# Using SPSS for Multiple Regression. UDP 520 Lab 7 Lin Lin December 4 th, 2007

Save this PDF as:

Size: px
Start display at page:

Download "Using SPSS for Multiple Regression. UDP 520 Lab 7 Lin Lin December 4 th, 2007"

## Transcription

1 Using SPSS for Multiple Regression UDP 520 Lab 7 Lin Lin December 4 th, 2007

2 Step 1 Define Research Question What factors are associated with BMI? Predict BMI.

3 Step 2 Conceptualizing Problem (Theory) Individual Behaviors BMI Individual Characteristics Environment

4 Step 2 Conceptualizing Problem (Theory) Individual behaviors are associated with BMI. Individual characteristics are associated with BMI. Environment is associated with BMI.

5 Step 3 & 4 Operationalizing and Hypothesizing Individual behaviors are associated with BMI. Eating behavior: daily calorie intake is positively associated with BMI Exercising behavior: level of exercise is negatively associated with BMI. Individual characteristics are associated with BMI. Sex Income Education level Occupation Environment is associated with BMI. Physical environment Social environment

6 Step 5 Collecting Data 1000 adults aged 18+ (males and females) were recruited to study factors associated with BMI (BMI) Variables BMI (before WLTP) Sex (female=1) individual characteristics Calorie (calorie intake daily) individual behaviors Exercise (minutes of exercise per week) individual behaviors Income (monthly salary in dollars \$) individual characteristics Expenditure on food (monthly food expense in dollars \$) individual behaviors Education (education level in years) individual characteristics Residential density (high, median, low) physical environment

7 Step 6 Developing OLS Equation Multiple regression Y = β + β x + β x + β x BMI 0 1 calorie 2 exercise 3 sex + β x + β x + β x + ε 4 income 5 education 6 built environment

8 OLS Equation for SPSS Multiple regression Model 1 Y = β + β x + β x BMI 0 1 calorie 2 exercise + β x + + ε β x 4 income 5 education

9 Using SPSS for Multiple Regression

10 SPSS Output Tables

11 Descriptive Statistics Mean Std. Deviation N BMI calorie exercise income education Correlations Pearson Correlation BMI calorie exercise income education BMI calorie exercise income Sig. (1-tailed) education BMI calorie exercise income N education BMI calorie exercise income education Variables Entered/Removed(b) Model 1 Variables Entered education, calorie, income, exercise(a) Variables Removed. Enter Method a All requested variables entered. b Dependent Variable: BMI Model Summary(b) Adjusted R Std. Error of the Model R R Square Square Estimate 1.801(a) a Predictors: (Constant), education, calorie, income, exercise b Dependent Variable: BMI 1

12 ANOVA(b) Model 1 Sum of Squares df Mean Square F Sig. Regression (a) Residual Total a Predictors: (Constant), education, calorie, income, exercise b Dependent Variable: BMI Model Unstandardized Coefficients Coefficients(a) Standardized Coefficients t Sig. 95% Confidence Interval for B Collinearity Statistics B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 1 (Constant) a Dependent Variable: BMI calorie exercise income 8.82E education Collinearity Diagnostics(a) Variance Proportions Model Dimension Eigenvalue Condition Index (Constant) calorie exercise income education a Dependent Variable: BMI Residuals Statistics(a) Minimum Maximum Mean Std. Deviation N Predicted Value Residual Std. Predicted Value Std. Residual a Dependent Variable: BMI 2

13 Step 7 Checking for Multicollinearity Correlations Pearson Correlation Sig. (1-tailed) N BMI calorie exercise income education BMI calorie exercise income education BMI calorie exercise income education BMI calorie exercise income education Check multicollinearity of independent variables. If the absolute value of Pearson correlation is greater than 0.8, collinearity is very likely to exist. If the absolute value of Pearson correlation is close to 0.8 (such as 0.7±0.1), collinearity is likely to exist.

14 Step 7 Checking for Multicollinearity (cont.) Collinearity Diagnostics a Model 1 Dimension a. Dependent Variable: BMI Condition Variance Proportions Eigenvalue Index (Constant) calorie exercise income education A condition index greater than 15 indicates a possible problem An index greater than 30 suggests a serious problem with collinearity.

15 Step 8 Statistics Goodness of fit of model Model 1 Model Summary b Adjusted Std. Error of R R Square R Square the Estimate.801 a a. Predictors: (Constant), education, calorie, income, exercise b. Dependent Variable: BMI R 2 = It means that 64.2% of variation is explained by the model. The adjusted R 2 adjusts for the number of explanatory terms (independent variables) in a model and increases only if the new independent variable(s) improve(s) the model more than would be expected by chance.

16 Step 8 Statistics (cont.) Coefficient of each independent variable Model 1 (Constant) calorie exercise income education a. Dependent Variable: BMI Unstandardized Coefficients Standardized Coefficients Coefficients a 95% Confidence Interval for B B Std. Error Beta t Sig. Lower Bound Upper Bound Collinearity Statistics Tolerance E VIF Unstandardized coefficients used in the prediction and interpretation standardized coefficients used for comparing the effects of independent variables Compared Sig. with alpha If Sig. <0.05 the coefficient is statistically significant from zero.

17 Step 9 Interpreting Estimated Coefficient Y = x + ( 0.027) x x + ( 0.001) x BMI calorie exercise income education Controlling for other variables constant, if a person increase 1 calorie intake per day, the BMI of the person will increase by Please explain the estimated coefficient of exercise.

18 Steps on Model Development and Model Selection First, include the theoretically important variables Second, include variables that are strongly associated with the dependent variable (to identify independent variables that are strongly associated with the dependent variable, Pearson r test could be used for interval-ratio variables with the dependent variable). Third, adjusted R 2 need to be compared to determine if the new independent variables improve the model. At the mean time, multicollinearity needs to be checked.

19 Notes on Regression Model It is VERY important to have theory before starting developing any regression model. If the theory tells you certain variables are too important to exclude from the model, you should include in the model even though their estimated coefficients are not significant. (Of course, it is more conservative way to develop regression model.)

20 BMI data For exercise, you can develop your own conceptual frameworks (theories), create different OLS models, and examine different independent variables.

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Independent t- Test (Comparing Two Means)

Independent t- Test (Comparing Two Means) The objectives of this lesson are to learn: the definition/purpose of independent t-test when to use the independent t-test the use of SPSS to complete an independent

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### Bivariate Regression Analysis. The beginning of many types of regression

Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Exploring Relationships using SPSS inferential statistics (Part II) Dwayne Devonish

Exploring Relationships using SPSS inferential statistics (Part II) Dwayne Devonish Reminder: Types of Variables Categorical Variables Based on qualitative type variables. Gender, Ethnicity, religious

### Linear Regression in SPSS

Linear Regression in SPSS Data: mangunkill.sav Goals: Examine relation between number of handguns registered (nhandgun) and number of man killed (mankill) checking Predict number of man killed using number

### Chapter 2 Probability Topics SPSS T tests

Chapter 2 Probability Topics SPSS T tests Data file used: gss.sav In the lecture about chapter 2, only the One-Sample T test has been explained. In this handout, we also give the SPSS methods to perform

### Moderator and Mediator Analysis

Moderator and Mediator Analysis Seminar General Statistics Marijtje van Duijn October 8, Overview What is moderation and mediation? What is their relation to statistical concepts? Example(s) October 8,

### SPSS BASICS. (Data used in this tutorial: General Social Survey 2000 and 2002) Ex: Mother s Education to eliminate responses 97,98, 99;

SPSS BASICS (Data used in this tutorial: General Social Survey 2000 and 2002) How to do Recoding Eliminating Response Categories Ex: Mother s Education to eliminate responses 97,98, 99; When we run a frequency

### Univariate Regression

Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is

### My Online Friends Understand Me Better The Impact of Social Networking Site Usage on Adolescent Social Ties and Mental Health

My Online Friends Understand Me Better The Impact of Social Networking Site Usage on Adolescent Social Ties and Mental Health Dr. Ke Guek Nee International Medical University (IMU) Malaysia Dr. Wong Siew

### Regression-Based Tests for Moderation

Regression-Based Tests for Moderation Brian K. Miller, Ph.D. 1 Presentation Objectives 1. Differentiate between mediation & moderation 2. Differentiate between hierarchical and stepwise regression 3. Run

### Simple Linear Regression in SPSS STAT 314

Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### Chapter 5 Analysis of variance SPSS Analysis of variance

Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means One-way ANOVA To test the null hypothesis that several population means are equal,

### Introduction. Research Problem. Larojan Chandrasegaran (1), Janaki Samuel Thevaruban (2)

Larojan Chandrasegaran (1), Janaki Samuel Thevaruban (2) Determining Factors on Applicability of the Computerized Accounting System in Financial Institutions in Sri Lanka (1) Department of Finance and

### Multiple Regression Using SPSS

Multiple Regression Using SPSS The following sections have been adapted from Field (2009) Chapter 7. These sections have been edited down considerably and I suggest (especially if you re confused) that

### Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015

Multicollinearity Richard Williams, University of Notre Dame, http://www3.nd.edu/~rwilliam/ Last revised January 13, 2015 Stata Example (See appendices for full example).. use http://www.nd.edu/~rwilliam/stats2/statafiles/multicoll.dta,

### Correlation and Regression Analysis: SPSS

Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things,

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Regression step-by-step using Microsoft Excel

Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### The Impact of Affective Human Resources Management Practices on the Financial Performance of the Saudi Banks

327 The Impact of Affective Human Resources Management Practices on the Financial Performance of the Saudi Banks Abdullah Attia AL-Zahrani King Saud University azahrani@ksu.edu.sa Ahmad Aref Almazari*

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

### Regression Analysis (Spring, 2000)

Regression Analysis (Spring, 2000) By Wonjae Purposes: a. Explaining the relationship between Y and X variables with a model (Explain a variable Y in terms of Xs) b. Estimating and testing the intensity

### Introduction to Stata

Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the mid-range of how easy it is to use. Other options include SPSS,

### False. Model 2 is not a special case of Model 1, because Model 2 includes X5, which is not part of Model 1. What she ought to do is estimate

Sociology 59 - Research Statistics I Final Exam Answer Key December 6, 00 Where appropriate, show your work - partial credit may be given. (On the other hand, don't waste a lot of time on excess verbiage.)

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Bivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2

Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS t-test X 2 X 2 AOVA (F-test) t-test AOVA

### Course Objective This course is designed to give you a basic understanding of how to run regressions in SPSS.

SPSS Regressions Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. SSRL@American.edu Course Objective This course is designed

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM

EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable

### DAFTAR PUSTAKA. Arifin Ali, 2002, Membaca Saham, Edisi I, Yogyakarta : Andi. Bapepam, 2004, Ringkasan Data Perusahaan, Jakarta : Bapepam

03 DAFTAR PUSTAKA Arifin Ali, 00, Membaca Saham, Edisi I, Yogyakarta : Andi Bapepam, 004, Ringkasan Data Perusahaan, Jakarta : Bapepam Darmadji Tjiptono dan Fakhruddin M Hendy, 006, Pasar Modal di Indonesia,

### DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

### Multiple Regression. Page 24

Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### IMPACT AND SIGNIFICANCE OF TRANSPORTATION AND SOCIO ECONOMIC FACTORS ON STUDENTS CLASS ATTENDANCE IN NIGERIA POLYTECHNICS: A

IMPACT AND SIGNIFICANCE OF TRANSPORTATION AND SOCIO ECONOMIC FACTORS ON STUDENTS CLASS ATTENDANCE IN NIGERIA POLYTECHNICS: A Study of Moshood Abiola Polytechnic 1 Mabosanyinje A. 2 Sulaimon M. O. 3 Adewunmi

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### Statistical analysis and projection of wood veneer industry in Turkey: 2007-2021

Scientific Research and Essays Vol. 6(15), pp. 3205-3216, 11 August, 2011 Available online at http://www.academicjournals.org/sre ISSN 1992-2248 2011 Academic Journals Full Length Research Paper Statistical

### Inferential Statistics

Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

### SPSS for Exploratory Data Analysis Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav)

Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav) Organize and Display One Quantitative Variable (Descriptive Statistics, Boxplot & Histogram) 1. Move the mouse pointer

### Regression, least squares

Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Predictability Study of ISIP Reading and STAAR Reading: Prediction Bands. March 2014

Predictability Study of ISIP Reading and STAAR Reading: Prediction Bands March 2014 Chalie Patarapichayatham 1, Ph.D. William Fahle 2, Ph.D. Tracey R. Roden 3, M.Ed. 1 Research Assistant Professor in the

### Statistics and research

Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,

### EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### RECRUITERS PRIORITIES IN PLACING MBA FRESHER: AN EMPIRICAL ANALYSIS

RECRUITERS PRIORITIES IN PLACING MBA FRESHER: AN EMPIRICAL ANALYSIS Miss Sangeeta Mohanty Assistant Professor, Academy of Business Administration, Angaragadia, Balasore, Orissa, India ABSTRACT Recruitment

### Running head: ASSUMPTIONS IN MULTIPLE REGRESSION 1. Assumptions in Multiple Regression: A Tutorial. Dianne L. Ballance ID#

Running head: ASSUMPTIONS IN MULTIPLE REGRESSION 1 Assumptions in Multiple Regression: A Tutorial Dianne L. Ballance ID#00939966 University of Calgary APSY 607 ASSUMPTIONS IN MULTIPLE REGRESSION 2 Assumptions

### Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

### Chapter 9. Two-Sample Tests. Effect Sizes and Power Paired t Test Calculation

Chapter 9 Two-Sample Tests Paired t Test (Correlated Groups t Test) Effect Sizes and Power Paired t Test Calculation Summary Independent t Test Chapter 9 Homework Power and Two-Sample Tests: Paired Versus

### t-tests and F-tests in regression

t-tests and F-tests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and F-tests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R

### THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

### , has mean A) 0.3. B) the smaller of 0.8 and 0.5. C) 0.15. D) which cannot be determined without knowing the sample results.

BA 275 Review Problems - Week 9 (11/20/06-11/24/06) CD Lessons: 69, 70, 16-20 Textbook: pp. 520-528, 111-124, 133-141 An SRS of size 100 is taken from a population having proportion 0.8 of successes. An

### Basic Statistics and Data Analysis for Health Researchers from Foreign Countries

Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association

### The Relationship between Life Insurance and Economic Growth: Evidence from India

Global Journal of Management and Business Studies. ISSN 2248-9878 Volume 3, Number 4 (2013), pp. 413-422 Research India Publications http://www.ripublication.com/gjmbs.htm The Relationship between Life

### The Use of Multivariate Data Analysis Techniques with Relationship Marketing

LUCIAN BLAGA UNIVERSITY OF SIBIU FACULTY OF ECONOMIC STUDIES The Use of Multivariate Data Analysis Techniques with Relationship Marketing Teaching Assistant, PhD.: Mihai Țichindelean THEORETICAL FOUNDATIONS

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### One-Way Analysis of Variance

One-Way Analysis of Variance Note: Much of the math here is tedious but straightforward. We ll skim over it in class but you should be sure to ask questions if you don t understand it. I. Overview A. We

### IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results

IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the

### SPSS-Applications (Data Analysis)

CORTEX fellows training course, University of Zurich, October 2006 Slide 1 SPSS-Applications (Data Analysis) Dr. Jürg Schwarz, juerg.schwarz@schwarzpartners.ch Program 19. October 2006: Morning Lessons

### Module 5: Introduction to Multilevel Modelling SPSS Practicals Chris Charlton 1 Centre for Multilevel Modelling

Module 5: Introduction to Multilevel Modelling SPSS Practicals Chris Charlton 1 Centre for Multilevel Modelling Pre-requisites Modules 1-4 Contents P5.1 Comparing Groups using Multilevel Modelling... 4

### August 2012 EXAMINATIONS Solution Part I

August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

### A Basic Guide to Analyzing Individual Scores Data with SPSS

A Basic Guide to Analyzing Individual Scores Data with SPSS Step 1. Clean the data file Open the Excel file with your data. You may get the following message: If you get this message, click yes. Delete

### MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM. R, analysis of variance, Student test, multivariate analysis

Journal of tourism [No. 8] MULTIPLE REGRESSION ANALYSIS OF MAIN ECONOMIC INDICATORS IN TOURISM Assistant Ph.D. Erika KULCSÁR Babeş Bolyai University of Cluj Napoca, Romania Abstract This paper analysis

### DEBT TO EQUITY RATIO, DEGREE OF OPERATING LEVERAGE STOCK BETA AND STOCK RETURNS OF FOOD AND BEVERAGES COMPANIES ON THE INDONESIAN STOCK EXCHANGE

DEBT TO EQUITY RATIO, DEGREE OF OPERATING LEVERAGE STOCK BETA AND STOCK RETURNS OF FOOD AND BEVERAGES COMPANIES ON THE INDONESIAN STOCK EXCHANGE Lusia Astra Sari 1 PT Indonesia Comnets Plus Yanthi Hutagaol

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### 11. Analysis of Case-control Studies Logistic Regression

Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:

### Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

### THE RELATIONSHIP BETWEEN WORKING CAPITAL MANAGEMENT AND DIVIDEND PAYOUT RATIO OF FIRMS LISTED IN NAIROBI SECURITIES EXCHANGE

International Journal of Economics, Commerce and Management United Kingdom Vol. III, Issue 11, November 2015 http://ijecm.co.uk/ ISSN 2348 0386 THE RELATIONSHIP BETWEEN WORKING CAPITAL MANAGEMENT AND DIVIDEND

### MULTIPLE REGRESSION WITH CATEGORICAL DATA

DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### Effect of the learning support and the use of project management tools on project success: The case of Pakistan

Effect of the learning support and the use of project management tools on project success: The case of Pakistan Muhammad Javed 1 Atiq ur Rehman 2* M. Shahzad N.K. Lodhi 3 1. Student MSPM, SZABIST, Islamabad

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### THE USE OF REGRESSION ANALYSIS IN MARKETING RESEARCH

THE USE OF REGRESSION ANALYSIS IN MARKETING RESEARCH DUMITRESCU Luigi Lucian Blaga University of Sibiu, Romania STANCIU Oana Lucian Blaga University of Sibiu, Romania TICHINDELEAN Mihai Lucian Blaga University

### www.kellogg.northwestern.edu/kis/tek/ongoing/spss.htm

First version: October 11, 2004 Last revision: January 14, 2005 KELLOGG RESEARCH COMPUTING Introduction to SPSS SPSS is a statistical package commonly used in the social sciences, particularly in marketing,

### Statistics. Measurement. Scales of Measurement 7/18/2012

Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does

### SPSS Guide How-to, Tips, Tricks & Statistical Techniques

SPSS Guide How-to, Tips, Tricks & Statistical Techniques Support for the course Research Methodology for IB Also useful for your BSc or MSc thesis March 2014 Dr. Marijke Leliveld Jacob Wiebenga, MSc CONTENT

### Module 3 - Multiple Linear Regressions

Module 3 - Multiple Linear Regressions Objectives Understand the strength of Multiple linear regression (MLR) in untangling cause and effect relationships Understand how MLR can answer substantive questions

### Ordinal Regression. Chapter

Ordinal Regression Chapter 4 Many variables of interest are ordinal. That is, you can rank the values, but the real distance between categories is unknown. Diseases are graded on scales from least severe

### RELATIONSHIP BETWEEN EXAMINATION ANXIETY AND STUDENTS ACADEMIC PERFORMANCE IN A PSYCHOLOGY COURSE

RELATIONSHIP BETWEEN EXAMINATION ANXIETY AND STUDENTS ACADEMIC PERFORMANCE IN A PSYCHOLOGY COURSE Dr. Grace N. Okorodudu and Dr. Moses C. Ossai Abstract The relationship between examination anxiety and

### ijcrb.webs.com INTERDISCIPLINARY JOURNAL OF CONTEMPORARY RESEARCH IN BUSINESS OCTOBER 2013 VOL 5, NO 6 Abstract 1. Introduction:

Impact of Management Information Systems to Improve Performance in Municipalities in North of Jordan Fawzi Hasan Altaany Management Information Systems Department, Faculty of Administrative Sciences, Irbid