# Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket

Save this PDF as:

Size: px
Start display at page:

Download "Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket"

## Transcription

1 Water Rocket Physics Principles Forces and Motion Newton s First Law An object at rest remains at rest, and an object in motion remains in motion at constant speed and in a straight line unless acted on by an unbalanced force. When the rocket is sitting on the launcher, the forces are balanced because the surface of the launcher pushes the rocket up while gravity pulls it down. Newton s first law says that objects at rest will stay at rest unless they are acted on by an unbalanced force. When we pressurize the water inside the rocket and it releases from the launch pad the forces become unbalanced. The small opening in the bottom of the rocket allows fluid to escape in one direction and in doing so provides thrust (force) in the opposite direction allowing the rocket to propel skyward. This force continues until the pressure forces the last of the water out of rocket. Air Pressure Thrust unbalanced Force Water Force of GRAVITY Note: Thrust from the rocket s engines acts downward producing an upward reaction on the rocket REACTION from Thrust Newton s Second Law The acceleration of an object is directly (or depends) on the mass of the object and the amount of force applied. For example: If you use the same amount of force, you can throw a baseball faster that a basketball because the baseball has less mass. So acceleration depends on Mass and Force. Acceleration Depends on Mass The smaller the mass the smaller force needed to accelerate it. So to help your rocket go faster and higher: 1) Minimize the rockets mass or weight 2) Be careful when minimizing the rocket s weight. If it is too light it will lose stability as soon as the water is expelled and turn end over end. Note: The acceleration of an object decreases as its mass increases and its acceleration increases as its mass decreases Acceleration Depends on Force An object s acceleration increases as the force on the object increases. So to help your rocket go faster and higher: 1) The faster the fluid can be expelled from the rocket, the greater the thrust (force) of the rocket. 2) Increasing the pressure inside the bottle rocket produces greater thrust. This is because a greater mass of air inside the bottle escapes with a higher acceleration. Note: An object s acceleration decreases as the force on the object decreases

2 Acceleration Newton s Second Law can be expressed mathematically: The relationship of acceleration (a) to mass (m) and force (F) can be expressed mathematically with the following equation: or Mass Force equals mass times acceleration. The pressure created inside the rocket acts across the area of the bottle s neck and produces force (thrust). Mass represents the total mass of the rocket, including its fuel. The mass of the rocket changes during flight. As water is rapidly expelled, the rocket weighs less and accelerates. Thrust continues until the water is gone. F o r c e Thrust Force Is produced as water rapidly exits & accelerates rocket A rocket takes off only when it expels water. Action: The rocket pushes the water out of the engine. Reaction: The water pushes up on the rocket. The Action (Thrust) has to be greater than the weight of the rocket for the reaction (lift-off) to happen. UP (Bottle & Water Mass) X (Bottle Velocity) EQUALS (Ejected Water Mass) X (Ejected Water Velocity) DOWN Newton s Second Law explains why objects fall to Earth with the same acceleration An objects acceleration of free fall is independent of an object s mass. A boulder 100 times more massive than a pebble falls at the same acceleration as the pebble because, although the force on the boulder (its weight) is 100 time greater than the weight of the pebble, its resistance to a change in motion (mass ) is 100 times that of the pebble. The greater force offsets the equally greater mass.

3 Newton s Third Law Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. This law can be simply stated as: All forces act in pairs. If a force is exerted, another force occurs (somewhere) that is equal in size and opposite directions. For every action there is an equal & opposite reaction. How this relates to our water rocket is like a balloon full of air, the bottle rocket is pressurized. When the locking clamp is released, fluid escapes the bottle providing an action force that is accompanied by an equal and opposite reaction force which results in the movement of the rocket in the opposite direction. Essentially, the faster the water is ejected, and the more mass that is ejected, the greater the reaction force on the rocket. Newton s 3 rd law states that whenever an object exerts a force on a second object, the second object exerts an equal and opposite force on the first object. The law states that forces act in pairs, but do not act on the same object. There are action and reaction forces (acting in pairs). Example: A swimmer s arms act on the water. The water reacts by pushing on the arms, hand, and feet which moves the swimmer forward. Effects of a Reaction force can be difficult to see. When a ball falls to Earth, gravity pulls the ball (action force). The reaction force is gravity pulling Earth towards the ball (reaction force). The Earth is so massive; its acceleration is much smaller than the ball, so it s impossible to see.

4 Inertia The tendency of an object to resist any change in motion. It is associated with the mass of an object. Wind Direction Desired Path of Motion (Trajectory) A bottle rocket that is HEAVIER has MORE Inertia, because it has MORE mass. MORE Inertia will offer GREATER resistance to a change in direction. Therefore the wind will have LESS effect on a bottle with MORE INERTIA. A LIGHTER bottle rocket has LESS inertia, because it has LESS mass. LESS inertia means the rocket will have LESS resistance to change in direction. Consequently, the wind has a GREATER effect on the rocket s path of motion. Stability - Center of Mass and Center of Pressure: When you launch a water rocket it quickly loses stability and tumbles end over end as soon as the water is expelled. In order for your rocket to reach heights of 500 feet or more, the rocket must be aerodynamically stable during flight. To increase the stability of the rocket there are two principles you need to understand: Center of Mass (CM) - The point at which the rocket balances. If you were to tie a string around the rocket at its CM, it would balance from the string horizontally. All matter, regardless of size, mass or shape has a center of gravity. Center of Pressure (CP). The CP exists only when air is flowing past the moving rocket. The CP is defined as the point along the rocket where, if you were to attach a pivot and then hold the rocket crossways into the wind by that pivot, the wind forces on either side of the CP are equal. This principle is similar to that of a weather vane. When wind blows on a weathervane the arrow points into the wind because the tail of the weathervane has a surface area much greater than the point. The flowing air imparts a greater pressure on the tail and therefore the tail is pushed away. On a rocket the purpose of the fins is to add surface area to the rear of the rocket (which increases the CP) which helps keep the nose of the rocket pointed into the wind. If the fins on a rocket were placed at the front of the rocket, the nose of the rocket would swap positions with the tail a few feet into the flight which would be disastrous! Relationship of CM to CP In order for a rocket to fly in a stable fashion the center of mass (CM) of the rocket must be forward of the center of pressure (CP)

6 Opposite Side - 0 Calculating the Height of a Water Rocket: We will use the average angle method since the average angle method is the easiest and most commonly used. This method makes an approximation of rocket height rather than an exact calculation. However, considering human error and the basic measuring instruments we will use, this method is fairly accurate in calculating rocket height. Step #1 Measure two locations 150 feet on either side of and in a direct line with the launch pad. Place a person at each of these locations with a protractor that will let them determine the angle a rocket reaches from their vantage point. Step #2 Assume that your team has launched a rocket and Person A measures 45 and Person B measures 30 Step #3 Use the average angle formula to calculate the height of the rocket. Average Angle formula: a = b(tan A) a= height of rocket flight b= distance from the launch pad (150 feet) A = the average of the two angles (Given Angle 1 = 45, and Angle 2 = 30, A= 37.5 ) = 75 2 = 37.5 Let s make it simple and round down to 37 Next, using the formula a = 150' x (tan 37 ), the height of this rocket flight would be 113 feet. (Opposite side O = 113 ft). 150' x (tan of 37 is.7535) = 150' x.7535 = 113' DON T PANIC - A tangent (also called TAN) is a trigonometry function, so if you understand the idea of ratios, one variable divided by another variable, you should be able to understand TAN. Let us begin with some definitions and terminology which you already know. A right triangle is a three sided figure with one angle equal to 90 degrees. (A 90 degree angle is called a right angle.) We define the side of the triangle opposite from the right angle to be the hypotenuse, "h". It is the Angle = B ADJACENT Side a this side is 150 feet Right Angle = 90 longest side of the three sides of the right triangle. The word "hypotenuse" comes from two Greek words meaning "to stretch", since this is the longest side. We pick one of the other two angles and label it b. We don't have to worry about the other angle because the sum of the angles of a triangle is equal to 180 degrees. If we know one angle is 90 degrees, and when we find the value of the b angle (using our protractor to see how high the rocket goes), we then know that the value of the other angle is 90 - b. There is a side opposite the angle "b" which we designate o for "opposite". The remaining side we label a for "adjacent", since there are two sides of the triangle which form the angle "b". One is "h" the hypotenuse, and the other is "a" the adjacent. So the three sides of our triangle are "o", "a" and "h", with "a" and "h" forming the angle "b". We are interested in the relations between the sides and the angles of our right triangle. While the length of any one side of a right triangle is completely arbitrary, the ratios of the sides of a right triangle depend only on the value of the angle "b". So the ratio of the opposite side to the adjacent side is called the tangent of the angle "b" is given the symbol tan(b). TAN(b) = o / a b

7 Table of TAN (angle)

8

### Design Considerations for Water-Bottle Rockets. The next few pages are provided to help in the design of your water-bottle rocket.

Acceleration= Force OVER Mass Design Considerations for Water-Bottle Rockets The next few pages are provided to help in the design of your water-bottle rocket. Newton s First Law: Objects at rest will

### Newton's Laws of Motion in Motion

Newton's Laws of Motion in Motion Objectives: Students will use simple techniques to demonstrate Newton's 1 st and 3 rd Laws of Motion. Students will demonstrate their understanding of thrust, drag, lift,

### Rocketry for Kids. Science Level 4. Newton s Laws

Rocketry for Kids Science Level 4 Newton s Laws Victorian Space Science Education Centre 400 Pascoe Vale Road Strathmore, Vic 3041 www.vssec.vic.edu.au Some material for this program has been derived from

### Section 3 Newton s Laws of Motion

Section 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that

### Forces of Motion: Rockets

Forces of Motion: Rockets (Adapted from the NASA Aerospace Education Services Program s lesson Industrial Strength Paper Rockets by Gregory Voght/ NASA JSC) Preparation Grade Level: 5-9 Group Size: 24-30

### Intro Physics (Each individual student will complete his or her own lab report) Bottle Rocket Lab

Intro Physics June 013 Name (Each individual student will complete his or her own lab report) Bottle Rocket Lab Group Members: Target Launch Date: Grade: Pre Launch questions (max 0 points) - Due date:

### Bottle Rockets. Vanderbilt Student Volunteers for Science. Fall 2008

Bottle Rockets Vanderbilt Student Volunteers for Science Fall 2008 I. Introduction: History of Rockets Explain to the students that rockets are more than two thousand years old. Give the students a BRIEF

### Newton s Laws of Motion

Newton s Laws of Motion The Earth revolves around the sun in an elliptical orbit. The moon orbits the Earth in the same way. But what keeps the Earth and the moon in orbit? Why don t they just fly off

### Describe the relationship between gravitational force and distance as shown in the diagram.

Name Period Chapter 2 The Laws of Motion Review Describe the relationship between gravitational force and distance as shown in the diagram. Assess the information about gravity, mass, and weight. Read

### Handheld Water Bottle Rocket & Launcher

Handheld Water Bottle Rocket & Launcher Category: Physics: Force and Motion Type: Make & Take Rough Parts List: Rocket Launcher: 1 3/8 One- hole rubber stopper 2 Valve stems, from an inner tube 4 Small

### Q: Who established the law of universal gravitation? A: Newton. Q: What is a spring scale used for? A: To measure weight

Q: Who established the law of universal gravitation? A: Newton Q: What is a spring scale used for? A: To measure weight Q: What is the Law of Universal Gravitation? A: Everything in the universe has gravity.

### Technical Note T -5 Elementary Mathematics of Model Rocket Flight

Technical Note T -5 Elementary Mathematics of Model Rocket Flight By Robert L. Cannon Updated and edited by Ann Grimm EstesEducator.com educator@estesrockets.com 800.80.00 01 Estes-Cox Corp. This publication

### April 07, 2015. Force motion examples.notebook MOTION AND FORCES. GRAVITY: a force that makes any object pull toward another object.

Force motion examples.notebook April 07, 2015 MOTION AND FORCES GRAVITY: a force that makes any object pull toward another object Feb 15 12:00 PM 1 FRICTION: a force that acts to slow down moving objects

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes

LESSON 17: Balloon Rockets ESTIMATED TIME Setup: 5 10 minutes Procedure: 5 10 minutes DESCRIPTION Apply the concepts of pressure and Newton s laws of motion to build simple rockets. OBJECTIVE This lesson

### Force & Motion. Force & Mass. Friction

1 2 3 4 Next Force & Motion The motion of an object can be changed by an unbalanced force. The way that the movement changes depends on the strength of the force pushing or pulling and the mass of the

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws

Name: Teacher: Pd. Date: STAAR Science Tutorial 25 TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction

### Force and Motion Test

Force and Motion Test Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (1 point each) 1. Your best guess of how an experiment might turn out

### Forces on a Model Rocket

Forces on a Model Rocket This pamphlet was developed using information for the Glenn Learning Technologies Project. For more information, visit their web site at: http://www.grc.nasa.gov/www/k-12/aboutltp/educationaltechnologyapplications.html

### Name Period Chapter 10 Study Guide

Name _ Period Chapter 10 Study Guide Modified True/False Indicate whether the statement is true or false. 1. Unbalanced forces do not change an object s motion. 2. Friction depends on the types of surfaces

### How Rockets Work Newton s Laws of Motion

How Rockets Work Whether flying a small model rocket or launching a giant cargo rocket to Mars, the principles of how rockets work are exactly the same. Understanding and applying these principles means

### 356 CHAPTER 12 Bob Daemmrich

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Research question: How does the velocity of the balloon depend on how much air is pumped into the balloon?

Katie Chang 3A For this balloon rocket experiment, we learned how to plan a controlled experiment that also deepened our understanding of the concepts of acceleration and force on an object. My partner

### Newton s Wagon Newton s Laws

Newton s Wagon Newton s Laws What happens when you kick a soccer ball? The kick is the external force that Newton was talking about in his first law of motion. What happens to the ball after you kick it?

### ACTIVITY 1: Gravitational Force and Acceleration

CHAPTER 3 ACTIVITY 1: Gravitational Force and Acceleration LEARNING TARGET: You will determine the relationship between mass, acceleration, and gravitational force. PURPOSE: So far in the course, you ve

### by Robert L. Cannon Updated and edited by Ann Grimm and Jim Kranich

by Robert L. Cannon Updated and edited by Ann Grimm and Jim Kranich NEWTON S FIRST LAW OF MOTION: WHY SATELLITES STAY IN ORBIT This booklet is designed to help you understand some principles of rocket

### Chapter 4 Dynamics: Newton s Laws of Motion. Copyright 2009 Pearson Education, Inc.

Chapter 4 Dynamics: Newton s Laws of Motion Force Units of Chapter 4 Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### Chapter 4 Newton s Laws: Explaining Motion

Chapter 4 Newton s s Laws: Explaining Motion Newton s Laws of Motion The concepts of force, mass, and weight play critical roles. A Brief History! Where do our ideas and theories about motion come from?!

### Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

### UNIT 2D. Laws of Motion

Name: Regents Physics Date: Mr. Morgante UNIT 2D Laws of Motion Laws of Motion Science of Describing Motion is Kinematics. Dynamics- the study of forces that act on bodies in motion. First Law of Motion

### Units DEMO spring scales masses

Dynamics the study of the causes and changes of motion Force Force Categories ContactField 4 fundamental Force Types 1 Gravity 2 Weak Nuclear Force 3 Electromagnetic 4 Strong Nuclear Force Units DEMO spring

### Force. A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another.

Force A force is a push or a pull. Pushing on a stalled car is an example. The force of friction between your feet and the ground is yet another. Force Weight is the force of the earth's gravity exerted

### Conceptual Questions: Forces and Newton s Laws

Conceptual Questions: Forces and Newton s Laws 1. An object can have motion only if a net force acts on it. his statement is a. true b. false 2. And the reason for this (refer to previous question) is

### Foundations and Mathematical Application of the Water Rocket

Foundations and Mathematical Application of the Water Rocket Students Utilize 2-Liter Bottle Rocket Launcher will help students to explore the science of rocketry. Students build &propel 2-liter bottle

### Newton s Laws of Motion

Section 3.2 Newton s Laws of Motion Objectives Analyze relationships between forces and motion Calculate the effects of forces on objects Identify force pairs between objects New Vocabulary Newton s first

### Understanding the motion of the Universe. Motion, Force, and Gravity

Understanding the motion of the Universe Motion, Force, and Gravity Laws of Motion Stationary objects do not begin moving on their own. In the same way, moving objects don t change their movement spontaneously.

### Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

### What is a Mouse-Trap

What is a Mouse-Trap Car and How does it Work? A mouse-trap car is a vehicle that is powered by the energy that can be stored in a wound up mouse-trap spring. The most basic design is as follows: a string

### Civil Air Patrol s. Fizzy Rocket For Use As Enrichment After CAP Foam Rocket by AAS/SW Joint National Project: STEM Outreach

Civil Air Patrol s Fizzy Rocket For Use As Enrichment After CAP Foam Rocket by AAS/SW Joint National Project: STEM Outreach Partners in Aerospace and STEM Education: Arnold Air Society Civil Air Patrol

### force (mass)(acceleration) or F ma The unbalanced force is called the net force, or resultant of all the forces acting on the system.

4 Forces 4-1 Forces and Acceleration Vocabulary Force: A push or a pull. When an unbalanced force is exerted on an object, the object accelerates in the direction of the force. The acceleration is proportional

### Newton s Laws of Motion

Physics Newton s Laws of Motion Newton s Laws of Motion 4.1 Objectives Explain Newton s first law of motion. Explain Newton s second law of motion. Explain Newton s third law of motion. Solve problems

### Moving Forward: Propulsion and Newton s Third Law of Motion

Moving Forward: Propulsion and Newton s Third Law of Motion Students will understand the aerodynamic force of thrust and how that force is influenced through the use of aircraft engines and their designs.

### If you put the same book on a tilted surface the normal force will be less. The magnitude of the normal force will equal: N = W cos θ

Experiment 4 ormal and Frictional Forces Preparation Prepare for this week's quiz by reviewing last week's experiment Read this week's experiment and the section in your textbook dealing with normal forces

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

### Mathematics and Model Rockets

Mathematics and Model Rockets A Teacher s Guide and Curriculum for Grades 5-12 Developed by Sylvia Nolte, Ed. D. Based on coursework by Harold McConnell, Ph. D. Edited by James H. Kranich Jr., P.E. and

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Background: Aristotle believed that the natural state of motion for objects on the earth was one of rest. In other words, objects needed a force to be kept in motion. Galileo studied

### Forces. When an object is pushed or pulled, we say that a force is exerted on it.

Forces When an object is pushed or pulled, we say that a force is exerted on it. Forces can Cause an object to start moving Change the speed of a moving object Cause a moving object to stop moving Change

### B) 286 m C) 325 m D) 367 m Answer: B

Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

### Review Vocabulary force: a push or a pull. Vocabulary Newton s third law of motion

Standard 7.3.17: Investigate that an unbalanced force, acting on an object, changes its speed or path of motion or both, and know that if the force always acts toward the same center as the object moves,

### Chapter 4: Newton s Laws: Explaining Motion

Chapter 4: Newton s Laws: Explaining Motion 1. All except one of the following require the application of a net force. Which one is the exception? A. to change an object from a state of rest to a state

### Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

### Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

### To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness.

The Science of Archery Godai Katsunaga Purpose To provide insight into the physics of arrow flight and show how archers adapt their equipment to maximize effectiveness. Archery Archery is one of the events

### Teacher notes/ activities. Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth.

Gravity and forces unit Teacher notes/ activities Gravity is the attractive force between all objects in the universe. It is the force that pulls objects to the earth. Galileo, a famous Italian scientist

### 2 Newton s First Law of Motion Inertia

2 Newton s First Law of Motion Inertia Conceptual Physics Instructor Manual, 11 th Edition SOLUTIONS TO CHAPTER 2 RANKING 1. C, B, A 2. C, A, B, D 3. a. B, A, C, D b. B, A, C, D 4. a. A=B=C (no force)

### Baking Soda & Vinegar Rocket

Baking Soda & Vinegar Rocket Category: Chemistry; Physics: Force & Motion Type: Make & Take Rough Parts List: 1 Plastic bottle 1 Cork 1 Paper towel Cardstock or thin cardboard Baking soda Vinegar Cardboard

### Physics and Model Rockets

Physics and Model Rockets A Teacher s Guide and Curriculum for Grades 8-11 Developed by Sylvia Nolte, Ed. D. Edited by Thomas E. Beach, Ph. D., Tim Van Milligan, A.E. and Ann Grimm EstesEducator.com educator@estesrockets.com

### Friction and Gravity. Friction. Section 2. The Causes of Friction

Section 2 Friction and Gravity What happens when you jump on a sled on the side of a snow-covered hill? Without actually doing this, you can predict that the sled will slide down the hill. Now think about

### Basic Rocket Stability

Basic Rocket Stability Adapted from Ed Bertchy s web site : http://www.azstarnet.com/%7eelb/rockets/ Model Rocket Stability: The Basics If you want to start scratch building your own rockets, it helps

### Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

### 5-Minute Refresher: FRICTION

5-Minute Refresher: FRICTION Friction Key Ideas Friction is a force that occurs when two surfaces slide past one another. The force of friction opposes the motion of an object, causing moving objects to

### Big Science Idea. Forces. Name. When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move.

Forces Worksheet 1 Name Forces When you ride a bike, your foot pushes against the pedal. The push makes the wheels of the bike move. When you drop something, it is pulled to the ground by gravity. A PUSH

### 5. Forces and Motion-I. Force is an interaction that causes the acceleration of a body. A vector quantity.

5. Forces and Motion-I 1 Force is an interaction that causes the acceleration of a body. A vector quantity. Newton's First Law: Consider a body on which no net force acts. If the body is at rest, it will

### E Physics: A. Newton s Three Laws of Motion Activity: Newton s Third Law of Motion

Science as Inquiry: As a result of their activities in grades 5 8, all students should develop Understanding about scientific inquiry. Abilities necessary to do scientific inquiry: identify questions,

### Warning! 17000 BOTTLE ROCKET LAUNCHER

17000 BOTTLE ROCKET LAUNCHER Purpose: To launch rockets using commonly available materials such as plastic soda bottles and cardboard tubes. It also provides an exciting introduction to aerodynamics and

### NEWTON S LAWS OF MOTION

Name Period Date NEWTON S LAWS OF MOTION If I am anything, which I highly doubt, I have made myself so by hard work. Isaac Newton Goals: 1. Students will use conceptual and mathematical models to predict

### Worksheet #1 Free Body or Force diagrams

Worksheet #1 Free Body or Force diagrams Drawing Free-Body Diagrams Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation.

### More of Newton s Laws

More of Newton s Laws Announcements: Tutorial Assignments due tomorrow. Pages 19-21, 23, 24 (not 22,25) Note Long Answer HW due this week. CAPA due on Friday. Have added together the clicker scores so

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes.

When showing forces on diagrams, it is important to show the directions in which they act as well as their magnitudes. mass M, the force of attraction exerted by the Earth on an object, acts downwards.

### Newton s Third Law. Newton s Third Law of Motion. Action-Reaction Pairs

Section 4 Newton s Third Law Reading Preview Key Concepts What is Newton s third law of motion? How can you determine the momentum of an object? What is the law of conservation of momentum? Key Terms momentum

### 1. Newton s Laws of Motion and their Applications Tutorial 1

1. Newton s Laws of Motion and their Applications Tutorial 1 1.1 On a planet far, far away, an astronaut picks up a rock. The rock has a mass of 5.00 kg, and on this particular planet its weight is 40.0

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

### Name Date Group Period

Bottle Rocket Lab Name Date Group Period Most of you have blown up a balloon, and instead of tying the open end shut, you let it fly across the room. This is a simple, yet excellent example of Newton s

### Force Concept Inventory

Revised form 081695R Force Concept Inventory Originally published in The Physics Teacher, March 1992 by David Hestenes, Malcolm Wells, and Gregg Swackhamer Revised August 1995 by Ibrahim Halloun, Richard

### Rockets: Taking Off! Racing Balloon

Rockets: Taking Off! For every action there is an equal and opposite reaction. Rockets and Balloons What happens when you blow up a balloon then let it go? Does the balloon move through the air? Did you

### Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Units of Chapter 4 Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal

### 5.1 The First Law: The Law of Inertia

The First Law: The Law of Inertia Investigation 5.1 5.1 The First Law: The Law of Inertia How does changing an object s inertia affect its motion? Newton s first law states that objects tend to keep doing

### Physics I Honors: Chapter 4 Practice Exam

Physics I Honors: Chapter 4 Practice Exam Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements does not describe

### Bite 6: Newton s Third Law

Bite 6: Newton s Third Law Newton s three laws of motion predict the motion of virtually all objects on Earth and in space. You are about to know all of them. Newton s 1st law: an object at rest tends

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### Activity: Newton s Third Law of Motion Action and Reaction

Ascent to Orbit Activity: Newton s Third Law of Motion Action and Reaction Background Information for the Teacher: Adapted from www. nasa.gov, and http://suite101.com/article/newtons-laws-for-kids-overview-a41283.

### Principles of Flight. There are four major forces acting on an aircraft: Gravity Lift Drag Thrust. lift. thrust. drag. gravity

Principles of Flight There are four major forces acting on an aircraft: Gravity Lift Drag Thrust Gravity Gravity is the downward force that keeps the airplane on the ground or pulls the airplane toward

### Newton's third law relates action and reaction forces.

Forces and Motion Ch. 2.3 Newton's third law relates action and reaction forces. Newton made an important observation that explains the motion of the jellyfish. He noticed that forces always act in pairs.

### Newton s Laws of Motion. Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211)

Newton s Laws of Motion Presented by: - Rakhi Gupta(166) Tamanpreet Kaur(211) Contents of the Presentation Newton s First law of Motion Balance and Unbalanced Force Newton s Second law of Motion Free Falling

### 1. The unit of force, a Newton, is equal to a. The amount of mass in an object c. kg m/s b. Mass X Velocity d. kg m/s 2

Forces in Motion Test- FORM B Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The unit of force, a Newton, is equal to a. The amount of mass in an object

### PHYSICS 149: Lecture 4

PHYSICS 149: Lecture 4 Chapter 2 2.3 Inertia and Equilibrium: Newton s First Law of Motion 2.4 Vector Addition Using Components 2.5 Newton s Third Law 1 Net Force The net force is the vector sum of all

### Conceptual Physics 11 th Edition. Forces and Interactions. Newton s Third Law of Motion. This lecture will help you understand:

This lecture will help you understand: Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION Forces and Interactions Summary of Newton s Laws Vectors Forces and Interactions Interaction

### Newton s Laws of Motion

Newton s Laws of Motion Isaac Newton is famous for three laws. They are about the way things move. He didn t write the laws. Other people called them Newton s Laws of Motion. Newton s First Law The first

### Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

### Student Exploration: Gravitational Force

5. Drag STUDENT PACKET # 7 Name: Date: Student Exploration: Gravitational Force Big Idea 13: Forces and Changes in Motion Benchmark: SC.6.P.13.1 Investigate and describe types of forces including contact

### Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Chapter 5: NEWTON S THIRD LAW OF MOTION This lecture will help you understand: Forces and Interactions Newton s Third Law of Motion Summary of Newton s Laws Vectors Forces

### PHY121 #8 Midterm I 3.06.2013

PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

### Forces, Movement & Shape

Forces, Movement & Shape Syllabus points: 1.9 describe the effects of forces between bodies such as changes in speed, shape or direction 1.10 identify different types of force such as gravitational or