Linear Programming Supplement E
|
|
|
- Myles Dalton
- 9 years ago
- Views:
Transcription
1 Linear Programming Supplement E
2 Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming models that states mathematically what is being maximized (e.g., profit or present value) or minimized (e.g., cost or scrap). Decision variables: The variables that represent choices the decision maker can control. Constraints: The limitations that restrict the permissible choices for the decision variables.
3 Linear Programming Feasible region: A region that represents all permissible combinations of the decision variables in a linear programming model. Parameter: A value that the decision maker cannot control and that does not change when the solution is implemented. Certainty: The word that is used to describe that a fact is known without doubt. Linearity: A characteristic of linear programming models that implies proportionality and additivity there can be no products or powers of decision variables. Nonnegativity: An assumption that the decision variables must be positive or zero.
4 Formulating a Problem Step 1. Define the Decision Variables. Step 2.Write Out the Objective Function. Step 3. Write Out the Constraints. Product-mix problem: A one-period type of planning problem, the solution of which yields optimal output quantities (or product mix) of a group of services or products subject to resource capacity and market demand constraints.
5 Formulating a Problem Example E.1 The Stratton Company produces 2 basic types of plastic pipe. Three resources are crucial to the output of pipe: extrusion hours, packaging hours, and a special additive to the plastic raw material. Below is next week s situation. Product Resource Type 1 Type 2 Resource Availability Extrusion 4 hr 6 hr 48 hr Packaging 2 hr 2 hr 18 hr Additive mix 2 lb 1 lb 16 lb
6 Formulating a Problem Example E.1 continued Step 1 Define the decision variables x 1 = x 2 = amount of type 1 pipe produced and sold next week, 100-foot increments amount of type 2 pipe produced and sold next week, 100-foot increments Resource Extrusion Packaging Additive mix Product Type 1 Type 2 4 hr 6 hr 2 hr 2 hr 2 lb 1 lb Resource Availability 48 hr 18 hr 16 lb
7 Formulating a Problem Example E.1 continued Step 2 Define the objective function Each unit of x 1 yields $34, and each unit of x 2 yields $40. Objective is to maximize profits (Z) Max Z = $34 x 1 + $40 x 2 Resource Extrusion Packaging Additive mix Product Type 1 Type 2 4 hr 6 hr 2 hr 2 hr 2 lb 1 lb Resource Availability 48 hr 18 hr 16 lb
8 Formulating a Problem Example E.1 continued Step 3 Formulate the constraints Resource Extrusion Packaging Additive mix Product Type 1 Type 2 4 hr 6 hr 2 hr 2 hr 2 lb 1 lb Resource Availability 48 hr 18 hr 16 lb Extrusion Packaging Additive mix 4 x x x x x 1 + x 2 16
9 Formulating a Problem with Inequalities Typically the constraining resources have upper or lower limits. e.g., for the Stratton Company, the total extrusion time must not exceed the 48 hours of capacity available, so we use the sign. Negative values for constraints x 1 and x 2 do not make sense, so we add nonnegativity restrictions to the model: x 1 0 and x 2 0 (nonnegativity restrictions) Other problem might have constraining resources requiring >, >, =, or < restrictions.
10 Formulating a Problem Application E.1 The Crandon Manufacturing Company produces two principal product lines. One is a portable circular saw, and the other is a precision table saw. Two basic operations are crucial to the output of these saws: fabrication and assembly. The maximum fabrication capacity is 4000 hours per month; each circular saw requires 2 hours, and each table saw requires 1 hour. The maximum assembly capacity is 5000 hours per month; each circular saw requires 1 hour, and each table saw requires 2 hours. The marketing department estimates that the maximum market demand next year is 3500 saws per month for both products. The average contribution to profits and overhead is $900 for each circular saw and $600 for each table saw.
11 Application E.1 Management wants to determine the best product mix for the next year so as to maximize contribution to profits and overhead. Also, it is interested in the payoff of expanding capacity or increasing market share. Maximize: 900x x 2 = Z Subject to: 2x 1 + 1x 2 4,000 (Fabrication) 1x 1 + 2x 2 5,000 (Assembly) 1x 1 + 1x 2 3,500 (Demand) x 1, x 2 0 (Nonnegativity)
12 Graphic Analysis Most linear programming problems are solved with a computer. However, insight into the meaning of the computer output, and linear programming concepts in general, can be gained by analyzing a simple two-variable problem graphically. Graphic method of linear programming: A type of graphic analysis that involves the following five steps: plotting the constraints identifying the feasible region plotting an objective function line finding a visual solution finding the algebraic solution
13 Graphic Analysis Example E.2 x We begin by plotting the constraint equations, disregarding the inequality portion of the constraints (< or >). Making each constraint an equality (=) transforms it into the equation for a straight line. 2x 1 + x 2 16 (additive mix) 2x 1 + 2x 2 18 (packaging) 4x 1 + 6x 2 48 (extrusion) x 1
14 Graphic Analysis Example E.3 The feasible region is the area on the graph that contains the solutions that satisfy all the constraints simultaneously. To find the feasible region, first locate the feasible points for each constraint and then the area that satisfies all constraints. Generally, the following three rules identify the feasible points for a given constraint: 1. For the = constraint, only the points on the line are feasible solutions. 2. For the constraint, the points on the line and the points below or to the left of the line are feasible. 3. For the constraint, the points on the line and the points above or to the right of the line are feasible.
15 Graphic Analysis Identify the feasible region x x 1 + x 2 16 (additive mix) B 2x 1 + 2x 2 18 (packaging) C 4x 1 + 6x 2 48 (extrusion) 4 Feasible 2 D region 0 E A x 1
16 Plotting Crandon Mfg. Constraints
17 Graphic Analysis Plotting an Objective Function Line Now we want to find the solution that optimizes the objective function. Even though all the points in the feasible region represent possible solutions, we can limit our search to the corner points. Corner point: A point that lies at the intersection of two (or possibly more) constraint lines on the boundary of the feasible region. No interior points in the feasible region need be considered because at least one corner point is better than any interior point. The best approach is to plot the objective function on the graph of the feasible region for some arbitrary Z values.
18 Graphic Analysis Plotting an Objective Function Line x x 1 + x 2 16 (additive mix) 2x 1 + 2x 2 18 (packaging) 4x 1 + 6x 2 48 (extrusion) 4 Feasible 2 D region 0 E A B C For Example E.3, the equation for an arbitrary objective function line passing through E is 34x x 2 = x x 2 = $272 x 1
19 x x 1 + x 2 16 (additive mix) 2x 1 + 2x (packaging) 4x 1 + 6x (extrusion) 4 Feasible 2 D region 0 E A Graphic Analysis Plotting an Objective Function Line B A series of dashed lines can be drawn parallel to this first line. Each would have its own Z value. Lines above the first line would have higher Z values. Lines below it would have lower Z values. C x 1
20 Graphic Analysis Identifying the Visual Solution x x 1 + x 2 16 (additive mix) 2x 1 + 2x 2 18 (packaging) 4x 1 + 6x 2 48 (extrusion) 4 Feasible 2 D region 0 E A B Our goal is to maximize profits, so the best solution is a point on the iso-profit line farthest from the origin but still touching the feasible region. C Optimal solution (3,6) x 1
21 Application E.3 Iso-profit Line and Visual Solution for Crandon Mfg.
22 Finding the Algebraic Solution Step 1: Develop an equation with just one unknown. Start by multiplying both sides by a constant so that the coefficient for one of the two decision variables is identical in both equations. Then subtract one equation from the other and solve the resulting equation for its single unknown variable. Step 2: Insert this decision variable s value into either one of the original constraints and solve for the other decision variable.
23 Application E.4 Algebraic Solution for Crandon Mfg. Solve algebraically, with two equations and two unknowns
24 Slack & Surplus Variables Binding constraint: A constraint that helps form the optimal corner point; it limits the ability to improve the objective function. Slack: The amount by which the left-hand side falls short of the right-hand side. To find the slack for a constraint algebraically, we add a slack variable to the constraint and convert it to an equality. Surplus: The amount by which the left-hand side exceeds the right-hand side. To find the surplus for a constraint, we subtract a surplus variable from the left-hand side to make it an equality.
25 Application E.5 Slack Variables for Crandon Mfg.
26 Sensitivity Analysis Coefficient sensitivity: How much the objective function coefficient of a decision variable must improve (increase for maximization or decrease for minimization) before the optimal solution changes and the decision variable becomes some positive number. Range of feasibility: The interval over which the righthand-side parameter can vary while its shadow price remains valid. Range of optimality: The lower and upper limits over which the optimal values of the decision variables remain unchanged. Shadow price: The marginal improvement in Z (increase for maximization and decrease for minimization) caused by relaxing the constraint by one unit.
27 Computer Solutions Computer programs dramatically reduce the time required to solve linear programming problems. Special-purpose programs can be developed for applications that must be repeated frequently. Such programs simplify data input and generate the objective function and constraints for the problem. In addition, they can prepare customized managerial reports. Simplex method: An iterative algebraic procedure for solving linear programming problems. Most real-world linear programming problems are solved on a computer. The solution procedure in computer codes is some form of the simplex method.
28 Computer Solution Output from OM Explorer for the Stratton Company
29 Computer Solution Output from OM Explorer for the Stratton Company Results Worksheet
30 The coefficient sensitivities provide no new insight because they are always 0 when decision variables have positive values in the optimal solution. Computer Solution Optimal solution is to make 300 ft of type 1 pipe and 600 ft of type 2 pipe. Thus the product mix is x 1 and x 2. Maximum profit
31 Computer Solution All of the extrusion and packaging time was used. An additional hour of extrusion time would contribute $3 to profits. An additional hour of packaging time is worth $11. 4 lbs of additive were unused (surplus) so its shadow price is zero.
32 Computer Solution If either objective function coefficient goes above or below its sensitivity range, the product mix will change. If the availability of one of the constraints goes above or below its sensitivity range, the product mix will change. Increased additive has no limit because there was a 4 lb surplus.
33 APPLICATIONS OF LINEAR PROGRAMMING Product Mix: Find the best mix of products to produce. Shipping: Find the optimal shipping assignments. Stock Control: Determine the optimal mix of products to hold in inventory. Supplier Selection: Find the optimal combination of suppliers to minimize unwanted inventory. Plants or Warehouses: Determine optimal location of a plant or warehouse. Stock Cutting: Find the cutting pattern that minimizes the amount of scrap. Production: Find the minimum-cost production schedule. Staffing: Find the optimal staffing levels. Blends: Find the optimal proportions of various ingredients used to make products. Shifts: Determine the minimum-cost assignment of workers to shifts. Vehicles: Assign vehicles to products or customers. Routing: Find the optimal routing of a service or product through several sequential processes.
34 Product Mix Problem Application E.6 The Trim-Look Company makes several lines of skirts, dresses, and sport coats for women. Recently it was suggested that the company reevaluate its South Islander line and allocate its resources to those products that would maximize contribution to profits and overhead. Each product must pass through the cutting and sewing departments. In addition, each product in the South Islander line requires the same polyester fabric. The following data were collected for the study. The Cutting department has 100 hours of capacity, sewing has 180 hours, and 60 yards of material are available. Each skirt contributes $5 to profits and overhead; each dress, $17; and each sport coat, $30.
35 Product Mix Problem Application E.6
36 Process Design Application E.7 The plant manager of a plastic pipe manufacturer has the opportunity to use two different routings for a particular type of plastic pipe: Routing 1 uses extruder A, and routing 2 uses extruder B. Both routings require the same melting process. The following table shows the time requirements and capacities of these processes. In addition, each 100 feet of pipe processed on routing 1 uses 5 pounds of raw material, whereas each 100 feet of pipe processed on routing 2 uses only 4 pounds. This difference results from differing scrap rates of the extruding machines. Consequently, the profit per 100 feet of pipe processed on routing 1 is $60 and on routing 2, $80. A total of 200 pounds of raw material is available.
37 Process Design Application E.7
38 Blending Problem Application E.8 Consider the task facing the procurement manager of a company that manufactures special additives. She must determine the proper amounts of each raw material to purchase for the production of a certain product. Three raw materials are available. Each gallon of the finished product must have a combustion point of at least 220 F. In addition, the gamma content (which causes hydrocarbon pollution) cannot exceed 6 percent of the volume. The zeta content (which cleans the internal moving parts of engines) must be at least 12 percent by volume. Each raw material has varying degrees of these characteristics. Raw material A costs $0.60 per gallon; raw material B, $0.40; and raw material C, $0.50. The procurement manager wishes to minimize the cost of raw materials per gallon of product. What are the optimal proportions of each raw material to use in a gallon of finished product? Hint: Express your decision variables in terms of fractions of a gallon. The sum of the fractions must equal 1.00.
39 Blending Problem Application E.8
40 Portfolio Selection Application E.9 E-Traders, Inc. invests in various types of securities. The firm has $5 million for immediate investment and wishes to maximize the interest earned over the next year. Risk is not a factor. There are four investment possibilities, as outlined below. To further structure the portfolio, the board of directors has specified that at least 40 percent of the investment must be placed in corporate bonds and common stock. Furthermore, no more than 20 percent of the investment can be in real estate.
41 Portfolio Selection Application E.9
42 Shift Scheduling Application E.10 NYNEX has a scheduling problem. Operators work eight-hour shifts and can begin work at either midnight, 4 A.M., 8 A.M., noon, 4 P.M., or 8 P.M. Operators are needed according to the following demand pattern. Hint: Let xj equal the number of operators beginning work (an eight-hour shift) in time period j, where j = 1, 2,..., 6. Formulate the model to cover the demand requirements with the minimum number of operators.
43 Shift Scheduling Application E.10
44 Production Planning Application E.11 Bull Grin employs manual, unskilled labor, who require little or no training. Producing 1000 pounds of supplement costs $810 on regular time and $900 on overtime. These figures include materials, which account for over 80 percent of the cost. Overtime is limited to production of 30,000 pounds per quarter. In addition, subcontractors can be hired at $1100 per thousand pounds, but only 10,000 pounds per quarter can be produced this way. The current level of inventory is 40,000 pounds, and management wants to end the year at that level. Holding 1000 pounds of feed supplement in inventory per quarter costs $110. The latest annual forecast follows. The firm currently has 180 workers, a figure that management wants to keep in quarter 4. Each worker can produce 2000 pounds per quarter, so that regular-time production costs $1620 per worker. Idle workers must be paid at that same rate. Hiring one worker costs $1000, and laying off a worker costs $600.
45 Production Planning Application E.11
46 Production Planning Application E.11
47 Solved Problem 1 O Connel Airlines is considering air service from its hub of operations in Cicely, Alaska to Rome, Wisconsin, and Seattle. They have one gate at the Cicely Airport, which operates 12 hours per day. Each flight requires 1 hour of gate time. Each flight to Rome consumes 15 hours of pilot crew time and is expected to produce a profit of $2,500. Serving Seattle uses 10 hours of pilot crew time per flight and will result in a profit of $2,000 per flight. Pilot crew labor is limited to 150 hours per day. The market for service to Rome is limited to 9 flights per day. 1. Use the graphic method to maximize profits. 2. Identify slack and surplus constraints, if any.
48 Solved Problem 1 The objective function is to maximize profits (Z) Maximize Z = $2,500x 1 + $2,000x 2 where x 1 = number of flights per day to Rome, Wisconsin x 2 = number of flights per day to Seattle, Washington The constraints are x 1 + x 2 12 (gate capacity) 15 x x (labor) x 1 9 (market) x 1 0 and x 2 0
49 Solved Problem 1 x E 15 x x (labor) 2,500 x 1 +2,000 x 2 = $20,000 (iso-profit line) D x 1 9 (market) 5 x 1 + x 2 12 (gate) 0 A B C x 1
50 Solved Problem 1 x x x (labor) E A careful drawing of iso-profit lines parallel to the one shown indicates that point D is the optimal solution D x 1 9 (market) 0 x 1 + x 2 12 (gate) A B The maximum profit results from making six flights to Rome and six flights to Seattle: $2,500(6) + $2,000(6) = $27,000 C x 1
Linear Programming. Solving LP Models Using MS Excel, 18
SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting
Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS
Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and
Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach
Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we
CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS
Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately
OPRE 6201 : 2. Simplex Method
OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2
Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood
PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
Standard Form of a Linear Programming Problem
494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,
Linear Programming. Before studying this supplement you should know or, if necessary, review
S U P P L E M E N T Linear Programming B Before studying this supplement you should know or, if necessary, review 1. Competitive priorities, Chapter 2 2. Capacity management concepts, Chapter 9 3. Aggregate
Sensitivity Analysis with Excel
Sensitivity Analysis with Excel 1 Lecture Outline Sensitivity Analysis Effects on the Objective Function Value (OFV): Changing the Values of Decision Variables Looking at the Variation in OFV: Excel One-
Duality in Linear Programming
Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow
LINEAR PROGRAMMING WITH THE EXCEL SOLVER
cha06369_supa.qxd 2/28/03 10:18 AM Page 702 702 S U P P L E M E N T A LINEAR PROGRAMMING WITH THE EXCEL SOLVER Linear programming (or simply LP) refers to several related mathematical techniques that are
Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
Chapter 2 Solving Linear Programs
Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A
Linear Programming Notes VII Sensitivity Analysis
Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization
Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
TEACHING AGGREGATE PLANNING IN AN OPERATIONS MANAGEMENT COURSE
TEACHING AGGREGATE PLANNING IN AN OPERATIONS MANAGEMENT COURSE Johnny C. Ho, Turner College of Business, Columbus State University, Columbus, GA 31907 David Ang, School of Business, Auburn University Montgomery,
Sensitivity Report in Excel
The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates
Solving Linear Programs
Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,
CONTENTS. CASE STUDY W-3 Cost Minimization Model for Warehouse Distribution Systems and Supply Chain Management 22
CONTENTS CHAPTER W Linear Programming 1 W-1 Meaning, Assumptions, and Applications of Linear Programming 2 The Meaning and Assumptions of Linear Programming 2 Applications of Linear Programming 3 W-2 Some
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Question 2: How do you solve a linear programming problem with a graph?
Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.
The Graphical Method: An Example
The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,
What is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
Issues in Information Systems Volume 14, Issue 2, pp.353-358, 2013
A MODEL FOR SIMULTANEOUS DECISIONS ON MASTER PRODUCTION SCHEDULING, LOT SIZING, AND CAPACITY REQUIREMENTS PLANNING Harish C. Bahl, California State University-Chico, [email protected] Neelam Bahl, California
Linear programming. Learning objectives. Theory in action
2 Linear programming Learning objectives After finishing this chapter, you should be able to: formulate a linear programming model for a given problem; solve a linear programming model with two decision
Question 2: How will changes in the objective function s coefficients change the optimal solution?
Question 2: How will changes in the objective function s coefficients change the optimal solution? In the previous question, we examined how changing the constants in the constraints changed the optimal
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
Using EXCEL Solver October, 2000
Using EXCEL Solver October, 2000 2 The Solver option in EXCEL may be used to solve linear and nonlinear optimization problems. Integer restrictions may be placed on the decision variables. Solver may be
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
Using Excel s Solver
Using Excel s Solver Contents Page Answer Complex What-If Questions Using Microsoft Excel Solver........... 1 When to Use Solver Identifying Key Cells in Your Worksheet Solver Settings are Persistent Saving
3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max
SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,
3. Solve the equation containing only one variable for that variable.
Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1
Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear
Linear Programming. Quantitative Module. Module Outline LEARNING OBJECTIVES. When you complete this module you should be able to
Quantitative Module B Linear rogramming Module Outline REQUIREMENTS OF A LINEAR ROGRAMMING ROBLEM FORMULATING LINEAR ROGRAMMING ROBLEMS Shader Electronics Example GRAHICAL SOLUTION TO A LINEAR ROGRAMMING
Special cases in Transportation Problems
Unit 1 Lecture 18 Special cases in Transportation Problems Learning Objectives: Special cases in Transportation Problems Multiple Optimum Solution Unbalanced Transportation Problem Degeneracy in the Transportation
Practical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
Universidad del Turabo MANA 705 DL Workshop Eight W8_8_3 Aggregate Planning, Material Requirement Planning, and Capacity Planning
Aggregate, Material Requirement, and Capacity Topic: Aggregate, Material Requirement, and Capacity Slide 1 Welcome to Workshop Eight presentation: Aggregate planning, material requirement planning, and
Demand forecasting & Aggregate planning in a Supply chain. Session Speaker Prof.P.S.Satish
Demand forecasting & Aggregate planning in a Supply chain Session Speaker Prof.P.S.Satish 1 Introduction PEMP-EMM2506 Forecasting provides an estimate of future demand Factors that influence demand and
Chapter 6 Cost-Volume-Profit Relationships
Chapter 6 Cost-Volume-Profit Relationships Solutions to Questions 6-1 The contribution margin (CM) ratio is the ratio of the total contribution margin to total sales revenue. It can be used in a variety
Linear Programming. April 12, 2005
Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first
CHAPTER 05 STRATEGIC CAPACITY PLANNING FOR PRODUCTS AND SERVICES
CHAPTER 05 STRATEGIC CAPACITY PLANNING FOR PRODUCTS AND SERVICES Solutions Actual output 7 1. a. Utilizatio n x100% 70.00% Design capacity 10 Actual output 7 Efficiency x100% 87.50% Effective capacity
Special Situations in the Simplex Algorithm
Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the
Airport Planning and Design. Excel Solver
Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of
Part 1 : 07/28/10 08:41:15
Question 1 - CIA 1192 IV-21 - Manufacturing Input Variances - Materials and Labor A manufacturer has the following direct materials standard for one of its products. Direct materials: 3 pounds @ $1.60/pound
4 UNIT FOUR: Transportation and Assignment problems
4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced
Learning Objectives for Section 1.1 Linear Equations and Inequalities
Learning Objectives for Section 1.1 Linear Equations and Inequalities After this lecture and the assigned homework, you should be able to solve linear equations. solve linear inequalities. use interval
Systems of Linear Equations in Three Variables
5.3 Systems of Linear Equations in Three Variables 5.3 OBJECTIVES 1. Find ordered triples associated with three equations 2. Solve a system by the addition method 3. Interpret a solution graphically 4.
Chapter 6: Sensitivity Analysis
Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
Unit 26 Estimation with Confidence Intervals
Unit 26 Estimation with Confidence Intervals Objectives: To see how confidence intervals are used to estimate a population proportion, a population mean, a difference in population proportions, or a difference
Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
Tutorial: Using Excel for Linear Optimization Problems
Tutorial: Using Excel for Linear Optimization Problems Part 1: Organize Your Information There are three categories of information needed for solving an optimization problem in Excel: an Objective Function,
56:171 Operations Research Midterm Exam Solutions Fall 2001
56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the
Unit 1 Equations, Inequalities, Functions
Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1-100 Overview: This unit models real-world situations by using one- and two-variable linear equations. This unit will further expand upon pervious
Lesson 7 - The Aggregate Expenditure Model
Lesson 7 - The Aggregate Expenditure Model Acknowledgement: Ed Sexton and Kerry Webb were the primary authors of the material contained in this lesson. Section : The Aggregate Expenditures Model Aggregate
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
The University of Wisconsin Milwaukee Business Administration 478-Supply Chain Analytics Midterm 01 Oct. 8 at 9 PM
The University of Wisconsin Milwaukee Business Administration 478-Supply Chain Analytics Midterm 01 Oct. 8 at 9 PM Note 1: This is a take-home exam and you have 48 hours to finish and submit it to the
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
1 Mathematical Models of Cost, Revenue and Profit
Section 1.: Mathematical Modeling Math 14 Business Mathematics II Minh Kha Goals: to understand what a mathematical model is, and some of its examples in business. Definition 0.1. Mathematical Modeling
Solving Linear Programs using Microsoft EXCEL Solver
Solving Linear Programs using Microsoft EXCEL Solver By Andrew J. Mason, University of Auckland To illustrate how we can use Microsoft EXCEL to solve linear programming problems, consider the following
Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept
Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts
COST ESTIMATING METHODOLOGY
NCMA DINNER MEETING TRAINING COST ESTIMATING METHODOLOGY 1 David Maldonado COST ESTIMATING METHODOLOGY TABLE OF CONTENT I. Estimating Overview II. Functional Estimating Methods III. Estimating Methods
Summary. Chapter Five. Cost Volume Relations & Break Even Analysis
Summary Chapter Five Cost Volume Relations & Break Even Analysis 1. Introduction : The main aim of an undertaking is to earn profit. The cost volume profit (CVP) analysis helps management in finding out
SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION
SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION MAKING TOOL SENSITIVITY ANALYSIS AS A MANAGERIAL DECISION MAKING TOOL SUMMARY Martina Briš, B.Sc.(Econ) Faculty of Economics in Osijek 87 Decision making is
LINEAR INEQUALITIES. Mathematics is the art of saying many things in many different ways. MAXWELL
Chapter 6 LINEAR INEQUALITIES 6.1 Introduction Mathematics is the art of saying many things in many different ways. MAXWELL In earlier classes, we have studied equations in one variable and two variables
Chapter 11 Monte Carlo Simulation
Chapter 11 Monte Carlo Simulation 11.1 Introduction The basic idea of simulation is to build an experimental device, or simulator, that will act like (simulate) the system of interest in certain important
Cost VOLUME RELATIONS & BREAK EVEN ANALYSIS
1. Introduction The cost volume profit (CVP) analysis helps management in finding out the relationship of costs and revenues to profit. Cost depends on various factors like Volume of production Product
EdExcel Decision Mathematics 1
EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation
Product Mix as a Framing Exercise: The Role of Cost Allocation. Anil Arya The Ohio State University. Jonathan Glover Carnegie Mellon University
Product Mix as a Framing Exercise: The Role of Cost Allocation Anil Arya The Ohio State University Jonathan Glover Carnegie Mellon University Richard Young The Ohio State University December 1999 Product
In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data.
MATHEMATICS: THE LEVEL DESCRIPTIONS In mathematics, there are four attainment targets: using and applying mathematics; number and algebra; shape, space and measures, and handling data. Attainment target
Productioin OVERVIEW. WSG5 7/7/03 4:35 PM Page 63. Copyright 2003 by Academic Press. All rights of reproduction in any form reserved.
WSG5 7/7/03 4:35 PM Page 63 5 Productioin OVERVIEW This chapter reviews the general problem of transforming productive resources in goods and services for sale in the market. A production function is the
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:
Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.
Optimization Modeling for Mining Engineers
Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2
Review of Production and Cost Concepts
Sloan School of Management 15.010/15.011 Massachusetts Institute of Technology RECITATION NOTES #3 Review of Production and Cost Concepts Thursday - September 23, 2004 OUTLINE OF TODAY S RECITATION 1.
1. Graphing Linear Inequalities
Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
Break-Even Point and Cost-Volume-Profit Analysis
9 Break-Even Point and Cost-Volume-Profit Analysis Objectives After completing this chapter, you should be able to answer the following questions: LO.1 LO.2 LO.3 LO.4 LO.5 LO.6 What is the break-even point
Management Accounting Theory of Cost Behavior
Management Accounting 63 Management Accounting Theory of Cost Behavior Management accounting contains a number of decision making tools that require the conversion of all operating costs and expenses into
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
CHAPTER 2 Estimating Probabilities
CHAPTER 2 Estimating Probabilities Machine Learning Copyright c 2016. Tom M. Mitchell. All rights reserved. *DRAFT OF January 24, 2016* *PLEASE DO NOT DISTRIBUTE WITHOUT AUTHOR S PERMISSION* This is a
In this section, we will consider techniques for solving problems of this type.
Constrained optimisation roblems in economics typically involve maximising some quantity, such as utility or profit, subject to a constraint for example income. We shall therefore need techniques for solving
Antti Salonen KPP227 KPP227 1
1 What is capacity? The maximum rate of output for a facility OR The rate at which output can be produced by an operating unit (machine, process, workstation, facility or an entire company). 2 Factors
Planning and Scheduling Operations in Dynamic Supply Chain
Planning and Scheduling Operations in Dynamic Supply Chain Sung Joo Bae Assistant Professor Yonsei University 14 1 Supply Chain Management 14 2 Supply Chains Tier 3 Poland USA Canada Australia Malaysia
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5
Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.
Year 9 set 1 Mathematics notes, to accompany the 9H book.
Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
Assessment Anchors and Eligible Content
M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings
5 Systems of Equations
Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate
Chapter 27: Taxation. 27.1: Introduction. 27.2: The Two Prices with a Tax. 27.2: The Pre-Tax Position
Chapter 27: Taxation 27.1: Introduction We consider the effect of taxation on some good on the market for that good. We ask the questions: who pays the tax? what effect does it have on the equilibrium
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
Learning Objectives. After reading Chapter 11 and working the problems for Chapter 11 in the textbook and in this Workbook, you should be able to:
Learning Objectives After reading Chapter 11 and working the problems for Chapter 11 in the textbook and in this Workbook, you should be able to: Discuss three characteristics of perfectly competitive
