column A of the worksheet and modify the formulas in cells D4, D5, and D6 to correspond to the new data range. Enter the hypothesized value for the population mean into cell D8 to obtain the results. If the new sample data have already been summarized, the new sample data do not have to be entered into the worksheet. In this case, enter the sample size into cell D4, the sample mean into cell D5, the sample standard deviation into cell D6, and the hypothesized value for the population mean into cell D8 to obtain the results. For population proportion (Data File: Hypothesis p.xlsx) o We illustrate using the Pine Creek golf course survey data presented in Section 9.5. The data of Male or Female golfer are in column A of an Excel worksheet. Refer to Figure 9.10 as we describe the procedure. The background worksheet shows the cell formulas used to compute the results shown in the foreground worksheet. The data are entered into cells A2:A401. The following steps can be used to test the hypothesis H 0 : p <.20 versus H a : p >.20. Step 1. Enter the data range A2:A401 into the =COUNTA cell formula in cell D3 Step 2. Enter Female as the response of interest in cell D4 Step 3. Enter the data range A2:A401 into the =COUNTIF cell formula in cell D5 Step 4. Enter the hypothesized value for the population proportion.20 into cell D8 o The remaining cell formulas automatically provide the standard error, the value of the test statistic z, and three pvalues. Because the alternative hypothesis (p 0 >.20) indicates an upper tail test, the pvalue (Upper Tail) in cell D14 is used to make the decision. o With pvalue =.0062 < α =.05, the null hypothesis is rejected. The pvalues in cells D13 or D15 would be used if the hypothesis involved a lower tail test or a twotailed test. o This template can be used to make hypothesis testing computations for other applications. For instance, to conduct a hypothesis test for a new data set, enter the new sample data into column A of the worksheet. Modify the formulas in cells D3 and D5 to correspond to the new data range. Enter the response of interest into cell D4 and the hypothesized value for the population proportion into cell D8 to obtain the results. If the new sample data have already been summarized, the new sample data do not have to be entered into the worksheet. In this case, enter the sample size into cell D3, the sample proportion into cell D6, and the hypothesized value for the population proportion into cell D8 to obtain the results. 3. and 4. Errors The null and alternative hypotheses are competing statements about the population. Either the null hypothesis H 0 is true or the alternative hypothesis Ha is true, but not both. Ideally the hypothesis testing procedure should lead to the acceptance of H 0 when H 0 is true and the
4 rejection of H 0 when H a is true. Unfortunately, the correct conclusions are not always possible. Because hypothesis tests are based on sample information, we must allow for the possibility of errors. The first row of Table 9.1 shows what can happen if the conclusion is to accept H 0. If H 0 is true, this conclusion is correct. However, if Ha is true, we make a Type II error; that is, we accept H 0 when it is false. The second row of Table 9.1 shows what can happen if the conclusion is to reject H 0. If H 0 is true, we make a Type I error; that is, we reject H 0 when it is true. However, if Ha is true, rejecting H 0 is correct. The probability of making a Type I error when the null hypothesis is true as an equality is called the level of significance. In practice, the person responsible for the hypothesis test specifies the level of significance. By selecting α, that person is controlling the probability of making a Type I error. If the cost of making a Type I error is high, small values of α are preferred. If the cost of making a Type I error is not too high, larger values of α are typically used. Applications of hypothesis testing that only control for the Type I error are called significance tests. Many applications of hypothesis testing are of this type. 5. pvalues A pvalue is a probability that provides a measure of the evidence against the null hypothesis provided by the sample. Smaller pvalues indicate more evidence against H 0. The pvalue is used to determine whether the null hypothesis should be rejected. A small pvalue indicates the value of the test statistic is unusual given the assumption that H0 is true. The value of the test statistic is used to compute the pvalue. The method used depends on whether the test is a lower tail, an upper tail, or a twotailed test. For a lower tail test, the pvalue is the probability of obtaining a value for the test statistic as small as or smaller than that provided by the sample. Thus, to compute the pvalue for the lower tail test in the σ known case, we must find the area under the standard normal curve to the left of the test statistic. After computing the pvalue, we must then decide whether it is small enough to reject the null hypothesis; the decision involves comparing the pvalue to the level of significance. Rejection rule using pvalues o Reject H 0 if pvalue < α Critical Value Approach o The critical value approach requires that we first determine a value for the test statistic called the critical value. For a lower tail test, the critical value serves as a benchmark for determining whether the value of the test statistic is small enough to
5 KEY TERMS reject the null hypothesis. It is the value of the test statistic that corresponds to an area of α (the level of significance) in the lower tail of the sampling distribution of the test statistic. In other words, the critical value is the largest value of the test statistic that will result in the rejection of the null hypothesis. o In the σ known case, the sampling distribution for the test statistic z is a standard normal distribution. o Rejection Rule Reject H 0 if z < z α where z α is the critical value; that is, the z value that provides an area of α in the lower tail of the standard normal distribution. Null hypothesis The hypothesis tentatively assumed true in the hypothesis testing procedure. Alternative hypothesis The hypothesis concluded to be true if the null hypothesis is rejected. Type I error The error of rejecting H 0 when it is true. Type II error The error of accepting H 0 when it is false. Level of significance The probability of making a Type I error when the null hypothesis is true as an equality. Onetailed test A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in one tail of its sampling distribution. Test statistic A statistic whose value helps determine whether a null hypothesis should be rejected. pvalue A probability that provides a measure of the evidence against the null hypothesis provided by the sample. Smaller pvalues indicate more evidence against H 0. For a lower tail test, the pvalue is the probability of obtaining a value for the test statistic as small as or smaller than that provided by the sample. For an upper tail test, the pvalue is the probability of obtaining a value for the test statistic as large as or larger than that provided by the sample. For a twotailed test, the pvalue is the probability of obtaining a value for the test statistic at least as unlikely as or more unlikely than that provided by the sample. Critical value A value that is compared with the test statistic to determine whether H 0 should be rejected. Twotailed test A hypothesis test in which rejection of the null hypothesis occurs for values of the test statistic in either tail of its sampling distribution.
6 KEY FORMULAS
Chapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationCHAPTER 9. Hypothesis Tests CONTENTS
FOR BUSINESS AND ECONOMICS STATISTICS CHAPTER 9 Hypothesis Tests CONTENTS STATISTICS IN PRACTICE: JOHN MORRELL & COMPANY 9.1 DEVELOPING NULL AND ALTERNATIVE HYPOTHESES Testing Research Hypotheses Testing
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationChapter III. Testing Hypotheses
Chapter III Testing Hypotheses R (Introduction) A statistical hypothesis is an assumption about a population parameter This assumption may or may not be true The best way to determine whether a statistical
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationHypothesis Testing. Bluman Chapter 8
CHAPTER 8 Learning Objectives C H A P T E R E I G H T Hypothesis Testing 1 Outline 81 Steps in Traditional Method 82 z Test for a Mean 83 t Test for a Mean 84 z Test for a Proportion 85 2 Test for
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationHypothesis Testing  One Mean
Hypothesis Testing  One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
More informationSection 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
More informationHypothesis Testing (unknown σ)
Hypothesis Testing (unknown σ) Business Statistics Recall: Plan for Today Null and Alternative Hypotheses Types of errors: type I, type II Types of correct decisions: type A, type B Level of Significance
More informationMATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample
MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of
More informationIQ of deaf children example: Are the deaf children lower in IQ? Or are they average? If µ100 and σ 2 225, is the 88.07 from the sample of N59 deaf chi
PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 All inferential statistics have the following in common: Use of some descriptive statistic Use of probability Potential for estimation
More informationHypothesis Testing. Reminder of Inferential Statistics. Hypothesis Testing: Introduction
Hypothesis Testing PSY 360 Introduction to Statistics for the Behavioral Sciences Reminder of Inferential Statistics All inferential statistics have the following in common: Use of some descriptive statistic
More information22. HYPOTHESIS TESTING
22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?
More informationChapter 7. Section Introduction to Hypothesis Testing
Section 7.1  Introduction to Hypothesis Testing Chapter 7 Objectives: State a null hypothesis and an alternative hypothesis Identify type I and type II errors and interpret the level of significance Determine
More informationChapter 1 Hypothesis Testing
Chapter 1 Hypothesis Testing Principles of Hypothesis Testing tests for one sample case 1 Statistical Hypotheses They are defined as assertion or conjecture about the parameter or parameters of a population,
More information112 Goodness of Fit Test
112 Goodness of Fit Test In This section we consider sample data consisting of observed frequency counts arranged in a single row or column (called a oneway frequency table). We will use a hypothesis
More informationStatistical Inference and ttests
1 Statistical Inference and ttests Objectives Evaluate the difference between a sample mean and a target value using a onesample ttest. Evaluate the difference between a sample mean and a target value
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationModule 7: Hypothesis Testing I Statistics (OA3102)
Module 7: Hypothesis Testing I Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 10.110.5 Revision: 212 1 Goals for this Module
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationChapter 2. Hypothesis testing in one population
Chapter 2. Hypothesis testing in one population Contents Introduction, the null and alternative hypotheses Hypothesis testing process Type I and Type II errors, power Test statistic, level of significance
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationMeasuring the Power of a Test
Textbook Reference: Chapter 9.5 Measuring the Power of a Test An economic problem motivates the statement of a null and alternative hypothesis. For a numeric data set, a decision rule can lead to the rejection
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More information82 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis
82 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative
More informationHypothesis Testing Summary
Hypothesis Testing Summary Hypothesis testing begins with the drawing of a sample and calculating its characteristics (aka, statistics ). A statistical test (a specific form of a hypothesis test) is an
More information1 Hypothesis Testing. H 0 : population parameter = hypothesized value:
1 Hypothesis Testing In Statistics, a hypothesis proposes a model for the world. Then we look at the data. If the data are consistent with that model, we have no reason to disbelieve the hypothesis. Data
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationDifference of Means and ANOVA Problems
Difference of Means and Problems Dr. Tom Ilvento FREC 408 Accounting Firm Study An accounting firm specializes in auditing the financial records of large firm It is interested in evaluating its fee structure,particularly
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More information93.4 Likelihood ratio test. NeymanPearson lemma
93.4 Likelihood ratio test NeymanPearson lemma 91 Hypothesis Testing 91.1 Statistical Hypotheses Statistical hypothesis testing and confidence interval estimation of parameters are the fundamental
More informationMicrosoft Excel 2010 and Tools for Statistical Analysis
Appendix E: Microsoft Excel 2010 and Tools for Statistical Analysis Microsoft Excel 2010, part of the Microsoft Office 2010 system, is a spreadsheet program that can be used to organize and analyze data,
More informationIntroduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationTesting a claim about a population mean
Introductory Statistics Lectures Testing a claim about a population mean One sample hypothesis test of the mean Department of Mathematics Pima Community College Redistribution of this material is prohibited
More informationChapter 8: Introduction to Hypothesis Testing
Chapter 8: Introduction to Hypothesis Testing We re now at the point where we can discuss the logic of hypothesis testing. This procedure will underlie the statistical analyses that we ll use for the remainder
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationThe GoodnessofFit Test
on the Lecture 49 Section 14.3 HampdenSydney College Tue, Apr 21, 2009 Outline 1 on the 2 3 on the 4 5 Hypotheses on the (Steps 1 and 2) (1) H 0 : H 1 : H 0 is false. (2) α = 0.05. p 1 = 0.24 p 2 = 0.20
More informationGeneral Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test
Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics
More informationBowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology StepbyStep  Excel Microsoft Excel is a spreadsheet software application
More informationClass 19: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.1)
Spring 204 Class 9: Two Way Tables, Conditional Distributions, ChiSquare (Text: Sections 2.5; 9.) Big Picture: More than Two Samples In Chapter 7: We looked at quantitative variables and compared the
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationBusiness Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing
Business Statistics, 9e (Groebner/Shannon/Fry) Chapter 9 Introduction to Hypothesis Testing 1) Hypothesis testing and confidence interval estimation are essentially two totally different statistical procedures
More information1 SAMPLE SIGN TEST. NonParametric Univariate Tests: 1 Sample Sign Test 1. A nonparametric equivalent of the 1 SAMPLE TTEST.
NonParametric Univariate Tests: 1 Sample Sign Test 1 1 SAMPLE SIGN TEST A nonparametric equivalent of the 1 SAMPLE TTEST. ASSUMPTIONS: Data is nonnormally distributed, even after log transforming.
More informationFactorial Analysis of Variance
Chapter 560 Factorial Analysis of Variance Introduction A common task in research is to compare the average response across levels of one or more factor variables. Examples of factor variables are income
More information9.1 Basic Principles of Hypothesis Testing
9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the
More informationHypothesis Testing. Hypothesis Testing
Hypothesis Testing Daniel A. Menascé Department of Computer Science George Mason University 1 Hypothesis Testing Purpose: make inferences about a population parameter by analyzing differences between observed
More information7 Hypothesis testing  one sample tests
7 Hypothesis testing  one sample tests 7.1 Introduction Definition 7.1 A hypothesis is a statement about a population parameter. Example A hypothesis might be that the mean age of students taking MAS113X
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationLesson 9 Hypothesis Testing
Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) level.05 level.01 OneTail versus TwoTail Tests critical values for both alpha levels Logic for Hypothesis
More informationIn the past, the increase in the price of gasoline could be attributed to major national or global
Chapter 7 Testing Hypotheses Chapter Learning Objectives Understanding the assumptions of statistical hypothesis testing Defining and applying the components in hypothesis testing: the research and null
More informationA POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
CHAPTER 5. A POPULATION MEAN, CONFIDENCE INTERVALS AND HYPOTHESIS TESTING 5.1 Concepts When a number of animals or plots are exposed to a certain treatment, we usually estimate the effect of the treatment
More informationDevelop hypothesis and then research to find out if it is true. Derived from theory or primary question/research questions
Chapter 12 Hypothesis Testing Learning Objectives Examine the process of hypothesis testing Evaluate research and null hypothesis Determine one or twotailed tests Understand obtained values, significance,
More informationSection 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities
Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and
More informationIntroduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters  they must be estimated. However, we do have hypotheses about what the true
More informationStep 1: Set up hypotheses that ask a question about the population by setting up two opposite statements about the possible value of the parameters.
HYPOTHESIS TEST CLASS NOTES Hypothesis Test: Procedure that allows us to ask a question about an unknown population parameter Uses sample data to draw a conclusion about the unknown population parameter.
More informationExample Hypotheses. Chapter 82: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking
Chapter 82: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationCHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS
CHAPTER IV FINDINGS AND CONCURRENT DISCUSSIONS Hypothesis 1: People are resistant to the technological change in the security system of the organization. Hypothesis 2: information hacked and misused. Lack
More informationTHE LOGIC OF HYPOTHESIS TESTING. The general process of hypothesis testing remains constant from one situation to another.
THE LOGIC OF HYPOTHESIS TESTING Hypothesis testing is a statistical procedure that allows researchers to use sample to draw inferences about the population of interest. It is the most commonly used inferential
More informationAP STATISTICS 2009 SCORING GUIDELINES (Form B)
AP STATISTICS 2009 SCORING GUIDELINES (Form B) Question 5 Intent of Question The primary goals of this question were to assess students ability to (1) state the appropriate hypotheses, (2) identify and
More informationEstimation of the Mean and Proportion
1 Excel Manual Estimation of the Mean and Proportion Chapter 8 While the spreadsheet setups described in this guide may seem to be getting more complicated, once they are created (and tested!), they will
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question
Stats: Test Review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question Provide an appropriate response. ) Given H0: p 0% and Ha: p < 0%, determine
More informationAn interval estimate (confidence interval) is an interval, or range of values, used to estimate a population parameter. For example 0.476<p<0.
Lecture #7 Chapter 7: Estimates and sample sizes In this chapter, we will learn an important technique of statistical inference to use sample statistics to estimate the value of an unknown population parameter.
More information6. Statistical Inference: Significance Tests
6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions
More informationHypothesis Testing I
ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More informationUnit 29 ChiSquare GoodnessofFit Test
Unit 29 ChiSquare GoodnessofFit Test Objectives: To perform the chisquare hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni
More informationStats for Strategy Exam 1 InClass Practice Questions DIRECTIONS
Stats for Strategy Exam 1 InClass Practice Questions DIRECTIONS Choose the single best answer for each question. Discuss questions with classmates, TAs and Professor Whitten. Raise your hand to check
More informationUsing Microsoft Excel to Analyze Data
Entering and Formatting Data Using Microsoft Excel to Analyze Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page. For the comparison of pipets:
More informationSampling Distribution of the Mean & Hypothesis Testing
Sampling Distribution of the Mean & Hypothesis Testing Let s first review what we know about sampling distributions of the mean (Central Limit Theorem): 1. The mean of the sampling distribution will be
More informationHYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR
HYPOTHESIS TESTING AND TYPE I AND TYPE II ERROR Hypothesis is a conjecture (an inferring) about one or more population parameters. Null Hypothesis (H 0 ) is a statement of no difference or no relationship
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More information5/31/2013. Chapter 8 Hypothesis Testing. Hypothesis Testing. Hypothesis Testing. Outline. Objectives. Objectives
C H 8A P T E R Outline 8 1 Steps in Traditional Method 8 2 z Test for a Mean 8 3 t Test for a Mean 8 4 z Test for a Proportion 8 6 Confidence Intervals and Copyright 2013 The McGraw Hill Companies, Inc.
More informationHYPOTHESIS TESTING III: POPULATION PROPORTIONS, ETC.
HYPOTHESIS TESTING III: POPULATION PROPORTIONS, ETC. HYPOTHESIS TESTS OF POPULATION PROPORTIONS Purpose: to determine whether the proportion in the population with some characteristic is or is not equal
More informationWISE Power Tutorial All Exercises
ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II
More informationUnderstanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation
Understanding Confidence Intervals and Hypothesis Testing Using Excel Data Table Simulation Leslie Chandrakantha lchandra@jjay.cuny.edu Department of Mathematics & Computer Science John Jay College of
More informationPASS Sample Size Software
Chapter 250 Introduction The Chisquare test is often used to test whether sets of frequencies or proportions follow certain patterns. The two most common instances are tests of goodness of fit using multinomial
More informationTesting Hypotheses About Proportions
Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationChapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion
Chapter 8: Hypothesis Testing for One Population Mean, Variance, and Proportion Learning Objectives Upon successful completion of Chapter 8, you will be able to: Understand terms. State the null and alternative
More informationChapter 11. Chapter 11 Overview. Chapter 11 Objectives 11/24/2015. Other ChiSquare Tests
11/4/015 Chapter 11 Overview Chapter 11 Introduction 111 Test for Goodness of Fit 11 Tests Using Contingency Tables Other ChiSquare Tests McGrawHill, Bluman, 7th ed., Chapter 11 1 Bluman, Chapter 11
More informationTerminology. 2 There is no mathematical difference between the errors, however. The bottom line is that we choose one type
Hypothesis Testing 10.2.1 Terminology The null hypothesis H 0 is a nothing hypothesis, whose interpretation could be that nothing has changed, there is no difference, there is nothing special taking place,
More informationCHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY
CHAPTER 11 CHISQUARE: NONPARAMETRIC COMPARISONS OF FREQUENCY The hypothesis testing statistics detailed thus far in this text have all been designed to allow comparison of the means of two or more samples
More informationModule 4 (Effect of Alcohol on Worms): Data Analysis
Module 4 (Effect of Alcohol on Worms): Data Analysis Michael Dunn Capuchino High School Introduction In this exercise, you will first process the timelapse data you collected. Then, you will cull (remove)
More information9.1 Hypothesis Testing
9.1 Hypothesis Testing Define: 1. Null Hypothesis 2. Alternative Hypothesis Null Hypothesis: H 0, statement that the population proportion, or population mean is EQUAL TO a number population proportion
More informationChapter 23. Two Categorical Variables: The ChiSquare Test
Chapter 23. Two Categorical Variables: The ChiSquare Test 1 Chapter 23. Two Categorical Variables: The ChiSquare Test TwoWay Tables Note. We quickly review twoway tables with an example. Example. Exercise
More informationDescribing Populations Statistically: The Mean, Variance, and Standard Deviation
Describing Populations Statistically: The Mean, Variance, and Standard Deviation BIOLOGICAL VARIATION One aspect of biology that holds true for almost all species is that not every individual is exactly
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
STATISTICS/GRACEY EXAM 3 PRACTICE/CH. 89 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the Pvalue for the indicated hypothesis test. 1) A
More information