# An Introduction to Path Analysis. nach 3

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 An Introduction to Path Analysis Developed by Sewall Wright, path analysis is a method employed to determine whether or not a multivariate set of nonexperimental data fits well with a particular (a priori) causal model. Elazar J. Pedhazur (Multiple Regression in Behavioral Research, nd edition, Holt, Rinehard and Winston, 98) has a nice introductory chapter on path analysis which is recommended reading for anyone who intends to use path analysis. This lecture draws heavily upon the material in Pedhazur's book. Consider the path diagram presented in Figure. Figure SES p 4 =.009 p 3 =.398 r =.3 nach 3 p 43 =.46 GPA 4 p 3 =.04 E 3 IQ p 4 =.50 E 4 Each oval represents a variable. We have data on each variable for each subject. In this diagram SES and IQ are considered to be exogenous variables -- their variance is assumed to be caused entirely by variables not in the causal model. The connecting line with arrows at both ends indicates that the correlation between these two variables will remain unanalyzed because we choose not to identify one variable as a cause of the other variable. Any correlation between these variables may actually be casual ( causing and/or causing ) and/or may be due to and sharing common causes. For example, having a certain set of genes may cause one to have the Copyright 05, Karl L. Wuensch - All rights reserved. Path.docx

2 Page physical appearance that is necessary to obtain high SES in a particular culture and may independently also cause one to have a high IQ, creating a spurious correlation between and that is totally due to their sharing a common cause, with no causal relationship between and. Alternatively, some genes may cause only the physical appearance necessary to obtain high SES and high SES may cause high IQ (more money allows you to eat well, be healthy, afford good schools, etc., which raises your IQ). Alternatively, the genes may cause only elevated IQ, and high IQ causes one to socially advance to high SES. In this model we have chosen not to decide among these alternatives. GPA and nach are endogenous variables in this model -- their variance is considered to be explained in part by other variables in the model. Paths drawn to endogenous variables are directional (arrowhead on one end only). Variance in GPA is theorized to result from variance in SES, IQ, nach, and extraneous (not in the model) sources. The influence of these extraneous variables is indicated by the arrow from E Y. Variance in nach is theorized to be caused by variance in SES, IQ, and extraneous sources. Please note that the path to an endogenous variable must be unidirectional in path analysis. Were we to decide that not only does high SES cause high nach but that also high nach causes high SES, we could not use path analysis. For each path to an endogenous variable we shall compute a path coefficient, p ij, where "i" indicates the effect and "j" the cause. If we square a path coefficient we get the proportion of the affected variable's variance that is caused by the causal variable. The coefficient may be positive (increasing the causal variable causes increases in the dependent variable if all other causal variables are held constant) or negative (increasing causal variable decreases dependent variable). A path analysis can be conducted as a hierarchical (sequential) multiple regression analysis. For each endogenous variable we shall conduct a multiple regression analysis predicting that variable (Y) from all other variables which are hypothesized to have direct effects on Y. We do not include in this multiple regression any variables which are hypothesized to affect Y only indirectly (through one or more intervening variables). The beta weights from these multiple regressions are the path coefficients shown in the typical figures that are used to display the results of a path analysis. Consider these data from Pedhazur: IQ nach GPA SES IQ nach.500

3 Page 3 For our analysis, let us make one change in Figure : Make IQ an endogenous variable, with SES a cause of variance in IQ (make unidirectional arrow from SES to IQ). Our revised model is illustrated in Figure A, to which I have added the path coefficients computed below. Figure A SES nach 3.46 GPA E IQ E 4 E.954 Obtain and run Path-.sas from my SAS Programs page. Here is the code that produced the coefficients for the model in the figure above: PROC REG; Figure GPA: MODEL GPA = SES IQ NACH; Figure nach: MODEL NACH = SES IQ; Variable DF Parameter Estimate Parameter Estimates for Predicting GPA Standard Error t Value Pr > t SES IQ <.000 NACH

4 Page 4 Our diagram indicates that GPA is directly affected by SES, IQ, and nach. We regress GPA on these three causal variables and obtain R 4.3 =.49647, 4.3 = p 4 =.009, 4.3 = p 4 =.50, and 43. = p 43 =.46. R-Square The path coefficient from extraneous variables is R We see that GPA is directly affected by IQ, nach, and extraneous variables much more than by SES, but we must not forget that SES also has indirect effects (through IQ & nach) upon GPA. We shall separate direct from indirect effects later. Variable DF Parameter Estimate Parameter Estimates for Predicting nach Standard Error t Value Pr > t SES IQ Achievement motivation is affected by both SES and IQ in our model, and these causes are correlated with one another. We regress nach on these two causal variables and obtain R 3. =.696, 3. = p 3 =.398, and 3. = p 3 =.04. R-Square The path coefficient from E 3 to nach is R We see that nach is more strongly caused by SES than by IQ, and that extraneous variables exert great influence. Now consider the path to IQ from SES. Since there is only one predictor variable in this model, the path coefficient is the simple (zero-order) r between IQ and SES, which is.300. This would also be the case if the Y variable were theorized to be affected by two independent causes (see Figure, in which our model theorizes that the correlation between and equals 0). The path coefficient from extraneous variables to IQ is the residual of the SES-IQ correlation, r

5 Page 5 Figure r = 0 p 3 p 3 = r 3 3 p 3 = r 3 p 3 Note that the program contains the correlation matrix from Pedhazur. I decided to use an N of 50, but did not enter means and standard deviations for the variables, so the parameter estimates that SAS produces are standardized (the slope is a beta). Decomposing Correlations The correlation between two variables may be decomposed into four components:. the direct effect of X on Y,. the indirect effect of X (through an intervening variable) on Y, 3. an unanalyzed component due to our not knowing the direction of causation for a path, and 4. a spurious component due to X and Y each being caused by some third variable or set of variables in the model. Consider first the correlations among the variables in Figure. The correlation between SES and IQ, r, will be unanalyzed because of the bi-directional path between the two variables.

6 Page 6 The correlation between SES and nach, r 3 =.40 is decomposed into: p 3, a direct effect, SES to nach, which we already computed to be.398, and p 3 r, an unanalyzed component, SES to IQ to nach, whose size =.04(.3) = SES could indirectly affect nach if SES causes changes in IQ which in turn cause changes in nach, but we do not know the nature of the causal relationship between SES and IQ, so this component must remain unanalyzed. When we sum these two components, , we get the value of the original correlation,.40. The correlation between IQ and nach, r 3 =.6, is decomposed into: p 3, the direct effect, =.04 and p 3 r, an unanalyzed component, IQ to SES to nach, =.398(.3) =.9. Summing.04 and.9 gives the original correlation,.6. The SES - GPA correlation, r 4 =.33 is decomposed into: p 4, the direct effect, =.009. p 43 p 3, the indirect effect of SES through nach to GPA, =.46(.398) =.66. p 4 r, SES to IQ to GPA, is unanalyzed, =.50(.3) =.50. p 43 p 3 r, SES to IQ to nach to GPA, is unanalyzed, =.46(.04)(.3) =.005. When we sum.009,.66,,50, and.55, we get the original correlation,.33. The total effect (or effect coefficient) of X on Y equals the sum of X's direct and indirect effects on Y -- that is, =.75. The IQ - GPA correlation, r 4, =.57 is decomposed into: p 4, a direct effect, =.50. p 43 p 3, an indirect effect through nach to GPA, =.46(.04) =.07. p 4 r, unanalyzed, IQ to SES to GPA,.009(.3) =.003 p 43 p 3 r, unanalyzed, IQ to SES to nach to GPA, =.46(.398)(.3) =.050. The original correlation = =.57. The nach - GPA correlation, r 34 =.50, is decomposed into: p 43, the direct effect, =.46 and a spurious component due to nach and GPA sharing common causes SES and IQ o p 4 p 3, nach to SES to GPA, = (.009)(.398). o p 4 r p 3, nach to IQ to SES to GPA, = (.009)(.3)(.04). o p 4 p 3, nach to IQ to GPA, = (.50)(.04).

7 Page 7 o p 4 r p 3, nach to SES to IQ to GPA, = (.50)(.3)(.398). o These spurious components sum to.084. Note that in this decomposition elements involving r were classified spurious rather than unanalyzed because variables and are common (even though correlated) causes of variables 3 and 4. Here is a summary of the decomposition of correlations from Figure : r = unanalyzed r 3 = p 3 + p 3 r r 3 = p 3 + p 3 r DE U DE U r 4 = p 4 + p 43 p 3 + (p 43 p 3 r + p 4 r ) r 4 = p 4 + p 43 p 3 + (p 4 r + p 43 p 3 r ) DE IE U DE IE U r 34 = p 43 + (p 4 p 3 + p 4 r p 3 + p 4 p 3 + p 4 r p 3 ) DE S Are you sufficiently confused yet? I get confused doing these decompositions too. Here is a relatively simple set of instructions to help you decide whether a path is direct, indirect, spurious, or unanalyzed: Put your finger on the affected variable and trace back to the causal variable. Now, If you cross only one arrowhead, head first, you have a direct effect. If you cross two or more arrowheads, each head first, you have an indirect effect. If you cross a path that has arrowheads on both ends, the effect is unanalyzed (or possibly spurious) Only cross a path not head first when you are evaluating a spurious effect -- that is, where a pair of variables is affected by a common third variable or set of variables. For example, some of the correlation between X and Y below is due to the common cause Z. Z X An effect that includes a bidirectional path can be considered spurious rather than unanalyzed if both of the variables in the bidirectional path are causes of both of the variables in the correlation being decomposed, as illustrated below: Y Z Z X Y

8 Page 8 Next, consider Figure A, with SES a cause of variance in IQ. The r is now p, the direct effect of SES on IQ. The correlation between SES and nach, r 3 =.40 is decomposed into: p 3, a direct effect, SES to nach,.398, and p 3 p, an indirect effect, SES to IQ to nach, whose size =.04(.3) = Note that this indirect effect was an unanalyzed component of r 3 in the previous model. The total effect (or effect coefficient) of X on Y equals the sum of X's direct and indirect effects on Y. For SES to nach, the effect coefficient = =.40 = r 3. Note that making SES a cause of IQ in our model only slightly increased the effect coefficient for SES on IQ (by.0). The correlation between IQ and nach, r 3 =.6, is decomposed into: p 3, the direct effect, =.04 and p 3 p, a spurious component, IQ to SES to nach, =.398(.3) =.9. Both nach and IQ are caused by SES, so part of the r 3 must be spurious, due to that shared common cause rather than to any effect of IQ upon nach. This component was unanalyzed in the previous model. The SES - GPA correlation, r 4 =.33 is decomposed into: p 4, the direct effect, =.009. p 43 p 3, the indirect effect of SES through nach to GPA, =.46(.398) =.66. p 4 p, the indirect effect of SES to IQ to GPA,.50(.3) =.50. p 43 p 3 p, the indirect effect of SES to IQ to nach to GPA, =.46(.04)(.3) =.005. The indirect effects of SES on GPA total to.3. The total effect of SES on GPA = =.330 = r 4. Note that the indirect and total effects of SES upon GPA are greater in this model than in the previous model. Considering SES a cause of variance in IQ moved what otherwise would be SES' unanalyzed effects into its indirect effects. The IQ - GPA correlation, r 4, =.57 is decomposed into: p 4, a direct effect, =.50. p 43 p 3, an indirect effect through nach to GPA, =.46(.04) =.07. p 4 p, spurious, IQ to SES to GPA,.009(.3) =.003 (IQ and GPA share the common cause SES).

9 Page 9 p 43 p 3 p, spurious, IQ to SES to nach to GPA,.46(.398)(.3) =.050 (the common cause also affects GPA through nach). The total effect of IQ on GPA = DE + IE = =.58 = r 4 less the spurious component. The nach - GPA correlation, r 34 =.50, is decomposed in exactly the same way it was in the earlier model. Here is a summary of the decompositions for the correlations in Figure A: r = p r 3 = p 3 + p 3 p r 3 = p 3 + p 3 p DE IE DE S r 4 = p 4 + (p 43 p 3 + p 43 p 3 p + p 4 p ) r 4 = p 4 + p 43 p 3 + (p 4 p + p 43 p 3 p ) DE IE DE IE S r 34 = p 43 + (p 4 p 3 + p 4 p p 3 + p 4 p 3 + p 4 p p 3 ) DE S Overidentified Models Consider a simple three variable model where r = r 3 =.50 and r 3 =.5. In Figure 3A and Figure 3B are two different "just-identified" models of the causal relationships among these three variables. In a just-identified model there is a direct path (not through an intervening variable) from each variable to each other variable. Note that the decomposed correlations for both models can be used to "reproduce" the original correlations perfectly, even though the two models present quite different pictures of the casual relationships among the variables.

10 Page 0 Figure 3A Model A: r = r 3 =.50 and r 3 =.5.00 p 3 p.50 3 p 3.50 E E Model B: r = r 3 =.50 and r 3 =.5 Figure 3B.968 E.5 p 3 p.40 3 p E

11 Page Model A Model B r =.50 p =.50 p + p 3 p DE DE + spurious component r 3 =.5 p 3 + p 3 p 3 p DE + IE DE r 3 =.50 p 3 + p 3 p p 3 + p p DE + spurious DE + IE In Figure 4A and Figure 4B are two "overidentified" models, models in which at least one pair of variables are not connected to each other by direct paths. In Model A it is hypothesized that causes, causes 3, and there is no direct effect of on 3. In B it is hypothesized that causes both and 3 with no nonspurious effect between and 3. Both models attempt to explain the r 3 in the absence of any direct effect of on 3. Model A: r = r 3 =.50 and r 3 =.5 Figure 4A p E.866 p 3 3 E 3.50

12 Page Model B: r = r 3 =.50 and r 3 =.5 Figure 4B.866 E p p 3 E In Model A, r 3 = p 3 p =.5(.5) =.5 = IE of through on 3. In Model B, r 3 = p 3 p =.5(.5) =.5 = spurious correlation between and 3 due to their sharing as a common cause. One may attempt to determine how well an overidentified path model fits the data by checking how well the original correlation matrix can be reproduced using the path coefficients. Any just-identified model will reproduce the correlation matrix perfectly. However, two radically different overidentified models may reproduce the correlation matrix equally well. For our overidentified models A and B, r 3 = p 3 p in A =.5 = p 3 p in B. That is, A and B fit the data equally well (perfectly). Being able to reproduce the correlation matrix should lend support to your model in the sense that you have attempted to refute it but could not, but it does not in any way "prove" your model to be correct -- other models may pass the test just as well or even better! Consider another overidentified model, based on the same data used for all models in Figures 3 and 4. As shown in Figure 5, this model supposes that 3 affects directly and only indirectly. That is, r 3 is due only to an indirect effect of 3 on. The r 3 here decomposes to p p 3 = (.50)(.5) =.5, the IE of 3 through on -- but the original r 3 =.50. This model does such a lousy job of reproducing r 3 that we conclude that it is not supported by the data.

13 Page 3 r = r 3 =.50 and r 3 =.5 Figure 5 E p p.50 E.866 Let us now consider an overidentified model based on Figure. As shown in Figure 6, we hypothesize no direct effects of SES on GPA or of IQ on nach, and we choose not to directionalize the SES - IQ relationship. Since nach is now caused only by SES and E 3, p 3 = r 3. Since GPA is now directly affected only by nach and IQ (and E 4 ), we regress GPA on nach and IQ and obtain = p 4 =.503 and = p 43 =.40 Path-.sas includes computation of the path coefficients for the model in Figure 6: Figure_6: MODEL GPA = IQ NACH; Figure 6 SES E 3 p nach 3 p 43 r.3.40 GPA 4 p 4.70 IQ.503 E 4

14 Page 4 Now, to see how well this overidentified model fits the data, we reproduce the original correlations (rr = reproduced correlation coefficient, r = original coefficient) rr = r =.3 rr 3 = p 3 =.4 = r 3 U DE rr 4 = p 43 p 3 + p 4 r = =.33 r 4 =.330 IE U rr 3 = p 3 r =.3 r 3 =.60 U rr 4 = p 4 + p 43 p 3 r = =.555 r 4 =.570 DE U rr 34 = p 43 + p 4 r p 3 = =.48 r 34 =.500 DE S Note that there are relatively small discrepancies between the reproduced correlations and the original correlations, indicating that the model fits the data well. See output from PROC CALIS showing analysis of the saturated model and the overidentified model. Path analysis models are frequently much more complex than those we have covered so far. Such a complex model is presented in Figure 7. The X s are Fathers education, Fathers occupation, and number of siblings. The Y s are subjects education, occupation, and income. Subjects were "non-negro men, age group." Path coefficients to Y were obtained by regressing Y on X, X, and X 3 ; to Y by regressing Y on Y, X, X, and X 3 ; and to Y 3 by regressing Y 3 on Y, Y, X, X, and X 3. Run Path-.sas to see the computation of the path coefficients for the models in Figures, 6, and 7.

15 Page 5 Trimming Models Starting with a just-identified model, one may want to do some "theory trimming" -- that is, evaluate whether or not dropping one or more of the paths would substantially reduce the fit between the model and the data. For example, consider the model in Figure 7. We regressed Y on X, X, and X 3 to obtain the path coefficients

16 Page 6 (Beta weights) to Y. If we wished to use statistical significance as our criterion for retaining a coefficient, we could delete any path for which our multiple regression analysis indicated the Beta was not significantly different from zero. One problem with this approach is that with large sample sizes even trivially small coefficients will be "statistically significant" and thus retained. One may want to include a "meaningfulness" criterion and/or a minimum absolute value of Beta for retention. For example, if <.05, delete the path; if.05 < <.0 and the path "doesn't make (theoretical) sense," delete it. In Figure 7 all paths to Education are large enough to pass such a test. Consider Occupation regressed on Education, Dad s Education, Dad s Occupation, and Sibs. The Beta for Dad s Education is clearly small enough to delete. We might also decide to delete the path from Sibs if it does not seem sensible to us that one's occupation be directly affected by the number of sibs one has. Of course, deleting one predictor will change the Beta weights of remaining predictors, so one may want to delete one variable at a time, evaluating all remaining predictors at each step. If you are eliminating two or more predictors at one stage (for example, Dad s Education and Sibs to Occupation) and wish to test whether simultaneously eliminating them significantly affects the model at that stage, use a partial F test. For Income regressed on all other variables, it appears that the direct paths from Dad s Education, Dad s Occupation, and Sibs could all be eliminated. Notice, however, that we have evaluated this model in three separate stages. It is possible that eliminating one path might not have a significant effect on the model at that stage, but nonetheless might have a significant effect on the entire model. Later I shall show you how to test the entire model. Perhaps the most serious criticism of the sort of theory trimming described above is that it is applied a posteriori. Some argue that the data should not be allowed to tell one which hypotheses to test and which not to test. One should always feel more comfortable with a priori trimming, that is, trimming that is supported on theoretical grounds. To some extent, that is the function of the "meaningfulness" criterion I mentioned earlier. We might have a priori suspicions that a particular path is not important, but include it in our just identified model anyhow, later trimming it away if the data results in it receiving the low Beta we expected. Evaluating Trimmed Models Once one has trimmed away some paths (a priori or a posteriori) from a just identified model, e is left with an overidentified model. Specht (On the evaluation of causal models, Social Science Research, 975, 4, 3-33) developed a goodness of fit statistic (Q) to measure how well a trimmed model fits the data (the reproduced correlation coefficients differ little from the observed correlation coefficients) and a test statistic (W) to test the null hypothesis that the trimmed model fits the data as well as does the just-identified model. If our trimmed model is not significantly different from the just-identified model, then we feel more comfortable with it. The flaw in this is that even a poorly fitting model will not differ significantly from the just-identified model if sample size (and thus power) is low, and a good fitting model will differ significantly from the just-identified model if sample size (and power) is large. Specht s Q seems to have

17 Page 7 been replaced by more modern goodness of fit statistics. I have not seen it in modern statistical packages. If you would like to learn a bit about Specht s Q and W, see my document Specht s Goodness of Fit Estimate and Test for Path Analyses. See for a summary of some commonly used modern goodness of fit indices. PROC CALIS These days path analyses are typically conducted using software that makes it a lot easier to do the analysis than what I have shown above using Proc Reg. In SAS, Proc Calis can be used to conduct the complete analysis, including computation of the effect coefficients, which were one tediously computed by matrix algebra. Return to Wuensch s Stats Lessons Page This document may be cited in this fashion: Wuensch, K. L. (0). An introduction to path analysis. Retrieved from on <provide date here>. Copyright 05, Karl L. Wuensch - All rights reserved.

### psyc3010 lecture 8 standard and hierarchical multiple regression last week: correlation and regression Next week: moderated regression

psyc3010 lecture 8 standard and hierarchical multiple regression last week: correlation and regression Next week: moderated regression 1 last week this week last week we revised correlation & regression

### SPSS Guide: Regression Analysis

SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar

### Chapter 6 Partial Correlation

Chapter 6 Partial Correlation Chapter Overview Partial correlation is a statistical technique for computing the Pearson correlation between a predictor and a criterion variable while controlling for (removing)

### This chapter will demonstrate how to perform multiple linear regression with IBM SPSS

CHAPTER 7B Multiple Regression: Statistical Methods Using IBM SPSS This chapter will demonstrate how to perform multiple linear regression with IBM SPSS first using the standard method and then using the

### Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

### Applications of Structural Equation Modeling in Social Sciences Research

American International Journal of Contemporary Research Vol. 4 No. 1; January 2014 Applications of Structural Equation Modeling in Social Sciences Research Jackson de Carvalho, PhD Assistant Professor

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

### PASS Sample Size Software. Linear Regression

Chapter 855 Introduction Linear regression is a commonly used procedure in statistical analysis. One of the main objectives in linear regression analysis is to test hypotheses about the slope (sometimes

### E205 Final: Version B

Name: Class: Date: E205 Final: Version B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The owner of a local nightclub has recently surveyed a random

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Chapter 14: Analyzing Relationships Between Variables

Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between

### 11/20/2014. Correlational research is used to describe the relationship between two or more naturally occurring variables.

Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection

### Example: Boats and Manatees

Figure 9-6 Example: Boats and Manatees Slide 1 Given the sample data in Table 9-1, find the value of the linear correlation coefficient r, then refer to Table A-6 to determine whether there is a significant

### Introduction to Regression. Dr. Tom Pierce Radford University

Introduction to Regression Dr. Tom Pierce Radford University In the chapter on correlational techniques we focused on the Pearson R as a tool for learning about the relationship between two variables.

### The scatterplot indicates a positive linear relationship between waist size and body fat percentage:

STAT E-150 Statistical Methods Multiple Regression Three percent of a man's body is essential fat, which is necessary for a healthy body. However, too much body fat can be dangerous. For men between the

### Using SPSS for Multiple Regression. UDP 520 Lab 7 Lin Lin December 4 th, 2007

Using SPSS for Multiple Regression UDP 520 Lab 7 Lin Lin December 4 th, 2007 Step 1 Define Research Question What factors are associated with BMI? Predict BMI. Step 2 Conceptualizing Problem (Theory) Individual

### 12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand when to use multiple Understand the multiple equation and what the coefficients represent Understand different methods

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Moderation. Moderation

Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

Writing about SEM/Best Practices Presenting results Best Practices» specification» data» analysis» interpretation 1 Writing about SEM Summary of recommendation from Hoyle & Panter, McDonald & Ho, Kline»

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### LEARNING OBJECTIVES SCALES OF MEASUREMENT: A REVIEW SCALES OF MEASUREMENT: A REVIEW DESCRIBING RESULTS DESCRIBING RESULTS 8/14/2016

UNDERSTANDING RESEARCH RESULTS: DESCRIPTION AND CORRELATION LEARNING OBJECTIVES Contrast three ways of describing results: Comparing group percentages Correlating scores Comparing group means Describe

### The aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree

PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and

### CUNNINGHAM, Everarda G and WANG, Wei C Swinburne University of Technology Australia

USING AMOS GRAPHICS TO ENHANCE THE UNDERSTANDING AND COMMUNICATION OF MULTIPLE REGRESSION CUNNINGHAM, Everarda G and WANG, Wei C Swinburne University of Technology Australia Support for the saying a picture

### Perform hypothesis testing

Multivariate hypothesis tests for fixed effects Testing homogeneity of level-1 variances In the following sections, we use the model displayed in the figure below to illustrate the hypothesis tests. Partial

### Path Diagrams. James H. Steiger

Path Diagrams James H. Steiger Path Diagrams play a fundamental role in structural modeling. In this handout, we discuss aspects of path diagrams that will be useful to you in describing and reading about

### Simple Linear Regression Chapter 11

Simple Linear Regression Chapter 11 Rationale Frequently decision-making situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related

### Correlational Research

Correlational Research Chapter Fifteen Correlational Research Chapter Fifteen Bring folder of readings The Nature of Correlational Research Correlational Research is also known as Associational Research.

### Class 6: Chapter 12. Key Ideas. Explanatory Design. Correlational Designs

Class 6: Chapter 12 Correlational Designs l 1 Key Ideas Explanatory and predictor designs Characteristics of correlational research Scatterplots and calculating associations Steps in conducting a correlational

### AN EXPLANATION AND MODELING OF TEACHERS SALARY

Volume 4, Number 1, 2011 AN EXPLANATION AND MODELING OF TEACHERS SALARY BASED ON PERSONAL VARIABLES IN EDUCATION ORGANIZATION OF ZANDJAN PROVINCE Hassan Darvish, Hadi Ahmadnia Abstract. The main purpose

Using Your TI-NSpire Calculator: Linear Correlation and Regression Dr. Laura Schultz Statistics I This handout describes how to use your calculator for various linear correlation and regression applications.

### MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### Overview of Factor Analysis

Overview of Factor Analysis Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone: (205) 348-4431 Fax: (205) 348-8648 August 1,

### Moderator and Mediator Analysis

Moderator and Mediator Analysis Seminar General Statistics Marijtje van Duijn October 8, Overview What is moderation and mediation? What is their relation to statistical concepts? Example(s) October 8,

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### Linear Models in STATA and ANOVA

Session 4 Linear Models in STATA and ANOVA Page Strengths of Linear Relationships 4-2 A Note on Non-Linear Relationships 4-4 Multiple Linear Regression 4-5 Removal of Variables 4-8 Independent Samples

### August 2012 EXAMINATIONS Solution Part I

August 01 EXAMINATIONS Solution Part I (1) In a random sample of 600 eligible voters, the probability that less than 38% will be in favour of this policy is closest to (B) () In a large random sample,

### 6 Variables: PD MF MA K IAH SBS

options pageno=min nodate formdlim='-'; title 'Canonical Correlation, Journal of Interpersonal Violence, 10: 354-366.'; data SunitaPatel; infile 'C:\Users\Vati\Documents\StatData\Sunita.dat'; input Group

### INTRODUCTION TO MULTIPLE CORRELATION

CHAPTER 13 INTRODUCTION TO MULTIPLE CORRELATION Chapter 12 introduced you to the concept of partialling and how partialling could assist you in better interpreting the relationship between two primary

### Final Exam Practice Problem Answers

Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal

### Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares

Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation

### Presentation Outline. Structural Equation Modeling (SEM) for Dummies. What Is Structural Equation Modeling?

Structural Equation Modeling (SEM) for Dummies Joseph J. Sudano, Jr., PhD Center for Health Care Research and Policy Case Western Reserve University at The MetroHealth System Presentation Outline Conceptual

### University of Oklahoma

A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to Practical Assessment, Research & Evaluation. Permission is granted to distribute

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Regression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### Correlation and Regression Analysis: SPSS

Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things,

### where b is the slope of the line and a is the intercept i.e. where the line cuts the y axis.

Least Squares Introduction We have mentioned that one should not always conclude that because two variables are correlated that one variable is causing the other to behave a certain way. However, sometimes

### Categorical Variables in Regression: Implementation and Interpretation By Dr. Jon Starkweather, Research and Statistical Support consultant

Interpretation and Implementation 1 Categorical Variables in Regression: Implementation and Interpretation By Dr. Jon Starkweather, Research and Statistical Support consultant Use of categorical variables

### Multiple Regression. Page 24

Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)

### 17.0 Linear Regression

17.0 Linear Regression 1 Answer Questions Lines Correlation Regression 17.1 Lines The algebraic equation for a line is Y = β 0 + β 1 X 2 The use of coordinate axes to show functional relationships was

### Lecture 16. Endogeneity & Instrumental Variable Estimation (continued)

Lecture 16. Endogeneity & Instrumental Variable Estimation (continued) Seen how endogeneity, Cov(x,u) 0, can be caused by Omitting (relevant) variables from the model Measurement Error in a right hand

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### AP Statistics 2011 Scoring Guidelines

AP Statistics 2011 Scoring Guidelines The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in

### Chapter Four. Data Analyses and Presentation of the Findings

Chapter Four Data Analyses and Presentation of the Findings The fourth chapter represents the focal point of the research report. Previous chapters of the report have laid the groundwork for the project.

### Example of Testing Research Hypotheses by Comparing Multiple Regression Models

Example of Testing Research Hypotheses by Comparing Multiple Regression Models Three educational researcher disagreed about the best way to anticipate college performance. The first hypothesized that three

### Regression in ANOVA. James H. Steiger. Department of Psychology and Human Development Vanderbilt University

Regression in ANOVA James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 30 Regression in ANOVA 1 Introduction 2 Basic Linear

### Structural Equation Modelling (SEM)

(SEM) Aims and Objectives By the end of this seminar you should: Have a working knowledge of the principles behind causality. Understand the basic steps to building a Model of the phenomenon of interest.

### Simple linear regression

Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

### Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1. 1. Introduction p. 2. 2. Statistical Methods Used p. 5. 3. 10 and under Males p.

Sydney Roberts Predicting Age Group Swimmers 50 Freestyle Time 1 Table of Contents 1. Introduction p. 2 2. Statistical Methods Used p. 5 3. 10 and under Males p. 8 4. 11 and up Males p. 10 5. 10 and under

### , then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (

Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we

### Module 5: Multiple Regression Analysis

Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College

### 5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

### This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.

One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

### Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Janette Walde janette.walde@uibk.ac.at Department of Statistics University of Innsbruck Outline I Introduction Idea of PCA Principle of the Method Decomposing an Association

### Multiple Linear Regression

Multiple Linear Regression Simple Linear Regression Regression equation for a line (population): y = β 0 + β 1 x + β 0 : point where the line intercepts y-axis β 1 : slope of the line : error in estimating

### A. Karpinski

Chapter 3 Multiple Linear Regression Page 1. Overview of multiple regression 3-2 2. Considering relationships among variables 3-3 3. Extending the simple regression model to multiple predictors 3-4 4.

Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models

Using Your TI-83/84 Calculator: Linear Correlation and Regression Elementary Statistics Dr. Laura Schultz This handout describes how to use your calculator for various linear correlation and regression

### Statistics II Final Exam - January Use the University stationery to give your answers to the following questions.

Statistics II Final Exam - January 2012 Use the University stationery to give your answers to the following questions. Do not forget to write down your name and class group in each page. Indicate clearly

### Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.

### Regression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology

Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of

### Multiple Linear Regression

Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is

### Regression, least squares

Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### SELF-TEST: SIMPLE REGRESSION

ECO 22000 McRAE SELF-TEST: SIMPLE REGRESSION Note: Those questions indicated with an (N) are unlikely to appear in this form on an in-class examination, but you should be able to describe the procedures

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario

Statistics 112 Regression Cheatsheet Section 1B - Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything

### EPS 625 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM

EPS 6 ANALYSIS OF COVARIANCE (ANCOVA) EXAMPLE USING THE GENERAL LINEAR MODEL PROGRAM ANCOVA One Continuous Dependent Variable (DVD Rating) Interest Rating in DVD One Categorical/Discrete Independent Variable

### Indices of Model Fit STRUCTURAL EQUATION MODELING 2013

Indices of Model Fit STRUCTURAL EQUATION MODELING 2013 Indices of Model Fit A recommended minimal set of fit indices that should be reported and interpreted when reporting the results of SEM analyses:

### Doing Quantitative Research 26E02900, 6 ECTS Lecture 2: Measurement Scales. Olli-Pekka Kauppila Rilana Riikkinen

Doing Quantitative Research 26E02900, 6 ECTS Lecture 2: Measurement Scales Olli-Pekka Kauppila Rilana Riikkinen Learning Objectives 1. Develop the ability to assess a quality of measurement instruments

### Study Guide Jordan Pennefather Psych Fall 2003 Mastery Exam Study Guide Jordan Pennefather Choosing the Correct Test

Mastery Exam Study Guide Jordan Pennefather Choosing the Correct Test One Group T-test: One group score and an Existing Score (i.e. National Average) Paired T-test: A) Comparing a single group s scores

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### DEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests

DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also

### Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares

Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit

### Independent samples t-test. Dr. Tom Pierce Radford University

Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of

Lecture 11: Outliers and Influential data Regression III: Advanced Methods William G. Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Outlying Observations: Why pay attention?

### A correlation exists between two variables when one of them is related to the other in some way.

Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether

### ANOVA - Analysis of Variance

ANOVA - Analysis of Variance ANOVA - Analysis of Variance Extends independent-samples t test Compares the means of groups of independent observations Don t be fooled by the name. ANOVA does not compare

### Section Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini

NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building

### CORRELATION AND SIMPLE REGRESSION ANALYSIS USING SAS IN DAIRY SCIENCE

CORRELATION AND SIMPLE REGRESSION ANALYSIS USING SAS IN DAIRY SCIENCE A. K. Gupta, Vipul Sharma and M. Manoj NDRI, Karnal-132001 When analyzing farm records, simple descriptive statistics can reveal a

### Comparing Regression Lines From Independent Samples

Comparing Regression Lines From Independent Samples The analysis discussed in this document is appropriate when one wishes to determine whether the linear relationship between one continuously distributed

### Tutorial Case study. We use the CARS_ACCELERATION.XLS dataset: ACCELERATION is the endogenous attribute (acceleration time from 0 to x mph).

Subject Computing the correlation coefficient between two or more variables. Computing a statistical indicator and sorting the results according to this indicator is a recurring task of the data miner.