Algebraic Simplex Method - Introduction Previous

Save this PDF as:

Size: px
Start display at page:

Download "Algebraic Simplex Method - Introduction Previous"

Transcription

1 Algebraic Simplex Method - Introduction To demonstrate the simplex method, consider the following linear programming model: This is the model for Leo Coco's problem presented in the demo, Graphical Method. That demo describes how to find the optimal solution graphically, as displayed on the right. Thus the optimal solution is,, and. We will now describe how the simplex method (an algebraic procedure) obtains this solution algebraically.

2 Algebraic Simplex Method - Formulation The Simplex Formulation To solve this model, the simplex method needs a system of equations instead of inequalities for the functional constraints. The demo, Interpretation of Slack Variables, describes how this system of equations is obtained by introducing nonnegative slack variables, and. The resulting equivalent form of the model is The simplex method begins by focusing on equations (1) and (2) above.

3 Algebraic Simplex Method - Initial Solution The Initial Solution Consider the initial system of equations exhibited above. Equations (1) and (2) include two more variables than equations. Therefore, two of the variables (the nonbasic variables) can be arbitrarily assigned a value of zero in order to obtain a specific solution (the basic solution) for the other two variables (the basic variables). This basic solution will be feasible if the value of each basic variable is nonnegative. The best of the basic feasible solutions is known to be an optimal solution, so the simplex method finds a sequence of better and better basic feasible solutions until it finds the best one. To begin the simplex method, choose the slack variables to be the basic variables, so and are the nonbasic variables to set equal to zero. The values of and now can be obtained from the system of equations. The resulting basic feasible solution is,,, and. Is this solution optimal?

4 Algebraic Simplex Method - Checking Optimality Checking for Optimality To test whether the solution,,, and is optimal, we rewrite equation (0) as Since both and have positive coefficients, can be increased by increasing either one of these variables. Therefore, the current basic feasible solution is not optimal, so we need to perform an iteration of the simplex method to obtain a better basic feasible solution. This begins by choosing the entering basic variable (the nonbasic variable chosen to become a basic variable for the next basic feasible solution).

5 Algebraic Simplex Method - Entering Basic Variable Selecting an Entering Basic Variable The entering basic variable is: Why? Again rewrite equation (0) as. The value of the entering basic variable will be increased from 0. Since has the largest positive coefficient, increasing will increase at the fastest rate. So select. This selection rule tends to minimize the number of iterations needed to reach an optimal solution. You'll see later that this particular problem is an exception where this rule does not minimize the number of iterations.

6 Algebraic Simplex Method - Leaving Basic Variable Selecting a Leaving Basic Variable The entering basic variable is: The leaving basic variable is: Why? Choose the basic variable that reaches zero first as the entering basic variable ( ) is increased (watch increase). when. What if we increase until?

7 Algebraic Simplex Method - Leaving Basic Variable Selecting a Leaving Basic Variable The entering basic variable is: The leaving basic variable is: Why? Choose the basic variable that reaches zero first as the entering basic variable ( ) is increased. when. What if we increase until (watch increase)? when. However is now negative, resulting in an infeasible solution. Therefore, cannot be the leaving basic variable.

8 Algebraic Simplex Method - Gaussian Elimination Scaling the Pivot Row In order to determine the new basic feasible solution, we need to convert the system of equations into proper form from Gaussian elimination. The coefficient of the entering basic variable ( ) in the equation of the leaving basic variable (equation (1)) must be 1. The current value of this coefficient is: 1 Therefore, nothing needs to be done to this equation.

9 Algebraic Simplex Method - Gaussian Elimination Eliminating from the Other Equations, we need to obtain a coefficient of zero for the entering basic variable ( ) in every other equation (equations (0) and (2)). The coefficient of in equation (0) is: -20 To obtain a coefficient of 0 we need to: Add 20 times equation (1) to equation (0). The coefficient of in equation (2) is: 3 Therefore, to obtain a coefficient of 0 we need to: Subtract 3 times equation (1) from equation (2).

10 Algebraic Simplex Method - Checking Optimality Checking for Optimality The new basic feasible solution is,,, and, which yields. This ends iteration 1. Is the current solution optimal? No. Why? Rewrite equation (0) as. Since has a positive coefficient, increasing from zero will increase. So the current basic feasible solution is not optimal.

11 Tabular Simplex Method - Introduction To demonstrate the simplex method in tabular form, consider the following linear programming model: This is the same problem used to demonstrate the simplex method in algebraic form (see the demo The Simplex Method - Algebraic Form), which yielded the optimal solution (, ) = (0, 7), as shown to the right.

12 Tabular Simplex Method - Initial Tableau Using the Tableau After introducing slack variables (, ), etc., the initial tableau is as shown above. Choose the slack variables to be basic variables, so and are the nonbasic variables to be set to zero. The values of and can now be obtained from the right-hand side column of the simplex tableau. The resulting basic feasible solution is,,, and.

13 Tabular Simplex Method - Entering Basic Variable Selecting an Entering Basic Variable Ahe entering basic variable is: Why? This is the variable that has the largest (in absolute value) negative coefficient in row 0 (the equation (0) row).

14 Tabular Simplex Method - Leaving Basic Variable Selecting a Leaving Basic Variable The entering basic variable is: The leaving basic variable is: Why? Apply the minimum ratio test as shown above.

15 Tabular Simplex Method - Gaussian Elimination Scaling the Pivot Row Although it is not needed in this case, the pivot row is normally divided by the pivot number.

16 Tabular Simplex Method - Gaussian Elimination Eliminating from the Other Rows Add 20 times row 1 to row 0. Subtract 3 times row 1 from row 2. Why? To obtain a new value of zero for the coefficient of the entering basic variable in every other row of the simplex tableau.

17 Tabular Simplex Method - Gaussian Elimination Eliminating from the Other Rows Add 20 times row 1 to row 0. Subtract 3 times row 1 from row 2. Why? To obtain a new value of zero for the coefficient of the entering basic variable in every other row of the simplex tableau.

18 Tabular Simplex Method - Checking Optimality Checking for Optimality This ends iteration 1. Is the current basic feasible solution optimal? No. Why? Because row 0 includes at least one negative coefficient.

7.4 Linear Programming: The Simplex Method

7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

Standard Form of a Linear Programming Problem

494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

Simplex method summary

Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 \$3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

9.4 THE SIMPLEX METHOD: MINIMIZATION

SECTION 9 THE SIMPLEX METHOD: MINIMIZATION 59 The accounting firm in Exercise raises its charge for an audit to \$5 What number of audits and tax returns will bring in a maximum revenue? In the simplex

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

3 Does the Simplex Algorithm Work?

Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

Linear Programming. April 12, 2005

Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

Duality in Linear Programming

Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

1. (a) Multiply by negative one to make the problem into a min: 170A 170B 172A 172B 172C Antonovics Foster Groves 80 88

Econ 172A, W2001: Final Examination, Possible Answers There were 480 possible points. The first question was worth 80 points (40,30,10); the second question was worth 60 points (10 points for the first

Linear Programming in Matrix Form

Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

(a) Let x and y be the number of pounds of seed and corn that the chicken rancher must buy. Give the inequalities that x and y must satisfy.

MA 4-4 Practice Exam Justify your answers and show all relevant work. The exam paper will not be graded, put all your work in the blue book provided. Problem A chicken rancher concludes that his flock

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

Solving Systems of Linear Equations Using Matrices

Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.

56:171. Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa.

56:171 Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa Homework #1 (1.) Linear Programming Model Formulation. SunCo processes

Sensitivity Report in Excel

The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates

0.1 Linear Programming

0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject

LU Factorization Method to Solve Linear Programming Problem

Website: wwwijetaecom (ISSN 2250-2459 ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) LU Factorization Method to Solve Linear Programming Problem S M Chinchole 1 A P Bhadane 2 12 Assistant

56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

7.1 Modelling the transportation problem

Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources

PhysicsAndMathsTutor.com

D Linear programming - Simplex algorithm. The tableau below is the initial tableau for a maximising linear programming problem in x, y and z. Basic variable x y z r s t Value r 4 7 5 0 0 64 s 0 0 0 6 t

4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

What is Linear Programming?

Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

Algebra Chapter 6 Notes Systems of Equations and Inequalities. Lesson 6.1 Solve Linear Systems by Graphing System of linear equations:

Algebra Chapter 6 Notes Systems of Equations and Inequalities Lesson 6.1 Solve Linear Systems by Graphing System of linear equations: Solution of a system of linear equations: Consistent independent system:

Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM

Network Models 8 There are several kinds of linear-programming models that exhibit a special structure that can be exploited in the construction of efficient algorithms for their solution. The motivation

Guide to SRW Section 1.7: Solving inequalities

Guide to SRW Section 1.7: Solving inequalities When you solve the equation x 2 = 9, the answer is written as two very simple equations: x = 3 (or) x = 3 The diagram of the solution is -6-5 -4-3 -2-1 0

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

The application of linear programming to management accounting

The application of linear programming to management accounting Solutions to Chapter 26 questions Question 26.16 (a) M F Contribution per unit 96 110 Litres of material P required 8 10 Contribution per

Linear Programming I: Maximization 2009 Samuel L. Baker Assignment 10 is on the last page.

LINEAR PROGRAMMING I 1 Learning objectives: Linear Programming I: Maximization 2009 Samuel L. Baker Assignment 10 is on the last page. 1. Recognize problems that linear programming can handle. 2. Know

Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).

MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

4 UNIT FOUR: Transportation and Assignment problems

4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced

Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

7-6: Solving Open Sentences Involving Absolute Value. 7-6: Solving Open Sentences Involving Absolute Value

OBJECTIVE: You will be able to solve open sentences involving absolute value and graph the solutions. We need to start with a discussion of what absolute value means. Absolute value is a means of determining

International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

Degeneracy in Linear Programming

Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students

A. Factoring Method - Some, but not all quadratic equations can be solved by factoring.

DETAILED SOLUTIONS AND CONCEPTS - QUADRATIC EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 72.

ADVANCED SUBSIDIARY GCE UNIT 4736/01 MATHEMATICS Decision Mathematics 1 THURSDAY 14 JUNE 2007 Afternoon Additional Materials: Answer Booklet (8 pages) List of Formulae (MF1) Time: 1 hour 30 minutes INSTRUCTIONS

The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

Decision Mathematics D1. Advanced/Advanced Subsidiary. Friday 12 January 2007 Morning Time: 1 hour 30 minutes. D1 answer book

Paper Reference(s) 6689/01 Edexcel GCE Decision Mathematics D1 Advanced/Advanced Subsidiary Friday 12 January 2007 Morning Time: 1 hour 30 minutes Materials required for examination Nil Items included

Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16.

LINEAR PROGRAMMING II 1 Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. Introduction A minimization problem minimizes the value of the objective function rather than

Math 215 HW #1 Solutions

Math 25 HW # Solutions. Problem.2.3. Describe the intersection of the three planes u+v+w+z = 6 and u+w+z = 4 and u + w = 2 (all in four-dimensional space). Is it a line or a point or an empty set? What

Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

Solving Linear Programs in Excel

Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

GENERALIZED INTEGER PROGRAMMING

Professor S. S. CHADHA, PhD University of Wisconsin, Eau Claire, USA E-mail: schadha@uwec.edu Professor Veena CHADHA University of Wisconsin, Eau Claire, USA E-mail: chadhav@uwec.edu GENERALIZED INTEGER

Using Excel to Find Numerical Solutions to LP's

Using Excel to Find Numerical Solutions to LP's by Anil Arya and Richard A. Young This handout sketches how to solve a linear programming problem using Excel. Suppose you wish to solve the following LP:

Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

Linearly Independent Sets and Linearly Dependent Sets

These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less)

Solving Linear Diophantine Matrix Equations Using the Smith Normal Form (More or Less) Raymond N. Greenwell 1 and Stanley Kertzner 2 1 Department of Mathematics, Hofstra University, Hempstead, NY 11549

2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system

1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables

Solving Systems of Linear Equations; Row Reduction

Harvey Mudd College Math Tutorial: Solving Systems of Linear Equations; Row Reduction Systems of linear equations arise in all sorts of applications in many different fields of study The method reviewed

5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

Section 1.7 Inequalities

Section 1.7 Inequalities Linear Inequalities An inequality is linear if each term is constant or a multiple of the variable. EXAMPLE: Solve the inequality x < 9x+4 and sketch the solution set. x < 9x+4

SOLVING EQUATIONS BY COMPLETING THE SQUARE

SOLVING EQUATIONS BY COMPLETING THE SQUARE s There are several ways to solve an equation by completing the square. Two methods begin by dividing the equation by a number that will change the "lead coefficient"

This assignment will help you to prepare for Algebra 1 by reviewing some of the things you learned in Middle School. If you cannot remember how to complete a specific problem, there is an example at the

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

Row Echelon Form and Reduced Row Echelon Form

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts

problem is to maximize 2x1 +4x2 +3x3 + x4 subject to: 3x1 + x2 + x3 + 4x4» 12 x1 3x2 + 2x3 + 3x4» 7 2x1 + x2 + 3x3 x4» 10 x 0 : I set up the sample te

Linear Programming Notes IV: Solving Linear Programming Problems Using Excel 1 Introduction Software that solves moderately large linear programming problems is readily available. You can find programs

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2. Example 1

Lesson 9: Graphing Standard Form Equations Lesson 2 of 2 Method 2: Rewriting the equation in slope intercept form Use the same strategies that were used for solving equations: 1. 2. Your goal is to solve

Reasoning with Equations and Inequalities

Instruction Goal: To provide opportunities for students to develop concepts and skills related to solving quadratic equations using the square root property. The quadratic equations will have two solutions,

Absolute Value Equations and Inequalities

. Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between

Linear Dependence Tests

Linear Dependence Tests The book omits a few key tests for checking the linear dependence of vectors. These short notes discuss these tests, as well as the reasoning behind them. Our first test checks

MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3

MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................

Graphing Rational Functions

Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function

MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

Solving Systems of Linear Equations

LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how

This exposition of linear programming

Linear Programming and the Simplex Method David Gale This exposition of linear programming and the simplex method is intended as a companion piece to the article in this issue on the life and work of George

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

Using CPLEX. =5 has objective value 150.

Using CPLEX CPLEX is optimization software developed and sold by ILOG, Inc. It can be used to solve a variety of different optimization problems in a variety of computing environments. Here we will discuss

7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

Creating a More Efficient Course Schedule at WPI Using Linear Optimization

Project Number: ACH1211 Creating a More Efficient Course Schedule at WPI Using Linear Optimization A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial