1 Hypothesis Testing. H 0 : population parameter = hypothesized value:


 Wilfred Patterson
 2 years ago
 Views:
Transcription
1 1 Hypothesis Testing In Statistics, a hypothesis proposes a model for the world. Then we look at the data. If the data are consistent with that model, we have no reason to disbelieve the hypothesis. Data consistent with the model lend support to the hypothesis, but do not prove it. But if the facts are inconsistent with the model, we need to make a choice as to whether they are inconsistent enough to disbelieve the model. If they are inconsistent enough, we can reject the model. Think about the logic of jury trials: To prove someone is guilty, we start by assuming they are innocent. We retain that hypothesis until the facts make it unlikely beyond a reasonable doubt. Then, and only then, we reject the hypothesis of innocence and declare the person guilty. The statistical twist is that we can quantify our level of doubt. We can use the model proposed by our hypothesis to calculate the probability that the event we ve witnessed could happen. That s just the probability we re looking for; it quanti es exactly how surprised we are to see our results. This probability is called a Pvalue. When the data are consistent with the model from the null hypothesis, the Pvalue is high and we are unable to reject the null hypothesis. In that case, we have to retain the null hypothesis we started with. We can t claim to have proved it; instead we fail to reject the null hypothesis when the data are consistent with the null hypothesis model and in line with what we would expect from natural sampling variability. If the Pvalue is low enough, we ll reject the null hypothesis, since what we observed would be very unlikely were the null model true. The null hypothesis, which we denote H 0, speci es a population model parameter of interest and proposes a value for that parameter. We might have, for example, H 0 : = 7:23: We want to compare our data to what we would expect given that H 0 is true. We can do this by nding out how many standard deviations away from the proposed value we are. We then ask how likely it is to get results like we did if the null hypothesis were true. To perform a hypothesis test, we must rst translate our question of interest into a statement about model parameters. In general, we have H 0 : population parameter = hypothesized value: 1
2 The alternative hypothesis, H A, contains the values of the parameter we accept if we reject the null. There are three possible alternative hypotheses: H A : parameter < hypothesized value H A : parameter 6= hypothesized value H A : parameter > hypothesized value The tests are either twotailed or onetailed depending upon the alternative hypothesis. In the previous section on con dence intervals we encountered the question of the number of hours KSU students watch football. We answered the question there with a con dence interval. We can also tackle the problem with hypothesis testing. Example 1 The KSU football exploratory committee claims that KSU students watch an average of 10 hours of football per week during football season. A study group collects data from 50 KSU students which yields an average of 9.5 hours watching football with a standard deviation of 3.5 hours. Has the KSU football exploratory committee overestimated the average number of hours KSU students watch football or is this just chance variation in the sample? Test at 95% con dence. Formulate H 0 and H A. H 0 : = 10: H A : < 10 We use a onetail test since the question indicates a direction in which we disagree with the null hypothesis. Example 2 During a world series game, Chipper Jones comes up to bat. The announcers highlight his.310 batting average for the regular season but then go on to say that those numbers don t apply to the playo s. Formulate H 0 and H A for the announcers comments. H 0 : p = :310 H A : p 6= :310 When the conditions are met (for the Central Limit Theorem) and the null hypothesis is true, this statistic follows the standard Normal model, so we can use that model to obtain a Pvalue. Before we obtain the Pvalue, we rst compute the test statistic (which looks very much like a zscore). When testing averages, the test statistic is 2
3 z = x = x x p n : Example 3 Compute the test statistic for our KSU football exploratory committee problem. z = x p = n 9:5 10 3:5 p 50 = 1: We then compare the critical value to the test statistic. The critical values depend on the level of con dence and the number of tails in the test. level of con dence 1tailed test 2tailed test 90% % % % The critical value for this test is We compare the absolute value of the test statistic to the critical value. If the test statistic is larger then we reject the null in favor of the alternative. If the critical value is larger than the test statistic we fail to reject the null hypothesis. In this case, 1:645 > 1:0102 and we fail to reject the null hypothesis. Exercise 1 The average GPA at a particular university is The 40 member fraternity Kappa Epsilon Gamma has an average GPA of 1.89 with a standard deviation of 1.2. Dean Wormer believes the fraternity is a disgrace to academic standards with their low GPA. The fraternity believes their GPA is just an example of chance variation. At 99% signi cance, with whom do you agree? Exercise 2 Josh s lifetime average word score in Scrabble is 15.5 points per turn. However, in 30 games with Brenda, his average score is 12.7 points per turn with a standard deviation of 7 points. Brenda thinks Josh is distracted by her great beauty. Josh claims chance variation. At 90% signi cance, with whom do you agree? 3
4 The average is an important population parameter but by no means (pun fully intended) it is the only population parameter of note. Population proportions (or percentages) are also quite valuable. Everything we did in hypothesis testing for a population mean works the same way for population proportions with only a small change when computing the test statistic. Example 4 The KSU football exploratory committee claims that 30% of all KSU students will attend a KSU football game. The KSU Sentinel believes the football exploratory committee has overestimated their claim. Formulate the null and alternative hypothesis. H 0 : p = 0:3 H A : p < 0:3 Example 5 At 95% con dence what is the critical value? This is a onetailed test. So at 95% signi cance, the critical value z = 1:645. Furthermore since we are looking at the left tail the critical value is actually z = 1:645: The only di erence when running a test of hypothesis for proportions rather than means is in the test statistic. The numerator will contain the di erence of the sample proportion and the claimed population proportion. The numerator will contain the standard error for sample proportions. Where p is the sample percentage, the test statistic z = p p r : p(1 p) Example 6 The KSU Sentinel collects a sample of 150 students where 35 students state they will attend a KSU football game. Has the Sentinel collected statistically signi cant data in order to reject the exploratory committees claim? The sample proportion is p = = 0: The test statistic is z = 0:233 0:3 r = 1: The test statistic falls into the rejection region 0:233(1 0:233) 150 and we can reject the null hypothesis in favor of the alternative hypothesis. So, yes, the Sentinel has statistically signi cant evidence the exploratory committee has overestimated their claim about the percentage of KSU students that will attend a football game. Example 7 During a world series game, Chipper Jones comes up to bat. The announcers highlight his.310 batting average for the regular season but then go on to say that those numbers don t apply to the playo s. At the end of the World Series, Chipper has batted 11 for 29. Are the announcers correct or is this just an example of chance variation. Conduct a hypothesis test at 99% signi cance. n 4
5 H 0 : p = :310 H A : p 6= :310 Here we use a twotailed test since the announcers indicate that batting averages are di erent in the playo s without indicating if the averages are better or worse. So, the critical value is 2:575. Chipper s batting average (which is really a proportion) is p = = 0: The test statistic is 0:379 0:310 z = r = 0: The test statistic does not fall into the 0:379(1 0:379) 29 rejection region. We interpret this to mean that Chipper is the same batter during the regular season as he is during the World Series. We can also construct con dence intervals for proportions using the new formula for standard errors. Example 8 A sample of KSU students nds 52 students who own a PS3 or Xbox 360. Construct a 95% con dence interval for the true proportion of all KSU students who own a PS3 or Xbox 360. The sample proportion is p = 52 = 0: The endpoints of the con  r p(1 p) dence interval are given by p M = p z p = p z = 0:297 r r n 1:96. The lower bound is 0:297 1:96 = r 0: and the upper bound is 0: :96 = 0: We are 95% con dent that the true proportion of KSU students who own a PS3 or Xbox 360 falls somewhere in the interval (0:229; 0:365). 2 Exercises Gould: Read 6.3: Do problems
Hypothesis testing allows us to use a sample to decide between two statements made about a Population characteristic.
Hypothesis Testing Hypothesis testing allows us to use a sample to decide between two statements made about a Population characteristic. Population Characteristics are things like The mean of a population
More informationHomework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm.
Homework #3 is due Friday by 5pm. Homework #4 will be posted to the class website later this week. It will be due Friday, March 7 th, at 5pm. Political Science 15 Lecture 12: Hypothesis Testing Sampling
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationMATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample
MATH 10: Elementary Statistics and Probability Chapter 9: Hypothesis Testing with One Sample Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of
More informationCh. 8 Hypothesis Testing
Ch. 8 Hypothesis Testing 8.1 Foundations of Hypothesis Testing Definitions In statistics, a hypothesis is a claim about a property of a population. A hypothesis test is a standard procedure for testing
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informationSection 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)
Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis
More informationChapter 8. Hypothesis Testing
Chapter 8 Hypothesis Testing Hypothesis In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing
More informationIntroduction to Hypothesis Testing OPRE 6301
Introduction to Hypothesis Testing OPRE 6301 Motivation... The purpose of hypothesis testing is to determine whether there is enough statistical evidence in favor of a certain belief, or hypothesis, about
More informationChapter 8 Introduction to Hypothesis Testing
Chapter 8 Student Lecture Notes 81 Chapter 8 Introduction to Hypothesis Testing Fall 26 Fundamentals of Business Statistics 1 Chapter Goals After completing this chapter, you should be able to: Formulate
More informationProbability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540
Probability, Binomial Distributions and Hypothesis Testing Vartanian, SW 540 1. Assume you are tossing a coin 11 times. The following distribution gives the likelihoods of getting a particular number of
More informationChapter 9: Hypothesis Testing GBS221, Class April 15, 2013 Notes Compiled by Nicolas C. Rouse, Instructor, Phoenix College
Chapter Objectives 1. Learn how to formulate and test hypotheses about a population mean and a population proportion. 2. Be able to use an Excel worksheet to conduct hypothesis tests about population means
More informationModule 7: Hypothesis Testing I Statistics (OA3102)
Module 7: Hypothesis Testing I Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 10.110.5 Revision: 212 1 Goals for this Module
More informationChapter 8 Hypothesis Testing Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing
Chapter 8 Hypothesis Testing 1 Chapter 8 Hypothesis Testing 81 Overview 82 Basics of Hypothesis Testing 83 Testing a Claim About a Proportion 85 Testing a Claim About a Mean: s Not Known 86 Testing
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More informationIntroduction to Hypothesis Testing
I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters  they must be estimated. However, we do have hypotheses about what the true
More informationI. Basics of Hypothesis Testing
Introduction to Hypothesis Testing This deals with an issue highly similar to what we did in the previous chapter. In that chapter we used sample information to make inferences about the range of possibilities
More informationChapter 7 Part 2. Hypothesis testing Power
Chapter 7 Part 2 Hypothesis testing Power November 6, 2008 All of the normal curves in this handout are sampling distributions Goal: To understand the process of hypothesis testing and the relationship
More informationChapter 21. More About Tests and Intervals. Copyright 2012, 2008, 2005 Pearson Education, Inc.
Chapter 21 More About Tests and Intervals Copyright 2012, 2008, 2005 Pearson Education, Inc. Zero In on the Null Null hypotheses have special requirements. To perform a hypothesis test, the null must be
More informationIntroduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.
Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative
More information82 Basics of Hypothesis Testing. Definitions. Rare Event Rule for Inferential Statistics. Null Hypothesis
82 Basics of Hypothesis Testing Definitions This section presents individual components of a hypothesis test. We should know and understand the following: How to identify the null hypothesis and alternative
More informationCHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING
CHAPTER 11 SECTION 2: INTRODUCTION TO HYPOTHESIS TESTING MULTIPLE CHOICE 56. In testing the hypotheses H 0 : µ = 50 vs. H 1 : µ 50, the following information is known: n = 64, = 53.5, and σ = 10. The standardized
More informationChapter III. Testing Hypotheses
Chapter III Testing Hypotheses R (Introduction) A statistical hypothesis is an assumption about a population parameter This assumption may or may not be true The best way to determine whether a statistical
More informationExtending Hypothesis Testing. pvalues & confidence intervals
Extending Hypothesis Testing pvalues & confidence intervals So far: how to state a question in the form of two hypotheses (null and alternative), how to assess the data, how to answer the question by
More information9.1 Basic Principles of Hypothesis Testing
9. Basic Principles of Hypothesis Testing Basic Idea Through an Example: On the very first day of class I gave the example of tossing a coin times, and what you might conclude about the fairness of the
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationThe alternative hypothesis,, is the statement that the parameter value somehow differs from that claimed by the null hypothesis. : 0.5 :>0.5 :<0.
Section 8.28.5 Null and Alternative Hypotheses... The null hypothesis,, is a statement that the value of a population parameter is equal to some claimed value. :=0.5 The alternative hypothesis,, is the
More informationTesting Hypotheses About Proportions
Chapter 11 Testing Hypotheses About Proportions Hypothesis testing method: uses data from a sample to judge whether or not a statement about a population may be true. Steps in Any Hypothesis Test 1. Determine
More informationHypothesis testing: Examples. AMS7, Spring 2012
Hypothesis testing: Examples AMS7, Spring 2012 Example 1: Testing a Claim about a Proportion Sect. 7.3, # 2: Survey of Drinking: In a Gallup survey, 1087 randomly selected adults were asked whether they
More informationA Trial Analogy for Statistical. Hypothesis Testing. Legal Trial Begin with claim: Statistical Significance Test Hypotheses (statements)
A Trial Analogy for Statistical Slide 1 Hypothesis Testing Legal Trial Begin with claim: Smith is not guilty If this is rejected, we accept Smith is guilty reasonable doubt Present evidence (facts) Evaluate
More informationChapter 8. Professor Tim Busken. April 20, Chapter 8. Tim Busken. 8.2 Basics of. Hypothesis Testing. Works Cited
Chapter 8 Professor April 20, 2014 In Chapter 8, we continue our study of inferential statistics. Concept: Inferential Statistics The two major activities of inferential statistics are 1 to use sample
More informationExact Nonparametric Tests for Comparing Means  A Personal Summary
Exact Nonparametric Tests for Comparing Means  A Personal Summary Karl H. Schlag European University Institute 1 December 14, 2006 1 Economics Department, European University Institute. Via della Piazzuola
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationThe Basics of a Hypothesis Test
Overview The Basics of a Test Dr Tom Ilvento Department of Food and Resource Economics Alternative way to make inferences from a sample to the Population is via a Test A hypothesis test is based upon A
More information22. HYPOTHESIS TESTING
22. HYPOTHESIS TESTING Often, we need to make decisions based on incomplete information. Do the data support some belief ( hypothesis ) about the value of a population parameter? Is OJ Simpson guilty?
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationHypothesis testing  Steps
Hypothesis testing  Steps Steps to do a twotailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
More informationTtest in SPSS Hypothesis tests of proportions Confidence Intervals (End of chapter 6 material)
Ttest in SPSS Hypothesis tests of proportions Confidence Intervals (End of chapter 6 material) Definition of pvalue: The probability of getting evidence as strong as you did assuming that the null hypothesis
More informationSTA102 Class Notes Chapter Hypothesis Testing
10. Hypothesis Testing In this chapter, we continue to study methods for making inference about a population using our sample. In chapter 9, we used CIs, essentially, to answer questions of the type, What
More information9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
9_1&9_2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Express the null hypothesis. 1) Which could be the null hypothesis for the true proportion
More informationSection 12.2, Lesson 3. What Can Go Wrong in Hypothesis Testing: The Two Types of Errors and Their Probabilities
Today: Section 2.2, Lesson 3: What can go wrong with hypothesis testing Section 2.4: Hypothesis tests for difference in two proportions ANNOUNCEMENTS: No discussion today. Check your grades on eee and
More informationHypoTesting. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Class: Date: HypoTesting Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A Type II error is committed if we make: a. a correct decision when the
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More informationHYPOTHESIS TESTING WITH SPSS:
HYPOTHESIS TESTING WITH SPSS: A NONSTATISTICIAN S GUIDE & TUTORIAL by Dr. Jim Mirabella SPSS 14.0 screenshots reprinted with permission from SPSS Inc. Published June 2006 Copyright Dr. Jim Mirabella CHAPTER
More informationWISE Power Tutorial All Exercises
ame Date Class WISE Power Tutorial All Exercises Power: The B.E.A.. Mnemonic Four interrelated features of power can be summarized using BEA B Beta Error (Power = 1 Beta Error): Beta error (or Type II
More informationHypothesis Testing  One Mean
Hypothesis Testing  One Mean A hypothesis is simply a statement that something is true. Typically, there are two hypotheses in a hypothesis test: the null, and the alternative. Null Hypothesis The hypothesis
More information6. Statistical Inference: Significance Tests
6. Statistical Inference: Significance Tests Goal: Use statistical methods to check hypotheses such as Women's participation rates in elections in France is higher than in Germany. (an effect) Ethnic divisions
More informationMind on Statistics. Chapter 12
Mind on Statistics Chapter 12 Sections 12.1 Questions 1 to 6: For each statement, determine if the statement is a typical null hypothesis (H 0 ) or alternative hypothesis (H a ). 1. There is no difference
More informationHypothesis Testing. Concept of Hypothesis Testing
Quantitative Methods 2013 Hypothesis Testing with One Sample 1 Concept of Hypothesis Testing Testing Hypotheses is another way to deal with the problem of making a statement about an unknown population
More information8.1 notes May 30, 2014
Hypothesis Testing Null Hypothesis Start with a hypothesis! Statistical Hypothesis: a conjecture about a population parameter (not necessarily true) Null Hypothesis 2 Types of Hypotheses Alternative Hypothesis
More informationExample Hypotheses. Chapter 82: Basics of Hypothesis Testing. A newspaper headline makes the claim: Most workers get their jobs through networking
Chapter 82: Basics of Hypothesis Testing Two main activities in statistical inference are using sample data to: 1. estimate a population parameter forming confidence intervals 2. test a hypothesis or
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationTHE LOGIC OF HYPOTHESIS TESTING. The general process of hypothesis testing remains constant from one situation to another.
THE LOGIC OF HYPOTHESIS TESTING Hypothesis testing is a statistical procedure that allows researchers to use sample to draw inferences about the population of interest. It is the most commonly used inferential
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationWater Quality Problem. Hypothesis Testing of Means. Water Quality Example. Water Quality Example. Water quality example. Water Quality Example
Water Quality Problem Hypothesis Testing of Means Dr. Tom Ilvento FREC 408 Suppose I am concerned about the quality of drinking water for people who use wells in a particular geographic area I will test
More informationSampling Distribution of the Mean & Hypothesis Testing
Sampling Distribution of the Mean & Hypothesis Testing Let s first review what we know about sampling distributions of the mean (Central Limit Theorem): 1. The mean of the sampling distribution will be
More informationHypothesis Testing. April 21, 2009
Hypothesis Testing April 21, 2009 Your Claim is Just a Hypothesis I ve never made a mistake. Once I thought I did, but I was wrong. Your Claim is Just a Hypothesis Confidence intervals quantify how sure
More informationHypothesis Testing Summary
Hypothesis Testing Summary Hypothesis testing begins with the drawing of a sample and calculating its characteristics (aka, statistics ). A statistical test (a specific form of a hypothesis test) is an
More informationAbout Hypothesis Testing
About Hypothesis Testing TABLE OF CONTENTS About Hypothesis Testing... 1 What is a HYPOTHESIS TEST?... 1 Hypothesis Testing... 1 Hypothesis Testing... 1 Steps in Hypothesis Testing... 2 Steps in Hypothesis
More informationTesting: is my coin fair?
Testing: is my coin fair? Formally: we want to make some inference about P(head) Try it: toss coin several times (say 7 times) Assume that it is fair ( P(head)= ), and see if this assumption is compatible
More informationGeneral Procedures for Testing Hypotheses
Chapter 19 General Procedures for Testing Hypothesies 297 CHAPTER 19 General Procedures for Testing Hypotheses Introduction Skeleton Procedure for Testing Hypotheses An Example: Can the BioEngineer Increase
More information1 Another method of estimation: least squares
1 Another method of estimation: least squares erm: estim.tex, Dec8, 009: 6 p.m. (draft  typos/writos likely exist) Corrections, comments, suggestions welcome. 1.1 Least squares in general Assume Y i
More informationHypothesis Testing  II
3σ 2σ +σ +2σ +3σ Hypothesis Testing  II Lecture 9 0909.400.01 / 0909.400.02 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S 3σ 2σ +σ +2σ +3σ Review: Hypothesis
More informationIntroduction to Hypothesis Testing
Introduction to Hypothesis Testing A Hypothesis Test for Heuristic Hypothesis testing works a lot like our legal system. In the legal system, the accused is innocent until proven guilty. After examining
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 10 TWOSAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 130) Spring Semester 011 Chapter 10 TWOSAMPLE TESTS Practice
More informationBasic Statistics Self Assessment Test
Basic Statistics Self Assessment Test Professor Douglas H. Jones PAGE 1 A sodadispensing machine fills 12ounce cans of soda using a normal distribution with a mean of 12.1 ounces and a standard deviation
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationHypothesis testing. c 2014, Jeffrey S. Simonoff 1
Hypothesis testing So far, we ve talked about inference from the point of estimation. We ve tried to answer questions like What is a good estimate for a typical value? or How much variability is there
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationBasic Statistics. Hypothesis Testing
Basic Statistics Hypothesis Testing Hypothesis Testing Learning Intentions Today we will understand: Formulating the null and alternative hypothesis Distinguish between a onetail and twotail hypothesis
More informationReview of Bivariate Regression
Review of Bivariate Regression A.Colin Cameron Department of Economics University of California  Davis accameron@ucdavis.edu October 27, 2006 Abstract This provides a review of material covered in an
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationHypothesis Testing: Two Means, Paired Data, Two Proportions
Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this
More informationTwoSample TTests Allowing Unequal Variance (Enter Difference)
Chapter 45 TwoSample TTests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when no assumption
More information5. 가설과통계추론 5.1 가설이란무엇인가
20082009 Jeeshim & KUCC625 (08/04/2009) Statistical Data Analysis Using R:16 5. 가설과통계추론 이장에서는가설이무엇이고, 통계추론을어떻게하는지세가지방법을설명한다. 5.1 가설이란무엇인가 A hypothesis is a specific conjecture (statement) about a characteristic
More informationMAT140: Applied Statistical Methods Summary of Calculating Confidence Intervals and Sample Sizes for Estimating Parameters
MAT140: Applied Statistical Methods Summary of Calculating Confidence Intervals and Sample Sizes for Estimating Parameters Inferences about a population parameter can be made using sample statistics for
More informationBA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420
BA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420 1. Which of the following will increase the value of the power in a statistical test
More informationChapter 9 Introduction to Hypothesis Testing
Chapter 9 Introduction to Hypothesis Testing 9.2  Hypothesis Testing Hypothesis testing is an eample of inferential statistics We use sample information to draw conclusions about the population from which
More informationLesson 9 Hypothesis Testing
Lesson 9 Hypothesis Testing Outline Logic for Hypothesis Testing Critical Value Alpha (α) level.05 level.01 OneTail versus TwoTail Tests critical values for both alpha levels Logic for Hypothesis
More informationConfidence Intervals and Hypothesis Testing
Name: Class: Date: Confidence Intervals and Hypothesis Testing Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The librarian at the Library of Congress
More informationPurpose of Hypothesis Testing
Large sample Tests of Hypotheses Chapter 9 1 Purpose of Hypothesis Testing In the last chapter, we studied methods of estimating a parameter (μ, p or p 1 p 2 ) based on sample data: point estimation confidence
More informationAn Introduction to Statistics Course (ECOE 1302) Spring Semester 2011 Chapter 9  FUNDAMENTALS OF HYPOTHESIS TESTING: ONESAMPLE TESTS
The Islamic University of Gaza Faculty of Commerce Department of Economics and Political Sciences An Introduction to Statistics Course (ECOE 302) Spring Semester 20 Chapter 9  FUNDAMENTALS OF HYPOTHESIS
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationHypothesis Testing. Chapter Introduction
Contents 9 Hypothesis Testing 553 9.1 Introduction............................ 553 9.2 Hypothesis Test for a Mean................... 557 9.2.1 Steps in Hypothesis Testing............... 557 9.2.2 Diagrammatic
More informationChapter Five. Hypothesis Testing: Concepts
Chapter Five The Purpose of Hypothesis Testing... 110 An Initial Look at Hypothesis Testing... 112 Formal Hypothesis Testing... 114 Introduction... 114 Null and Alternate Hypotheses... 114 Procedure for
More informationGeneral Procedure for Hypothesis Test. Five types of statistical analysis. 1. Formulate H 1 and H 0. General Procedure for Hypothesis Test
Five types of statistical analysis General Procedure for Hypothesis Test Descriptive Inferential Differences Associative Predictive What are the characteristics of the respondents? What are the characteristics
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More information15.0 More Hypothesis Testing
15.0 More Hypothesis Testing 1 Answer Questions Type I and Type II Error Power Calculation Bayesian Hypothesis Testing 15.1 Type I and Type II Error In the philosophy of hypothesis testing, the null hypothesis
More informationTwo Related Samples t Test
Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person
More informationConfidence Intervals (Review)
Intro to Hypothesis Tests Solutions STATUB.0103 Statistics for Business Control and Regression Models Confidence Intervals (Review) 1. Each year, construction contractors and equipment distributors from
More informationIntroduction to Hypothesis Testing
Introduction to Hypothesis Testing A Hypothesis Test for μ Heuristic Hypothesis testing works a lot like our legal system. In the legal system, the accused is innocent until proven guilty. After examining
More informationIQ of deaf children example: Are the deaf children lower in IQ? Or are they average? If µ100 and σ 2 225, is the 88.07 from the sample of N59 deaf chi
PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 All inferential statistics have the following in common: Use of some descriptive statistic Use of probability Potential for estimation
More informationCHAPTER 15: Tests of Significance: The Basics
CHAPTER 15: Tests of Significance: The Basics The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 15 Concepts 2 The Reasoning of Tests of Significance
More informationSampling Distributions and the Central Limit Theorem
135 Part 2 / Basic Tools of Research: Sampling, Measurement, Distributions, and Descriptive Statistics Chapter 10 Sampling Distributions and the Central Limit Theorem In the previous chapter we explained
More informationAnnouncements. Unit 4: Inference for numerical variables Lecture 1: Bootstrap, paired, and two sample. Rent in Durham.
Announcements Announcements Unit 4: Inference for numerical variables Lecture 1: Bootstrap, paired, and two sample Statistics 101 Mine ÇetinkayaRundel February 26, 2013 Extra credit due Thursday at the
More informationreductio ad absurdum null hypothesis, alternate hypothesis
Chapter 10 s Using a Single Sample 10.1: Hypotheses & Test Procedures Basics: In statistics, a hypothesis is a statement about a population characteristic. s are based on an reductio ad absurdum form of
More informationModule 2 Probability and Statistics
Module 2 Probability and Statistics BASIC CONCEPTS Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The standard deviation of a standard normal distribution
More informationt Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon
ttests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com
More information