Basics on Digital Signal Processing

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Basics on Digital Signal Processing"

Transcription

1 Basics on Digital Signal Processing Introduction Vassilis Anastassopoulos Electronics Laboratory, Physics Department, University of Patras

2 Outline of the Course 1. Introduction (sampling quantization) 2. Signals and Systems 3. Z-Transform 4. The Discreet and the Fast Fourier Transform 5. Linear Filter Design 6. Noise 7. Median Filters 2/36

3 Voltage [V] Voltage [V] Analog & digital signals Analog Continuous function V of continuous variable t (time, space etc) : V(t). Sampled Signal Digital Discrete function V k of discrete sampling variable t k, with k = integer: V k = V(t k ) time [ms] Uniform (periodic) sampling. Sampling frequency f S = 1/ t S t s t s sampling time, t k [ms] 3/36

4 Analog & digital systems 4/36

5 Digital vs analog processing Digital Signal Processing (DSPing) Advantages More flexible. Often easier system upgrade. Data easily stored -memory. Better control over accuracy requirements. Reproducibility. Linear phase No drift with time and temperature Limitations A/D & signal processors speed: wide-band signals still difficult to treat (real-time systems). Finite word-length effect. 5/36

6 DSPing: aim & tools Applications Predicting a system s output. Implementing a certain processing task. Studying a certain signal. Hardware General purpose processors (GPP), -controllers. Digital Signal Processors (DSP). Programmable logic ( PLD, FPGA ). Fast Faster real-time DSPing Software Programming languages: Pascal, C / C++... High level languages: Matlab, Mathcad, Mathematica Dedicated tools (ex: filter design s/w packages). 6/36

7 Related areas 7/36

8 Applications 8/36

9 Important digital signals δ(nt s ) δ[(n-3)τ s ] nτ s past Unit Impulse or Unit Sample. The most important signal for two reasons δ(n)=1 for n=0 u(nt s) nτ s past Unit Step u(n)=1 for n0 δ(n)=u(n)-u(n-1) r(nt s) nτ s past Unit Ramp r(n)=nu(n) 9/36

10 Digital system example General scheme Sometimes steps missing - Filter + A/D (ex: economics); - D/A + filter (ex: digital output wanted). V V A A V ms ms k k Filter Antialiasing Antialiasing A/D A/D Digital Processing Digital Processing D/A ANALOG DOMAIN DIGITAL DOMAIN Topics of this lecture. V ms ms Filter Reconstruction ANALOG DOMAIN 10/36

11 Digital system implementation ANALOG INPUT KEY DECISION POINTS: Analysis bandwidth, Dynamic range Antialiasing Filter A/D Pass / stop bands. Sampling rate. No. of bits. Parameters. 1 2 Digital Processing DIGITAL OUTPUT Digital format. What to use for processing? 3 11/36

12 AD/DA Conversion General Scheme 12/36

13 AD Conversion - Details 13/36

14 Sampling 14/36

15 1 Sampling How fast must we sample a continuous signal to preserve its info content? Ex: train wheels in a movie. 25 frames (=samples) per second. Train starts wheels go clockwise. Train accelerates wheels go counter-clockwise. Why? Frequency misidentification due to low sampling frequency. 15/36

16 Rotating Disk How fast do we have to instantly stare at the disk if it rotates with frequency 0.5 Hz? 16/36

17 1 The sampling theorem Theo* A signal s(t) with maximum frequency f MAX can be recovered if sampled at frequency f S > 2 f MAX. * Multiple proposers: Whittaker(s), Nyquist, Shannon, Kotel nikov. Naming gets confusing! Nyquist frequency (rate) f N = 2 f MAX or f MAX or f S,MIN or f S,MIN /2 Example s(t) 3cos(50π t) 10sin(300π t) cos(100π t) Condition on f S? F 1 F 2 F 3 F 1 =25 Hz, F 2 = 150 Hz, F 3 = 50 Hz f S > 300 Hz f MAX 17/36

18 Sampling and Spectrum 18/36

19 1 Sampling low-pass signals (a) Continuous spectrum (a) Band-limited signal: frequencies in [-B, B] (f MAX = B). (b) -B 0 B f Discrete spectrum No aliasing (b) Time sampling frequency repetition. f S > 2 B no aliasing. -B 0 B f S /2 f (c) Discrete spectrum Aliasing & corruption (c) f S 2 B aliasing! 0 f S /2 f Aliasing: signal ambiguity in frequency domain 19/36

20 1 Antialiasing filter (a) Out of band noise Signal of interest Out of band noise (a),(b) Out-of-band noise can aliase into band of interest. Filter it before! (b) (c) -B 0 B f -B 0 B f S /2 f (c) Antialiasing filter Passband: depends on bandwidth of interest. Attenuation A MIN : depends on ADC resolution ( number of bits N). A MIN, db ~ 6.02 N Out-of-band noise magnitude. Other parameters: ripple, stopband frequency... 20/36

21 1 Under-sampling Using spectral replications to reduce sampling frequency f S req ments. Bandpass signal centered on f C B m 2fC B 2fC B fs m 1 m, selected so that f S > 2B 0 f C f Example f C = 20 MHz, B = 5MHz Without under-sampling f S > 40 MHz. With under-sampling f S = 22.5 MHz (m=1); = 17.5 MHz (m=2); = MHz (m=3). -f S 0 f S 2f S f Advantages Slower ADCs / electronics needed. Simpler antialiasing filters. f C 21/36

22 Quantization and Coding N Quantization Levels q Quantization Noise 22/36

23 2 SNR of ideal ADC RMS input SNR ideal 20 log10 (1) RMS(eq) Also called SQNR (signal-to-quantisation-noise ratio) Assumptions Ideal ADC: only quantisation error e q (p(e) constant, no stuck bits ) e q uncorrelated with signal. ADC performance constant in time. RMS 1 T T V FSR 2 0 input sin ωt 2 dt V FSR 2 2 Input(t) = ½ V FSR sin( t). p(e) quantisation error probability density RMS(eq) q/2 2 eq peq deq -q/2 q 12 VFSR 2 N 12 1 q (sampling frequency f S = 2 f MAX ) q 2 q 2 e q Error value 23/36

24 2 SNR of ideal ADC - 2 Substituting in (1) : SNR ideal 6.02N1.76 [db] (2) One additional bit SNR increased by 6 db Real SNR lower because: - Real signals have noise. - Forcing input to full scale unwise. - Real ADCs have additional noise (aperture jitter, non-linearities etc). Actually (2) needs correction factor depending on ratio between sampling freq & Nyquist freq. Processing gain due to oversampling. 24/36

25 Coding - Conventional 25/36

26 Coding Flash AD 26/36

27 DAC process 27/36

28 Oversampling Noise shaping PSD Nyquist Sampler f b f N (a) Oversampling OSR=4 f The oversampling process takes apart the images of the signal band. (b) f s =4f N f 0 PSD Signal f N /2 Quantization noise in Nyquist converters Quantization noise in Oversampling converters f s /2 When the sampling rate increases (4 times) the quantization noise spreads over a larger region. The quantization noise power in the signal band is 4 times smaller. PSD Signal Quantization noise Nyquist converters Quantization noise Oversampling converters Quantization noise Oversampling and noise shaping converters Spectrum at the output of a noise shaping quantizer loop compared to those obtained from Nyquist and Oversampling converters. 0 F N /2 frequency F s /2 28/36

29 Digital Systems A discreet-time system is a device or algorithm that operates on an input sequence according to some computational procedure It may be A general purpose computer A microprocessor dedicated hardware A combination of all these 29/36

30 Linear, Time Invariant Systems System Properties linear Time Invariant Stable Causal y( n) N k0 a k x( n k) Convolution 30/36

31 Linear Systems - Convolution 5+7-1=11 terms 31/36

32 Linear Systems - Convolution 5+7-1=11 terms 32/36

33 General Linear Structure y( n) M k0 a k x( n k) L k1 b k y( n k) 33/36

34 Simple Examples 34/36

35 Linearity Superposition Frequency Preservation Principle of Superposition x 1 (n) H y 1 (n) ax 1 (n)+bx 2 (n) H ay 1 (n)+by 2 (n) x 2 (n) H y 2 n) Principle of Superposition Frequency Preservation x 1 (n) x 2 1 (n) x 2 x 1 (n)+x 2 (n) x 2 x 1 2 (n)+x 2 2 (n)+2 x 1 (n) x 2 (n) Non-linear x 2 (n) x 2 x 2 2 (n) If y(n)=x 2 (n) then for x(n)=sin(nω) y(n)=sin 2 (nω)= cos(2nω) 35/36

36 The END Have a nice Weekend Back on Tuesday 36/36

Signaling is the way data is communicated. This type of signal used can be either analog or digital

Signaling is the way data is communicated. This type of signal used can be either analog or digital 3.1 Analog vs. Digital Signaling is the way data is communicated. This type of signal used can be either analog or digital 1 3.1 Analog vs. Digital 2 WCB/McGraw-Hill The McGraw-Hill Companies, Inc., 1998

More information

CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters

CONVERTERS. Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters CONVERTERS Filters Introduction to Digitization Digital-to-Analog Converters Analog-to-Digital Converters Filters Filters are used to remove unwanted bandwidths from a signal Filter classification according

More information

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP

Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National

More information

Analog to Digital, A/D, Digital to Analog, D/A Converters. An electronic circuit to convert the analog voltage to a digital computer value

Analog to Digital, A/D, Digital to Analog, D/A Converters. An electronic circuit to convert the analog voltage to a digital computer value Analog to Digital, A/D, Digital to Analog, D/A Converters An electronic circuit to convert the analog voltage to a digital computer value Best understood by understanding Digital to Analog first. A fundamental

More information

1995 Mixed-Signal Products SLAA013

1995 Mixed-Signal Products SLAA013 Application Report 995 Mixed-Signal Products SLAA03 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service

More information

SGN-1158 Introduction to Signal Processing Test. Solutions

SGN-1158 Introduction to Signal Processing Test. Solutions SGN-1158 Introduction to Signal Processing Test. Solutions 1. Convolve the function ( ) with itself and show that the Fourier transform of the result is the square of the Fourier transform of ( ). (Hints:

More information

What the Nyquist Criterion Means to Your Sampled Data System Design. by Walt Kester

What the Nyquist Criterion Means to Your Sampled Data System Design. by Walt Kester TUTORAL What the Nyquist Criterion Means to Your Sampled Data System Design NTRODUCTON by Walt Kester A quick reading of Harry Nyquist's classic Bell System Technical Journal article of 194 (Reference

More information

Nyquist Sampling Theorem. By: Arnold Evia

Nyquist Sampling Theorem. By: Arnold Evia Nyquist Sampling Theorem By: Arnold Evia Table of Contents What is the Nyquist Sampling Theorem? Bandwidth Sampling Impulse Response Train Fourier Transform of Impulse Response Train Sampling in the Fourier

More information

Non-Data Aided Carrier Offset Compensation for SDR Implementation

Non-Data Aided Carrier Offset Compensation for SDR Implementation Non-Data Aided Carrier Offset Compensation for SDR Implementation Anders Riis Jensen 1, Niels Terp Kjeldgaard Jørgensen 1 Kim Laugesen 1, Yannick Le Moullec 1,2 1 Department of Electronic Systems, 2 Center

More information

A Brief Introduction to Sigma Delta Conversion

A Brief Introduction to Sigma Delta Conversion A Brief Introduction to Sigma Delta Conversion Application Note May 995 AN954 Author: David Jarman Introduction The sigma delta conversion techniue has been in existence for many years, but recent technological

More information

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.

Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically. Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal

More information

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective

chapter Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction 1.2 Historical Perspective Introduction to Digital Signal Processing and Digital Filtering chapter 1 Introduction to Digital Signal Processing and Digital Filtering 1.1 Introduction Digital signal processing (DSP) refers to anything

More information

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics:

Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Voice Transmission --Basic Concepts-- Voice---is analog in character and moves in the form of waves. 3-important wave-characteristics: Amplitude Frequency Phase Voice Digitization in the POTS Traditional

More information

Analog and Digital Interfacing

Analog and Digital Interfacing Analog and Digital Interfacing BJ Furman Spring, 1999 DAC & ADC Digital-to-Analog Conversion (DAC) Converts a binary word from computer to a scaled analog voltage Used for controlling systems that require

More information

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201

Sampling and Interpolation. Yao Wang Polytechnic University, Brooklyn, NY11201 Sampling and Interpolation Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Basics of sampling and quantization A/D and D/A converters Sampling Nyquist sampling theorem

More information

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW

FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW FAST Fourier Transform (FFT) and Digital Filtering Using LabVIEW Wei Lin Department of Biomedical Engineering Stony Brook University Instructor s Portion Summary This experiment requires the student to

More information

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept

Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept Spike-Based Sensing and Processing: What are spikes good for? John G. Harris Electrical and Computer Engineering Dept ONR NEURO-SILICON WORKSHOP, AUG 1-2, 2006 Take Home Messages Introduce integrate-and-fire

More information

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1

ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1 WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's

More information

Motorola Digital Signal Processors

Motorola Digital Signal Processors Motorola Digital Signal Processors Principles of Sigma-Delta Modulation for Analog-to- Digital Converters by Sangil Park, Ph. D. Strategic Applications Digital Signal Processor Operation MOTOROLA APR8

More information

Application Note 9. Digital FIR Decimator & Analog Lowpass

Application Note 9. Digital FIR Decimator & Analog Lowpass Application Note 9 App Note Application Note 9 Highlights Multirate FIR Design Cascade Analog Lowpass Circuit Optimization Comb Filter Correction Sin(x)/x Correction n Design Objective 16:1 FIR Decimation

More information

Introduction to Digital Audio

Introduction to Digital Audio Introduction to Digital Audio Before the development of high-speed, low-cost digital computers and analog-to-digital conversion circuits, all recording and manipulation of sound was done using analog techniques.

More information

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging

CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through

More information

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper

The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper The Effective Number of Bits (ENOB) of my R&S Digital Oscilloscope Technical Paper Products: R&S RTO1012 R&S RTO1014 R&S RTO1022 R&S RTO1024 This technical paper provides an introduction to the signal

More information

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output CMOS Analog IC Design - Chapter 10 Page 10.0-5 BLOCK DIAGRAM OF A DIGITAL-ANALOG CONVERTER b 1 is the most significant bit (MSB) The MSB is the bit that has the most (largest) influence on the analog output

More information

Filter Comparison. Match #1: Analog vs. Digital Filters

Filter Comparison. Match #1: Analog vs. Digital Filters CHAPTER 21 Filter Comparison Decisions, decisions, decisions! With all these filters to choose from, how do you know which to use? This chapter is a head-to-head competition between filters; we'll select

More information

Time series analysis Matlab tutorial. Joachim Gross

Time series analysis Matlab tutorial. Joachim Gross Time series analysis Matlab tutorial Joachim Gross Outline Terminology Sampling theorem Plotting Baseline correction Detrending Smoothing Filtering Decimation Remarks Focus on practical aspects, exercises,

More information

Analog Representations of Sound

Analog Representations of Sound Analog Representations of Sound Magnified phonograph grooves, viewed from above: The shape of the grooves encodes the continuously varying audio signal. Analog to Digital Recording Chain ADC Microphone

More information

Fourier Transform and Image Filtering. CS/BIOEN 6640 Lecture Marcel Prastawa Fall 2010

Fourier Transform and Image Filtering. CS/BIOEN 6640 Lecture Marcel Prastawa Fall 2010 Fourier Transform and Image Filtering CS/BIOEN 6640 Lecture Marcel Prastawa Fall 2010 The Fourier Transform Fourier Transform Forward, mapping to frequency domain: Backward, inverse mapping to time domain:

More information

ENEE 425 Spring 2010 Assigned Homework Oppenheim and Shafer (3rd ed.) Instructor: S.A. Tretter

ENEE 425 Spring 2010 Assigned Homework Oppenheim and Shafer (3rd ed.) Instructor: S.A. Tretter ENEE 425 Spring 2010 Assigned Homework Oppenheim and Shafer (3rd ed.) Instructor: S.A. Tretter Note: The dates shown are when the problems were assigned. Homework will be discussed in class at the beginning

More information

SECTION 6 DIGITAL FILTERS

SECTION 6 DIGITAL FILTERS SECTION 6 DIGITAL FILTERS Finite Impulse Response (FIR) Filters Infinite Impulse Response (IIR) Filters Multirate Filters Adaptive Filters 6.a 6.b SECTION 6 DIGITAL FILTERS Walt Kester INTRODUCTION Digital

More information

Digital-to-Analog Conversion

Digital-to-Analog Conversion ANALOG.PPT(01/10/2009) 4.1 Lecture 10 Digital-to-Analog Conversion Objectives Understand how a weighted-resister DAC can be used to convert numbers with binary or non-binary bit weightings Understand the

More information

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive approximation converter. 1 2 The idea of sampling is fully covered

More information

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p

T = 1 f. Phase. Measure of relative position in time within a single period of a signal For a periodic signal f(t), phase is fractional part t p Data Transmission Concepts and terminology Transmission terminology Transmission from transmitter to receiver goes over some transmission medium using electromagnetic waves Guided media. Waves are guided

More information

6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson

6.025J Medical Device Design Lecture 3: Analog-to-Digital Conversion Prof. Joel L. Dawson Let s go back briefly to lecture 1, and look at where ADC s and DAC s fit into our overall picture. I m going in a little extra detail now since this is our eighth lecture on electronics and we are more

More information

Taking the Mystery out of the Infamous Formula, "SNR = 6.02N + 1.76dB," and Why You Should Care. by Walt Kester

Taking the Mystery out of the Infamous Formula, SNR = 6.02N + 1.76dB, and Why You Should Care. by Walt Kester ITRODUCTIO Taking the Mystery out of the Infamous Formula, "SR = 6.0 + 1.76dB," and Why You Should Care by Walt Kester MT-001 TUTORIAL You don't have to deal with ADCs or DACs for long before running across

More information

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data.

Analog Filters. A common instrumentation filter application is the attenuation of high frequencies to avoid frequency aliasing in the sampled data. Analog Filters Filters can be used to attenuate unwanted signals such as interference or noise or to isolate desired signals from unwanted. They use the frequency response of a measuring system to alter

More information

The Calculation of G rms

The Calculation of G rms The Calculation of G rms QualMark Corp. Neill Doertenbach The metric of G rms is typically used to specify and compare the energy in repetitive shock vibration systems. However, the method of arriving

More information

4.3 Analog-to-Digital Conversion

4.3 Analog-to-Digital Conversion 4.3 Analog-to-Digital Conversion overview including timing considerations block diagram of a device using a DAC and comparator example of a digitized spectrum number of data points required to describe

More information

Propagation Channel Emulator ECP_V3

Propagation Channel Emulator ECP_V3 Navigation simulators Propagation Channel Emulator ECP_V3 1 Product Description The ECP (Propagation Channel Emulator V3) synthesizes the principal phenomena of propagation occurring on RF signal links

More information

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL

IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL IMPLEMENTATION OF FIR FILTER USING EFFICIENT WINDOW FUNCTION AND ITS APPLICATION IN FILTERING A SPEECH SIGNAL Saurabh Singh Rajput, Dr.S.S. Bhadauria Department of Electronics, Madhav Institute of Technology

More information

Moving Average Filters

Moving Average Filters CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average

More information

Analysis/resynthesis with the short time Fourier transform

Analysis/resynthesis with the short time Fourier transform Analysis/resynthesis with the short time Fourier transform summer 2006 lecture on analysis, modeling and transformation of audio signals Axel Röbel Institute of communication science TU-Berlin IRCAM Analysis/Synthesis

More information

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D.

FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS. Matthew T. Hunter, Ph.D. FUNDAMENTALS OF MODERN SPECTRAL ANALYSIS Matthew T. Hunter, Ph.D. AGENDA Introduction Spectrum Analyzer Architecture Dynamic Range Instantaneous Bandwidth The Importance of Image Rejection and Anti-Aliasing

More information

USB 3.0 CDR Model White Paper Revision 0.5

USB 3.0 CDR Model White Paper Revision 0.5 USB 3.0 CDR Model White Paper Revision 0.5 January 15, 2009 INTELLECTUAL PROPERTY DISCLAIMER THIS WHITE PAPER IS PROVIDED TO YOU AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,

More information

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note

Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application

More information

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION

DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION DIGITAL-TO-ANALOGUE AND ANALOGUE-TO-DIGITAL CONVERSION Introduction The outputs from sensors and communications receivers are analogue signals that have continuously varying amplitudes. In many systems

More information

Frequency Shift Dither for Analogue to Digital Converters

Frequency Shift Dither for Analogue to Digital Converters Frequency Shift Dither for Analogue to Digital Converters Authors: Cornelis Jan Kikkert Associate Professor Head of Electrical and Computer Engineering Townsville, Queensland, 4811 Phone 07-47814259 Fax

More information

Improving A D Converter Performance Using Dither

Improving A D Converter Performance Using Dither Improving A D Converter Performance Using Dither 1 0 INTRODUCTION Many analog-to-digital converter applications require low distortion for a very wide dynamic range of signals Unfortunately the distortion

More information

by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science

by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science A Continuous Time Frequency Translating Delta Sigma Modulator by Anurag Pulincherry A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of

More information

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency.

FILTER CIRCUITS. A filter is a circuit whose transfer function, that is the ratio of its output to its input, depends upon frequency. FILTER CIRCUITS Introduction Circuits with a response that depends upon the frequency of the input voltage are known as filters. Filter circuits can be used to perform a number of important functions in

More information

Introduction to IQ-demodulation of RF-data

Introduction to IQ-demodulation of RF-data Introduction to IQ-demodulation of RF-data by Johan Kirkhorn, IFBT, NTNU September 15, 1999 Table of Contents 1 INTRODUCTION...3 1.1 Abstract...3 1.2 Definitions/Abbreviations/Nomenclature...3 1.3 Referenced

More information

Lecture 3 Power System Measurement. Course map

Lecture 3 Power System Measurement. Course map Lecture 3 Power System Measurement 1 Course map 2 1 Outline of the Lecture Instrument Transformers (NPAG Ch. 6) Voltage Transformer Current Transformers Measurement Setups Transducers (NPAG Ch. 22) 3 The

More information

TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes

TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes Tektronix oscilloscopes provide several different acquisition modes. While this gives the user great flexibility and choice, each mode is optimized

More information

Digital vs. Analog Transmission Nyquist and Shannon Laws

Digital vs. Analog Transmission Nyquist and Shannon Laws 1 Digital vs. Analog Transmission Nyquist and Shannon Laws Required reading: Garcia 3.1 to 3.5 CSE 3213, Fall 2010 Instructor: N. Vlajic Transmission Impairments 2 Transmission / Signal Impairments caused

More information

Zbigniew KULKA, Piotr WOSZCZEK

Zbigniew KULKA, Piotr WOSZCZEK ARCHIVES OF ACOUSTICS 33, 1, 93 101 (2008) IMPLEMENTATION OF DIGITAL SIGMA-DELTA MODULATORS FOR HIGH-RESOLUTION AUDIO DIGITAL-TO-ANALOG CONVERTERS BASED ON FIELD PROGRAMMABLE GATE ARRAY Zbigniew KULKA,

More information

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal.

The front end of the receiver performs the frequency translation, channel selection and amplification of the signal. Many receivers must be capable of handling a very wide range of signal powers at the input while still producing the correct output. This must be done in the presence of noise and interference which occasionally

More information

Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can

Understand the effects of clock jitter and phase noise on sampled systems A s higher resolution data converters that can designfeature By Brad Brannon, Analog Devices Inc MUCH OF YOUR SYSTEM S PERFORMANCE DEPENDS ON JITTER SPECIFICATIONS, SO CAREFUL ASSESSMENT IS CRITICAL. Understand the effects of clock jitter and phase

More information

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) 111 110 101 100 011 010

ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) 111 110 101 100 011 010 ELG3336: Converters Analog to Digital Converters (ADCs) Digital to Analog Converters (DACs) Digital Output Dout 111 110 101 100 011 010 001 000 ΔV, V LSB V ref 8 V FS 4 V 8 ref 7 V 8 ref Analog Input V

More information

Impedance 50 (75 connectors via adapters)

Impedance 50 (75 connectors via adapters) VECTOR NETWORK ANALYZER PLANAR TR1300/1 DATA SHEET Frequency range: 300 khz to 1.3 GHz Measured parameters: S11, S21 Dynamic range of transmission measurement magnitude: 130 db Measurement time per point:

More information

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction

Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals. Introduction Computer Networks and Internets, 5e Chapter 6 Information Sources and Signals Modified from the lecture slides of Lami Kaya (LKaya@ieee.org) for use CECS 474, Fall 2008. 2009 Pearson Education Inc., Upper

More information

Analog & digital signals. Analog & digital signals

Analog & digital signals. Analog & digital signals Analog & digital signals Analog & digital signals Analog Continuous function V of continuous variable t (time, space etc) : V(t). Digital Discrete function Vk of discrete sampling variable tk, with k =

More information

Improvement of The ADC Resolution Based on FPGA Implementation of Interpolating Algorithm

Improvement of The ADC Resolution Based on FPGA Implementation of Interpolating Algorithm International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-1, January 2016 Pages 100-103 Improvement of The ADC Resolution Based on FPGA Implementation of Interpolating

More information

AN-837 APPLICATION NOTE

AN-837 APPLICATION NOTE APPLICATION NOTE One Technology Way P.O. Box 916 Norwood, MA 262-916, U.S.A. Tel: 781.329.47 Fax: 781.461.3113 www.analog.com DDS-Based Clock Jitter Performance vs. DAC Reconstruction Filter Performance

More information

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage

Lecture 3: Signaling and Clock Recovery. CSE 123: Computer Networks Stefan Savage Lecture 3: Signaling and Clock Recovery CSE 123: Computer Networks Stefan Savage Last time Protocols and layering Application Presentation Session Transport Network Datalink Physical Application Transport

More information

Dithering in Analog-to-digital Conversion

Dithering in Analog-to-digital Conversion Application Note 1. Introduction 2. What is Dither High-speed ADCs today offer higher dynamic performances and every effort is made to push these state-of-the art performances through design improvements

More information

In modern electronics, it is important to be able to separate a signal into different

In modern electronics, it is important to be able to separate a signal into different Introduction In modern electronics, it is important to be able to separate a signal into different frequency regions. In analog electronics, four classes of filters exist to process an input signal: low-pass,

More information

Digital Transmission of Analog Data: PCM and Delta Modulation

Digital Transmission of Analog Data: PCM and Delta Modulation Digital Transmission of Analog Data: PCM and Delta Modulation Required reading: Garcia 3.3.2 and 3.3.3 CSE 323, Fall 200 Instructor: N. Vlajic Digital Transmission of Analog Data 2 Digitization process

More information

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world.

Analog/Digital Conversion. Analog Signals. Digital Signals. Analog vs. Digital. Interfacing a microprocessor-based system to the real world. Analog/Digital Conversion Analog Signals Interacing a microprocessor-based system to the real world. continuous range x(t) Analog and digital signals he bridge: Sampling heorem Conversion concepts Conversion

More information

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications

Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Application Report SBAA094 June 2003 Combining the ADS1202 with an FPGA Digital Filter for Current Measurement in Motor Control Applications Miroslav Oljaca, Tom Hendrick Data Acquisition Products ABSTRACT

More information

RSP Firmware Functional Specification

RSP Firmware Functional Specification Embedded Processing Applications RSP Firmware Functional Specification Verified: Name Signature Date Rev.nr. Accepted: Work Package Manager System Engineering Manager Program Manager W.H. Lubberhuizen

More information

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT

Application Report. 1 Introduction. 2 Resolution of an A-D Converter. 2.1 Signal-to-Noise Ratio (SNR) Harman Grewal... ABSTRACT Application Report SLAA323 JULY 2006 Oversampling the ADC12 for Higher Resolution Harman Grewal... ABSTRACT This application report describes the theory of oversampling to achieve resolutions greater than

More information

Public Switched Telephone System

Public Switched Telephone System Public Switched Telephone System Structure of the Telephone System The Local Loop: Modems, ADSL Structure of the Telephone System (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level

More information

CS263: Wireless Communications and Sensor Networks

CS263: Wireless Communications and Sensor Networks CS263: Wireless Communications and Sensor Networks Matt Welsh Lecture 2: RF Basics and Signal Encoding September 22, 2005 2005 Matt Welsh Harvard University 1 Today's Lecture Basics of wireless communications

More information

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS

TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS TCOM 370 NOTES 99-4 BANDWIDTH, FREQUENCY RESPONSE, AND CAPACITY OF COMMUNICATION LINKS 1. Bandwidth: The bandwidth of a communication link, or in general any system, was loosely defined as the width of

More information

Understanding CIC Compensation Filters

Understanding CIC Compensation Filters Understanding CIC Compensation Filters April 2007, ver. 1.0 Application Note 455 Introduction f The cascaded integrator-comb (CIC) filter is a class of hardware-efficient linear phase finite impulse response

More information

Aliasing, Image Sampling and Reconstruction

Aliasing, Image Sampling and Reconstruction Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is

More information

Precision Fully Differential Op Amp Drives High Resolution ADCs at Low Power

Precision Fully Differential Op Amp Drives High Resolution ADCs at Low Power Precision Fully Differential Op Amp Drives High Resolution ADCs at Low Power Kris Lokere The op amp produces differential outputs, making it ideal for processing fully differential analog signals or taking

More information

High Sensitivity Receiver Applications Benefit from Unique Features in 16-bit 130Msps ADC

High Sensitivity Receiver Applications Benefit from Unique Features in 16-bit 130Msps ADC High Sensitivity Receiver Applications Benefit from Unique Features in 16-bit 130Msps ADC RF IN RF BPF IF BPF LTC2208 ADC DDC/DSP LO1 ADC Driver Wireless receiver design requires extreme care in dealing

More information

Lab 4 Sampling, Aliasing, FIR Filtering

Lab 4 Sampling, Aliasing, FIR Filtering 47 Lab 4 Sampling, Aliasing, FIR Filtering This is a software lab. In your report, please include all Matlab code, numerical results, plots, and your explanations of the theoretical questions. The due

More information

Section 3. Sensor to ADC Design Example

Section 3. Sensor to ADC Design Example Section 3 Sensor to ADC Design Example 3-1 This section describes the design of a sensor to ADC system. The sensor measures temperature, and the measurement is interfaced into an ADC selected by the systems

More information

MATRIX TECHNICAL NOTES

MATRIX TECHNICAL NOTES 200 WOOD AVENUE, MIDDLESEX, NJ 08846 PHONE (732) 469-9510 FAX (732) 469-0418 MATRIX TECHNICAL NOTES MTN-107 TEST SETUP FOR THE MEASUREMENT OF X-MOD, CTB, AND CSO USING A MEAN SQUARE CIRCUIT AS A DETECTOR

More information

Lecture 1-6: Noise and Filters

Lecture 1-6: Noise and Filters Lecture 1-6: Noise and Filters Overview 1. Periodic and Aperiodic Signals Review: by periodic signals, we mean signals that have a waveform shape that repeats. The time taken for the waveform to repeat

More information

RF Measurements Using a Modular Digitizer

RF Measurements Using a Modular Digitizer RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.

More information

LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS

LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS LEVERAGING FPGA AND CPLD DIGITAL LOGIC TO IMPLEMENT ANALOG TO DIGITAL CONVERTERS March 2010 Lattice Semiconductor 5555 Northeast Moore Ct. Hillsboro, Oregon 97124 USA Telephone: (503) 268-8000 www.latticesemi.com

More information

Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor.

Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. School of Mathematics and Systems Engineering Reports from MSI - Rapporter från MSI Implementation of the LMS Algorithm for Noise Cancellation on Speech Using the ARM LPC2378 Processor. Cesar Augusto Azurdia

More information

Chapter 20 DAC, DAC AND ANALOG- DIGITAL MIX INTERFACES

Chapter 20 DAC, DAC AND ANALOG- DIGITAL MIX INTERFACES Chapter 20 DAC, DAC AND ANALOG- DIGITAL MIX INTERFACES Lesson 2 DIGITAL TO ANALOG CONVERTER (DAC or D/A) Ch20L2-"Digital Principles and Design", Raj Kamal, Pearson Education, 2006 2 Outline DAC DAC Circuit

More information

Spectrum Level and Band Level

Spectrum Level and Band Level Spectrum Level and Band Level ntensity, ntensity Level, and ntensity Spectrum Level As a review, earlier we talked about the intensity of a sound wave. We related the intensity of a sound wave to the acoustic

More information

MODULE 13 - INTERFACING THE ANALOG WORLD TO DIGITAL CIRCUITS

MODULE 13 - INTERFACING THE ANALOG WORLD TO DIGITAL CIRCUITS Introduction to Digital Electronic Design Module 13, Interfacing Analog to Digital Circuits 1 MODULE 13 - INTERFACING THE ANALOG WORLD TO DIGITAL CIRCUITS OVERVIEW: Digital circuits require the input signal

More information

Quantization. Yao Wang Polytechnic University, Brooklyn, NY11201

Quantization. Yao Wang Polytechnic University, Brooklyn, NY11201 Quantization Yao Wang Polytechnic University, Brooklyn, NY11201 http://eeweb.poly.edu/~yao Outline Review the three process of A to D conversion Quantization Uniform Non-uniform Mu-law Demo on quantization

More information

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS

RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS RF SYSTEM DESIGN OF TRANSCEIVERS FOR WIRELESS COMMUNICATIONS Qizheng Gu Nokia Mobile Phones, Inc. 4y Springer Contents Preface xiii Chapter 1. Introduction 1 1.1. Wireless Systems 1 1.1.1. Mobile Communications

More information

Frequency Domain Characterization of Signals. Yao Wang Polytechnic University, Brooklyn, NY11201 http: //eeweb.poly.edu/~yao

Frequency Domain Characterization of Signals. Yao Wang Polytechnic University, Brooklyn, NY11201 http: //eeweb.poly.edu/~yao Frequency Domain Characterization of Signals Yao Wang Polytechnic University, Brooklyn, NY1121 http: //eeweb.poly.edu/~yao Signal Representation What is a signal Time-domain description Waveform representation

More information

MODULATION Systems (part 1)

MODULATION Systems (part 1) Technologies and Services on Digital Broadcasting (8) MODULATION Systems (part ) "Technologies and Services of Digital Broadcasting" (in Japanese, ISBN4-339-62-2) is published by CORONA publishing co.,

More information

Probability and Random Variables. Generation of random variables (r.v.)

Probability and Random Variables. Generation of random variables (r.v.) Probability and Random Variables Method for generating random variables with a specified probability distribution function. Gaussian And Markov Processes Characterization of Stationary Random Process Linearly

More information

SAMPLE: EXPERIMENT 10 Bandpass Filter / Fourier Analysis

SAMPLE: EXPERIMENT 10 Bandpass Filter / Fourier Analysis SAMPLE: EXPERIMENT 10 Bandpass Filter / Fourier Analysis ---------------------------------------------------------------------------------------------------- This experiment is an excerpt from: Electric

More information

Digital Signal Processing Fundamentals

Digital Signal Processing Fundamentals Application Note 023 Digital Signal Processing Fundamentals D. Koenig Introduction 1 Recent advances in digital signal processing (DSP) technology make it easier for scientists to develop powerful personal

More information

AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com

AN-756 APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com APPLICATION NOTE One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 Tel: 781/329-4700 Fax: 781/326-8703 www.analog.com Sampled Systems and the Effects of Clock Phase Noise and Jitter by Brad Brannon

More information

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal

Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal Wireless Communication and RF System Design Using MATLAB and Simulink Giorgia Zucchelli Technical Marketing RF & Mixed-Signal 2013 The MathWorks, Inc. 1 Outline of Today s Presentation Introduction to

More information

RF Network Analyzer Basics

RF Network Analyzer Basics RF Network Analyzer Basics A tutorial, information and overview about the basics of the RF Network Analyzer. What is a Network Analyzer and how to use them, to include the Scalar Network Analyzer (SNA),

More information

Digital Signal Processing in RF Applications

Digital Signal Processing in RF Applications Digital Signal Processing in RF Applications Part I Thomas Schilcher What are RF applications? any application which measures properties of an RF field (amplitude, phase, frequency, ); typical frequencies

More information

DADiSP / Octave. 1/N Octave Analysis Module. DSP Development Corporation KEY FEATURES. Toll Free: 1-800-424-3131

DADiSP / Octave. 1/N Octave Analysis Module. DSP Development Corporation KEY FEATURES.  Toll Free: 1-800-424-3131 DADiSP / Octave 1/N Octave Analysis Module DADiSP/Octave is a menu driven module designed to simplify the task of octave, 1/3 octave and 1/N octave analysis used to characterize acoustic energy in a wide

More information