# Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

Save this PDF as:

Size: px
Start display at page:

Download "Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood"

## Transcription

1 PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 \$3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced by managers is how to allocate scarce resources among activities or projects. Linear programming, or LP, is a method of allocating resources in an optimal way. It is one of the most widely used operations research (OR) tools. It has been used successfully as a decisionmaking aid in almost all industries, and in financial and service organizations. Programming refers to mathematical programming. In this context, it refers to a planning process that allocates resources labor, materials, machines, and capital in the best possible (optimal) way so that costs are minimized or profits are maximized. In LP, these resources are known as decision variables. The criterion for selecting the best values of the decision variables (e.g., to maximize profits or minimize costs) is known as the objective function. The limitations on resource availability form what is known as a constraint set. For example, let s say a furniture manufacturer produces wooden tables and chairs. Unit profit for tables is \$6, and unit profit for chairs is \$8. To simplify our discussion, let s assume the only two resources the company uses to About this series According to the Operations Research Society of America, Operations research [OR] is concerned with scientifically deciding how to best design and operate man-machine systems, usually under conditions requiring the allocation of scarce resources. This publication, part of a series, should be useful for supervisors, lead people, middle managers, and anyone who has planning responsibility for either a single manufacturing facility or for corporate planning over multiple facilities. Although managers and planners in other industries can learn about OR techniques through this series, practical examples are geared toward the wood products industry. produce tables and chairs are wood (board feet) and labor (hours). It takes 30 bf and 5 hours to make a table, and 20 bf and 10 hours to make a chair. James E. Reeb, Extension forest products manufacturing specialist; and Scott Leavengood, Extension agent, Klamath County; Oregon State University.

2 OPERATIONS RESEARCH Decision variables... The resources available. Constraint set... The limitations on resource availability. Objective function... The criterion for selecting the best values of the decision variables. There are 300 bf of wood available and 110 hours of labor available. The company wishes to maximize profit, so profit maximization becomes the objective function. The resources (wood and labor) are the decision variables. The limitations on resource availability (300 bf of wood and 110 hours of labor) form the constraint set, or operating rules that govern the process. Using LP, management can decide how to allocate the limited resources to maximize profits. The linear part of the name refers to the following: The objective function (i.e., maximization or minimization) can be described by a linear function of the decision variables, that is, a mathematical function involving only the first powers of the variables with no cross products. For example, 23 and 4X 16 are valid decision variable terms, while 232, 4X 163, and (4X 1 * 2X 1 ) are not. The entire problem can be expressed as straight lines, planes, or similar geometrical figures. The constraint set can be expressed as a set of linear equations. In addition to the linear requirements, nonnegativity conditions state that the variables cannot assume negative values. It is not possible to have negative resources. Without these conditions, it would be mathematically possible to use more resources than are available. In EM 8719, Using the Graphical Method to Solve Linear Programs, we use the graphical method to solve an LP problem involving resource allocation and profit maximization for a furniture manufacturer. In that example, there were only two variables (wood and labor), which made it possible to solve the problem graphically. Problems with three variables also can be graphed, but threedimensional graphs quickly become cumbersome. Problems with more than three variables cannot be graphed. Most real-world problems contain numerous objective criteria and resources, so they re too complicated to represent with only two or three variables. Thus, for all practical purposes, the graphical method for solving LP problems is used only to help students better understand how other LP solution procedures work. This publication will build on the example of the furniture company by introducing a way to solve a more complex LP problem. The method we will use is the simplex method. 2

3 SIMPLEX METHOD Overview of the simplex method The simplex method is the most common way to solve large LP problems. Simplex is a mathematical term. In one dimension, a simplex is a line segment connecting two points. In two dimensions, a simplex is a triangle formed by joining the points. A threedimensional simplex is a four-sided pyramid having four corners. The underlying concepts are geometrical, but the solution algorithm, developed by George Dantzig in 1947, is an algebraic procedure. As with the graphical method, the simplex method finds the most attractive corner of the feasible region to solve the LP problem. Remember, any LP problem having a solution must have an optimal solution that corresponds to a corner, although there may be multiple or alternative optimal solutions. Simplex usually starts at the corner that represents doing nothing. It moves to the neighboring corner that best improves the solution. It does this over and over again, making the greatest possible improvement each time. When no more improvements can be made, the most attractive corner corresponding to the optimal solution has been found. A moderately sized LP with 10 products and 10 resource constraints would involve nearly 200,000 corners. An LP problem 10 times this size would have more than a trillion corners. Fortunately, the search procedure for the simplex method is efficient enough that only about 20 of the 200,000 corners are searched to find the optimal solution. In the real world, computer software is used to solve LP problems using the simplex method, but you will better understand the results if you understand how the simplex method works. The example in this publication will help you do so. PROFITS Review of the graphical method First, let s quickly review the graphical procedure for solving an LP problem, which is presented in EM 8719, Using the Graphical Method to Solve Linear Programs. Let s say a furniture manufacturer wishes to maximize profit. Information about available resources (board feet of wood and hours of labor) and the objective criterion is presented in Table 1. For a complete, step-by-step review of the graphical method, see EM 8719 or one of the textbooks listed in the For more information section. 3

4 OPERATIONS RESEARCH Tip.. In our example, X 1 refers to tables, refers to chairs, and Z refers to profit. Table 1. Information for the wooden tables and chairs linear programming problem. Resource Table (X 1 ) Chair ( ) Available Wood (bf) Labor (hr) Unit profit \$6 \$8 Maximize: Z = 6X (objective function) Subject to: 30X < 300 (wood constraint: 300 bf available) 5X < 110 X 1, > 0 (labor constraint: 110 hours available) (nonnegativity conditions) Based on the above information, graphically solve the LP (Figure 1). Graph the two constraint equation lines. Then plot two objective function lines by arbitrarily setting Z = 48 and Z = 72 to find the direction to move to determine the most attractive corner. The coordinates for the most attractive corner (where the wood and labor constraint equations intersect) can be found by simultaneously solving the constraint equations with two unknowns. Chairs Wood Feasible region Labor Tables Figure 1. Determining the most attractive corner corresponding to the optimal solution. 4

5 SIMPLEX METHOD To simultaneously solve the two constraint equations, first multiply the labor equation by -2, and add it to the wood equation: 30X = 300 (wood) -2(5X = 110) (labor) 20X = 80 X 1 = 4 tables Next, substitute into either of the constraint equations to find the number of chairs. We can substitute into both equations to illustrate that the same value is found. Wood constraint Labor constraint 30(4) + 20 = 300 5(4) + 10 = = = = = = = 90 = 180/20 = 90/10 = 9 chairs = 9 chairs Now, determine the value of the objective function for the optimal solution. Substitute into the equation the number of tables and chairs, and solve for Z. Z = \$6(4) + \$8(9) = \$96 The optimal solution is to manufacture four tables and nine chairs for a profit of \$96. 5

6 OPERATIONS RESEARCH Using the simplex method By introducing the idea of slack variables (unused resources) to the tables and chairs problem, we can add two more variables to the problem. With four variables, we can t solve the LP problem graphically. We ll need to use the simplex method to solve this more complex problem. We ll briefly present the steps involved in using the simplex method before working through an example. Table 2 shows an example of a simplex tableau. Although these steps will give you a general overview of the procedure, you ll probably find that they become much more understandable as you work through the example. A list of shortcuts is found on page 23. You can refer to the six steps and shortcuts while working through the example. Step 1. Formulate the LP and construct a simplex tableau. Add slack variables to represent unused resources, thus eliminating inequality constraints. Construct the simplex tableau a table that allows you to evaluate various combinations of resources to determine which mix will most improve your solution. Use the slack variables in the starting basic variable mix. Step 2. Find the sacrifice and improvement rows. Values in the sacrifice row indicate what will be lost in per-unit profit by making a change in the resource allocation mix. Values in the improvement row indicate what will be gained in per-unit profit by making a change. Table 2. Example of a simplex tableau. Unit profit Basic mix X 1 Solution Sacrifice Current profit Improvement

7 SIMPLEX METHOD Step 3. Apply the entry criteria. Find the entering variable and mark the top of its column with an arrow pointing down. The entering variable is defined as the current non-basic variable that will most improve the objective if its value is increased from 0. If ties occur, arbitrarily choose one as the entering variable. When no improvement can be found, the optimal solution is represented by the current tableau. If no positive number appears in the entering variable s column, this indicates that one or more constraints are unbounded. Since it is impossible to have an unlimited supply of a resource, an unbounded solution indicates that the LP problem was formulated incorrectly. Step 4. Apply the exit criteria. Using the current tableau s exchange coefficient from the entering variable column, calculate the following exchange ratio for each row as: Solution value/exchange coefficient The exchange ratio tells you which variable is the limiting resource, i.e., the resource that would run out first. Find the lowest nonzero and nonnegative value. This variable is the limiting resource. The basic variable in this row becomes the exiting variable. In case of identical alternatives, arbitrarily choose one. Mark the exiting variable row with an arrow pointing left. Step 5. Construct a new simplex tableau. Constructing a new tableau is a way to evaluate a new corner. One variable will enter the basic mix (entering variable), and one variable will leave the basic mix and become a non-basic variable (exiting variable). The operation of an entering variable and an exiting variable is called a pivot operation. The simplex method is made up of a sequence of such pivots. The pivot identifies the next corner to be evaluated. The new basic mix always differs from the previous basic mix by one variable (exiting variable being replaced by the entering variable). To construct the new tableau, replace the exiting variable in the basic mix column with the new entering variable. Other basic mix variables remain unchanged. Change the unit profit or unit loss column with the value for the new entering variable. Compute the new row values to obtain a new set of exchange coefficients applicable to each basic variable. Step 6. Repeat steps 2 through 5 until you no longer can improve the solution. 7

8 OPERATIONS RESEARCH Slack variables... A mathematical representation of surplus resources. In real-life problems, it s unlikely that all resources will be used completely, so there usually are unused resources. A simplex method example: Production of wooden tables and chairs Step 1. Formulate the LP and construct a simplex tableau. From the information in Table 3, we can formulate the LP problem as before. Table 3. Information for the wooden tables and chairs linear programming problem. Resource Table (X 1 ) Chair ( ) Available Wood (bf) Labor (hr) Unit profit \$6 \$8 Maximize: Z = 6X (objective function) Subject to: 30X < 300 (wood constraint: 300 bf available) 5X < 110 X 1, > 0 (labor constraint: 110 hours available) (nonnegativity conditions) Slack variables Using the simplex method, the first step is to recognize surplus resources, represented in the problem as slack variables. In most real-life problems, it s unlikely that all resources (usually a large mix of many different resources) will be used completely. While some might be used completely, others will have some unused capacity. Also, slack variables allow us to change the inequalities in the constraint equations to equalities, which are easier to solve algebraically. Slack variables represent the unused resources between the left-hand side and right-hand side of each inequality; in other words, they allow us to put the LP problem into the standard form so it can be solved using the simplex method. The first step is to convert the inequalities into equalities by adding slack variables to the two constraint inequalities. With representing surplus wood, and representing surplus labor, the constraint equations can be written as: 30X = 300 (wood constraint: 300 bf) 5X = 110 (labor constraint: 110 hours) 8

9 SIMPLEX METHOD All variables need to be represented in all equations. Add slack variables to the other equations and give them coefficients of 0 in those equations. Rewrite the objective function and constraint equations as: Maximize: Z = 6X (objective function) Subject to: 30X = 300 (wood constraint: 300 bf) 5X = 110 X 1,,, > 0 (labor constraint: 110 hours) (nonnegativity conditions) We can think of slack or surplus as unused resources that don t add any value to the objective function. Thus, their coefficients are 0 in the objective function equation. Basic variable mix and non-basic variables Since there are more unknown variables (four) than equations (two), we can t solve for unique values for the X and S variables using algebraic methods. Whenever the number of variables is greater than the number of equations, the values of the extra variables must be set arbitrarily, and then the other variables can be solved for algebraically. First we ll choose which variables to solve for algebraically. These variables are defined to be in the basic variable mix. We can solve for these variables after we fix the other variables at some arbitrary level. The fixed-value variables are identified as not being in the basic mix and are called non-basic variables. We ll arbitrarily give the non-basic variables the value of 0. The algebraic solution of the constraint equations, with non-basic variables set to 0, represents a corner. For any given set of variables, there are several possible combinations of basic variables and non-basic variables. For illustration, Table 4 contains the six basic mix pairs and the corresponding nonbasic variables for the tables and chairs LP problem. Figure 2 illustrates where each corner (A through F in Table 4) lies on a graph. Basic variable mix... The variables that we choose to solve for algebraically. Non-basic variables... Variables that are arbitrarily given a value of 0 so that we can solve for the variables in the basic variable mix. 9

10 OPERATIONS RESEARCH Table 4. Basic variable mix combinations and algebraic solutions. Basic variable Non-basic Algebraic solution Corners mix variables X 1 Z(\$) (Figure 2) X A X B X C X D X infeasible E X infeasible F Chairs E B Wood D Labor A Figure 2. Corners corresponding to Table 4 data. C F Tables We can evaluate each corner to find the values of the basic variables and of Z: Corner A: Set X 1 = 0 and = 0 30(0) + 20(0) = 300 5(0) + 10(0) = 110 Therefore, = 300 and = 110 Solution: X 1 = 0, = 0, = 300, = 110 Profit: Z = \$6(0) + \$8(0) + 0(300) + 0(110) = 0 10

11 SIMPLEX METHOD Corner B: Set X 1 = 0 and = 0 30(0) (0) = 300 5(0) = 110 Therefore, 20 + = 300 and 10 = 110 Solution: X 1 = 0, = 11, = 80, = 0 Profit: Z = \$6(0) + \$8(11) + 0(80) + 0(0) = \$88 Corner C: Set = 0 and = 0 30X (0) = 300 5X 1 +10(0) + 0(0) + = 110 Therefore, 30X 1 = 300 and 5X 1 + = 110 Solution: X 1 = 10, = 0, = 0, = 60 Profit: Z = \$6(10) + \$8(0) + 0(0) + 0(60) = \$60 Corner D: Set = 0 and = 0 30X (0) = 300 5X (0) + 0 = 110 Therefore, 30X = 300 and 5X = 110 Solution: X 1 = 4, = 9, = 0, = 0 Profit: Z = \$6(4) + \$8(9) + 0(0) + 0(0) = \$96 Point E is infeasible because it violates the labor constraint, and point F is infeasible because it violates the wood constraint. The simplex algorithm never evaluates infeasible corners. Remember, with slack variables added, the tables and chairs LP is now four-dimensional and is not represented by Figure 2. Points on the constraint lines in Figure 2 represent 0 slack for both wood The simplex algorithm never evaluates infeasible corners, i.e., those that violate one of the constraint equations. 11

12 OPERATIONS RESEARCH Most real-world problems are too complex to solve graphically. They have too many corners to evaluate, and the algebraic solutions are lengthy. A simplex tableau is a way to systematically evaluate variable mixes in order to find the best one. and labor resources. A feasible point off a constraint line represents positive slack and cannot be read off the two-dimensional graph. In Table 4, all corners in the LP were identified, and all feasible corners were algebraically evaluated to find the optimum solution. You can see that a graph wasn t necessary to list all variable mixes and that each variable-mix pair corresponded to a corner solution. One reason we can t use this procedure to solve most LP problems is that the number of corners for real-life LP problems usually is very large. Another reason is that each corner evaluation requires a lengthy algebraic solution. To obtain each corner solution for a 10-constraint linear program, 10 equations with 10 unknowns must be solved, which is not a simple arithmetic task. Many LP problems are formulated with many more than 10 constraints. Simplex tableau As you ll recall, we formulated the tables and chairs LP in standard form as: Maximize: Z = 6X (objective function) Subject to: 30X = 300 (wood constraint: 300 bf) 5X = 110 X 1,,, > 0 (labor constraint: 110 hours) (nonnegativity conditions) The information for the tables and chairs example can be incorporated into a simplex tableau (Table 5). A tableau is a table that allows you to evaluate the values of variables at a given corner to determine which variable should be changed to most improve the solution. Table 5. Tables and chairs simplex tableau. Unit profit Basic mix X 1 Solution The top of the tableau lists the per-unit profit for the objective function. The rows in the body of the tableau indicate the basic variable mix for the corner point being evaluated. The first row in the body of the tableau lists the coefficients of the first constraint 12

13 SIMPLEX METHOD equation (the wood constraint) in their original order. The second row lists the coefficients of the second constraint equation (the labor constraint) in their original order. The basic mix column lists the slack variables. All variables not listed in this column are designated as non-basic variables and will be arbitrarily fixed at a value of 0 when we plug them into the constraint equations. The solution column lists the values of the basic variables, = 300 and = 110. Thus, the solution mix shows that all of the resources (wood and labor) remain unused. The solutions to the two constraint equations after zeroing out X 1 and are as follows: 30(0) + 20(0) = 300 or = 300 5(0) + 10(0) = 110 or = 110 The original constraint coefficients, highlighted in the simplex tableau, are called exchange coefficients. They indicate how many units of the variable listed on the left (basic mix column) must be given up to achieve a unit increase in the variable listed at the top of the tableau. The 30 indicates that 30 board feet of unused wood can be exchanged for one table, and the 20 indicates that 20 board feet of wood can be exchanged for one chair. Likewise, 5 hours of labor can be exchanged for one table, and 10 hours of labor can be exchanged for one chair. The exchange coefficients are 0 or 1 for the basic mix variables. These numbers are not very meaningful. For example, the 1 in the first row indicates that 1 board foot of wood can be exchanged for 1 board foot of wood. The 0 in row one indicates that no unused wood is required to accommodate more unused labor. Step 2. Find the sacrifice and improvement rows. The next step is to expand the simplex tableau as in Table 6. Table 6. Expanded simplex tableau. Unit profit Basic mix X 1 Solution Sacrifice Current profit Improvement

14 OPERATIONS RESEARCH Sacrifice row... Indicates what will be lost in per-unit profit by making a change in the resource allocation mix. Improvement row... Indicates what will be gained in per-unit profit by making a change in the resource allocation mix. In the expanded tableau, list the per-unit profit for the basic variables in the far left-hand column (Unit profit). The per-unit profit for both slack variables is 0. Values in the sacrifice row indicate what will be lost in per-unit profit by making a change in resource allocation. Values in the improvement row indicate what will be gained in per-unit profit by making a change in resource allocation. The sacrifice and improvement rows help you decide what corner to move to next. Sacrifice row Values for the sacrifice row are determined by: Unit sacrifice = Unit profit column * Exchange coefficient column To obtain the first sacrifice row value, calculations are: (Unit profit column value) * (X 1 column value) 0 * 30 = * 5 = 0 Add the products 0 First value in the sacrifice row The first product is the unit profit of unused wood multiplied by the amount needed to make one table. The second product is the unit profit of unused labor multiplied by the amount needed to make one table. Together, these products are the profit that is sacrificed by the basic mix variables for producing one more table. Since both basic mix variables are slack variables, and slack refers to unused resources, zero profit is sacrificed by producing another table. The next sacrifice row value is calculated in the same manner: (Unit profit column value) * ( column value) 0 * 20 = * 10 = 0 Add the products 0 Second value in the sacrifice row 14

15 SIMPLEX METHOD The other sacrifice row values are calculated in the same manner. In the case of our example, the unit profit values are 0, so the sacrifice row values are all 0. The values in the solution column of the sacrifice row are calculated as: (Unit profit column value) * (Solution column value) 0 * 300 = * 110 = 0 Add the products 0 The sum of these products represents the current profit (Z). Improvement row Improvement row values are calculated by subtracting each value in the sacrifice row from the value found above it in the unit profit row. Therefore: Unit improvement = Unit profit - Unit sacrifice For example, the improvement for X 1 is calculated as: Unit profit = 6 - Unit sacrifice = 0 \$6 (first value in the improvement row) Since all of the sacrifice values are 0 in this example, all of the improvement row values are the same as those found in the unit profit row. Step 3. Apply the entry criterion. The next step is to apply the entry criterion, that is, to determine the entering variable. The entering variable is defined as the current non-basic variable that will most improve the objective if it is increased from 0. It s called the entering variable because it will enter the basic mix when you construct your next tableau to evaluate a new corner. For profit maximization problems, you determine the entering variable by finding the largest value in the improvement row. Entering variable... The current non-basic variable that will most improve the objective if its value is increased from 0. 15

16 OPERATIONS RESEARCH In our example, the largest value in the improvement row is 8. Thus, we can increase profit (improve the current solution) by \$8 per unit for each chair made. Increasing the value of from 0 to \$8 is the best improvement that can be made. If we increase the value of X 1, our solution improves by only \$6. Therefore, is the entering variable. The entering variable is marked by placing a downward facing arrow in the (chair) column (Table 7). Table 7. Entering variable, exchange ratios, exiting variable, and pivot element. Unit profit Exchange Basic mix X 1 Solution ratios: /20 = /10 = 11 Sacrifice Current profit Improvement Limiting resource... The resource that would run out first. Exchange ratio... Tells you which variable is the limiting resource. The lowest nonzero and nonnegative exchange ratio denotes the limiting resource. The basic variable in this row becomes the exiting variable. Step 4. Apply the exit criterion. The next step is to determine the exiting variable. The exiting variable is the variable that will exit the basic mix when you construct your next simplex tableau. We ll find the exiting variable by calculating the exchange ratio for each basic variable. The exchange ratio tells us how many tables or chairs can be made by using all of the resource for the current respective basic variable. To find the exchange ratio, divide the solution value by the corresponding exchange coefficient in the entering variable column. The exchange ratios are: and 300/20 = 15 ( basic mix row) 110/10 = 11 ( basic mix row) By using all 300 board feet of wood, we can make 15 chairs because it takes 20 board feet of wood to make a chair. By using all 110 hours of labor, we can make 11 chairs because it takes 10 hours of labor per chair. Thus, it s easy to see the plant can t manufacture 15 chairs. We have enough wood for 15 chairs but only enough labor for 11. In this case, labor is the limiting resource. If all the labor were used, there would be leftover wood. 16

17 SIMPLEX METHOD The exit criterion requires that the limiting resource (the basic mix variable with the smallest exchange ratio) exit the basic mix. In this case, the exiting variable is. Because of this, wood ( ) remains in the basic mix. Indicate the exiting variable by placing a small arrow pointing toward the (Table 7). Next circle the pivot element the value found at the intersection of the entering variable column and the exiting variable row. In this case, the value 10 ( column and row) is the pivot element. We ll use this value to evaluate the next corner point represented by exchanging and. Step 5. Construct a new simplex tableau. The next step is to create a new simplex tableau. First, let s look at the old constraint equations that represented the X 1 and rows in our original tableau: 30X = 300 5X = 110 (wood constraint) (labor constraint) Since is to replace, we need to transform the second equation so that will have a coefficient of 1. This requires some algebraic manipulation. Although the resulting equations will look different, they will be equivalent to the original constraints of the LP problem. First, we ll multiply the labor constraint equation by 1 10 (the same as dividing each of the variables by 10). We get the following equivalent equation: 1 2X = 11 Constructing a new tableau is a way to evaluate a new corner point. One variable will enter the basic mix (entering variable), and one variable will leave the basic mix and become a non-basic variable (exiting variable). The operation of an entering variable and an exiting variable is called a pivot operation. The simplex method is made up of a sequence of such pivots. This now becomes the new row. By setting the non-basic variables, X 1 and, both to 0, we get: 1 2(0) (0) = 11 = 11 We want the solution, = 11, to satisfy both constraint equations. We can do this by zeroing the term in the first equation (the wood constraint). We ll do this by multiplying the second equation by -20 and adding it to the first equation: Multiply times -20: -20( 1 2X ) = 11-10X =

18 OPERATIONS RESEARCH Add to the first equation: 30X = X = X = 80 This equation becomes the new row. Thus, our new constraint equations are: 20X = 80 (wood) 1 2X = 11 (labor) When the non-basic variables X 1 and are set to 0, the solution becomes: 20(0) (0) = 80 = 80 and 1 2(0) (0) = 11 = 11 These two new equations give us some information. Remember, represents the amount of surplus or slack wood, that is, the amount of wood not used. When 11 chairs are manufactured, 80 board feet of surplus or slack wood will remain. The new simplex tableau is shown in Table 8c. It s easier to find a solution by using the simplex tableau than by doing the algebra. An easier method The above equations can be calculated much more easily directly from the original simplex tableau than by doing the algebra. Refer to Tables 8a through 8c as we work through the example. 1. Fill in the new row. Referring to Table 8a, divide all values in the exiting variable row,, by the pivot element, 10. The calculations are 5/10, 10/10 (pivot element divided by itself), 0/10, and 1/10. Place the new values in the same location in the new tableau (Table 8b). 18

19 SIMPLEX METHOD Place the unit profit row value for, the new entering variable (8), into the unit profit column. Table 8a. Original simplex tableau. Unit profit Exchange Basic mix X 1 Solution ratios: /20 = /10 = 11 Sacrifice Current profit Improvement Table 8b. Second simplex tableau row. Unit profit Basic mix X 1 Solution Sacrifice Improvement 2. Fill in the new row. Now we ll find the values for the row. Referring to Table 8a, find the value in the row in the old tableau in the pivot element column (20). Multiply it times the first value in the new row (0.5 from Table 8b). Subtract your answer from the value in the first position of the old row. Thus, for the first value (to replace the 30 in the first tableau): (20 * 0.5) = = 20 For the second value (to replace 20 in the first tableau): (20 * 1) = = 0 For the third value in this row: 20 * 0 = = 1 (Stays the same in the new tableau.) 19

20 OPERATIONS RESEARCH For the fourth value in this row: 20 * 0.1 = = -2 For the solution column value for this row: 20 * 11 = = 80 The new row is shown in Table 8c. Table 8c. Second simplex tableau row. Unit profit Basic mix X 1 Solution Sacrifice Improvement 3. Find the sacrifice and improvement rows. Find the sacrifice and improvement rows using the same method as in the first tableau. See Table 8d. Table 8d. Second simplex tableau sacrifice and improvement rows. Unit profit Basic mix X 1 Solution Sacrifice Current profit Improvement We now see that profit has been improved from 0 to \$ Complete the pivot operation (entering and exiting variables). Recall that the pivot operation results in new entering and exiting variables. The greatest per-unit improvement is 20

21 SIMPLEX METHOD 2 (X 1 column). The others offer no improvement (either 0 or a negative number). X 1 becomes the new entering variable. Mark the top of its column with an arrow (Table 8e). Remember, when no improvement can be found at this step, the current tableau represents the optimal solution. Now determine the exiting variable. To do so, first determine the exchange ratios: 80/20 = 4 and 11/0.5 = 22 Now choose the smallest nonnegative exchange ratio (4 versus 22). becomes the exiting variable. Mark that row with an arrow. Draw a circle around the pivot element, 20. (Table 8e). Table 8e. Second simplex tableau pivot operation. Unit profit Exchange Basic mix X 1 Solution ratios: /20 = /0.5 = 22 Sacrifice Improvement Construct the third tableau from the second tableau. Replace the entering variable in the basic mix where the exiting variable left. Bring over the unit profit from the top row of the old table to the new table. Fill in the pivot element row by dividing through by the pivot element (Table 8f). Table 8f. Third simplex tableau X 1 row. Unit profit Basic mix X 1 Solution 6 X Sacrifice Improvement 21

22 OPERATIONS RESEARCH Fill in the first value in the row as follows. First, multiply the previous tableau s pivot value (0.5) times the first value in the new tableau s X 1 row (1): 0.5 * 1 = 0.5 Now subtract this number from the first value in the previous tableau s row (0.5): = 0 Place this value in the first position of the new tableau s row. Repeat this process to fill in the remaining values in the new row (Table 8g). Table 8g. Third simplex tableau row. Unit profit Basic mix X 1 Solution 6 X Sacrifice Improvement Fill in the sacrifice row (Table 8h). The first value is (6 * 1) + (8 * 0) = 6. Fill in the improvement row. The first value is 6-6 = 0. Table 8h. Third simplex tableau sacrifice and improvement rows. Unit profit Basic mix X 1 Solution 6 X Sacrifice Improvement

23 SIMPLEX METHOD There are no positive numbers in the new improvement row. Thus, we no longer can improve the solution to the problem. This simplex tableau represents the optimal solution to the LP problem and is interpreted as: X 1 = 4, = 9, = 0, = 0, and profit or Z = \$96 The optimal solution (maximum profit to be made) is to manufacture four tables and nine chairs for a profit of \$96. Shortcuts Several shortcuts can make the construction of simplex tableaus easier. In the new tableau, only the columns for the non-basic and exiting variables change. Move the values for all other basic variables directly into the new tableau. When 0 is found in the pivot column, that row always is the same in the new tableau. When 0 is found in the pivot row, that column always is the same in the new tableau. With two exceptions, the newly entered basic variable s column will contain a zero in all locations. A 1 will go in the same location as the pivot element in the preceding tableau, and the per-unit profit or loss for this variable will appear in the sacrifice row. 23

24 OPERATIONS RESEARCH Summary In this publication, the simplex method was used to solve a maximization problem with constraints of the form of < (less than or equal to). In the next publication in this series, we will discuss how to handle > (greater than or equal to) and = (equal to) constraints. We ll also explore how to use LP as an economic tool with sensitivity analysis. Quick review of the simplex method Step 1. Formulate the LP and construct a simplex tableau. Add slack variables to represent unused resources. Step 2. Find the sacrifice and improvement rows. Values in the sacrifice row indicate what will be lost in per-unit profit by making a change in the resource allocation mix. Values in the improvement row indicate what will be gained in per-unit profit by making a change. Step 3. Apply the entry criteria. The entering variable is defined as the current non-basic variable that will most improve the objective if its value is increased from 0. Step 4. Apply the exit criteria. Using the current tableau s exchange coefficient from the entering variable column, calculate the exchange ratio for each row. Find the lowest nonzero and nonnegative value. The basic variable in this row becomes the exiting variable. Step 5. Construct a new simplex tableau. Replace the exiting variable in the basic mix column with the new entering variable. Change the unit profit or unit loss column with the value for the new entering variable. Compute the new row values to obtain a new set of exchange coefficients applicable to each basic variable. Step 6. Repeat steps 2 through 5 until you no longer can improve the solution. 24

25 SIMPLEX METHOD For more information Bierman, H., C.P. Bonini, and W.H. Hausman. Quantitative Analysis for Business Decisions (Richard D. Irwin, Inc., Homewood, IL, 1977). 642 pp. Dykstra, D.P. Mathematical Programming for Natural Resource Management (McGraw-Hill, Inc., New York, 1984). 318 pp. Hillier, F.S., and G.J. Lieberman. Introduction to Operations Research, sixth edition (McGraw-Hill, Inc., New York, 1995). 998 pp. Ignizio, J.P., J.N.D. Gupta, and G.R. McNichols. Operations Research in Decision Making (Crane, Russak & Company, Inc., New York, 1975). 343 pp. Lapin, L.L. Quantitative Methods for Business Decisions with Cases, third edition (Harcourt Brace, Jovanovich, Publishers, San Diego, 1985). 780 pp. Ravindran, A., D.T. Phillips, and J.J. Solberg. Operations Research: Principles and Practice, second edition (John Wiley & Sons, New York, 1987). 637 pp. 25

26 OPERATIONS RESEARCH PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY ABOUT THIS SERIES This publication is part of a series, Performance Excellence in the Wood Products Industry. The various publications address topics under the headings of wood technology, marketing and business management, production management, quality and process control, and operations research. To view and download any of the other titles in the series, visit the OSU Extension Web site at eesc.oregonstate.edu/ then Publications & Videos then Forestry then Wood Processing and Business Management. Or, visit the OSU Wood Products Extension Web site at 26

27 SIMPLEX METHOD 27

28 1998 Oregon State University This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties. Oregon State University Extension Service offers educational programs, activities, and materials without regard to race, color, religion, sex, sexual orientation, national origin, age, marital status, disability, and disabled veteran or Vietnam-era veteran status as required by Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of Oregon State University Extension Service is an Equal Opportunity Employer. Published October 1998.

### Graphical Method to Solve Linear Programs

Graphical Method to Solve Linear Programs Jaiveer Singh & Raju Singh Abstract Department of Information and Technology Dronacharya College of Engineering Gurgaon, India Jaiveer.16915.ggnindia.dronacharya.info

### The Simplex Method. What happens when we need more decision variables and more problem constraints?

The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving two decision variables and relatively few problem

### Algebraic Simplex Method - Introduction Previous

Algebraic Simplex Method - Introduction To demonstrate the simplex method, consider the following linear programming model: This is the model for Leo Coco's problem presented in the demo, Graphical Method.

### Chap 4 The Simplex Method

The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

### CHAPTER 17. Linear Programming: Simplex Method

CHAPTER 17 Linear Programming: Simplex Method CONTENTS 17.1 AN ALGEBRAIC OVERVIEW OF THE SIMPLEX METHOD Algebraic Properties of the Simplex Method Determining a Basic Solution Basic Feasible Solution 17.2

### The Graphical Simplex Method: An Example

The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that

### The Simplex Solution Method

Module A The Simplex Solution Method A-1 A-2 Module A The Simplex Solution Method The simplex method is a general mathematical solution technique for solving linear programming problems. In the simplex

### 7.4 Linear Programming: The Simplex Method

7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### LINEAR PROGRAMMING THE SIMPLEX METHOD

LINEAR PROGRAMMING THE SIMPLE METHOD () Problems involving both slack and surplus variables A linear programming model has to be extended to comply with the requirements of the simplex procedure, that

### Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

### Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

### Section Notes 3. The Simplex Algorithm. Applied Math 121. Week of February 14, 2011

Section Notes 3 The Simplex Algorithm Applied Math 121 Week of February 14, 2011 Goals for the week understand how to get from an LP to a simplex tableau. be familiar with reduced costs, optimal solutions,

### Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs

Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs These questions are from previous years and should you give you some idea of what to expect on Quiz 1. 1. Consider the

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### Linear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables

Linear Inequalities and Linear Programming 5.1 Systems of Linear Inequalities 5.2 Linear Programming Geometric Approach 5.3 Geometric Introduction to Simplex Method 5.4 Maximization with constraints 5.5

### SUPPLEMENT TO CHAPTER

SUPPLEMENT TO CHAPTER 6 Linear Programming SUPPLEMENT OUTLINE Introduction and Linear Programming Model, 2 Graphical Solution Method, 5 Computer Solutions, 14 Sensitivity Analysis, 17 Key Terms, 22 Solved

### Chapter 5.1 Systems of linear inequalities in two variables.

Chapter 5. Systems of linear inequalities in two variables. In this section, we will learn how to graph linear inequalities in two variables and then apply this procedure to practical application problems.

### Lecture 4 Linear Programming Models: Standard Form. August 31, 2009

Linear Programming Models: Standard Form August 31, 2009 Outline: Lecture 4 Standard form LP Transforming the LP problem to standard form Basic solutions of standard LP problem Operations Research Methods

### Simplex method summary

Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

### Chapter 5: Solving General Linear Programs

Chapter 5: Solving General Linear Programs So far we have concentrated on linear programs that are in standard form, which have a maximization objective, all constraints of type, all of the right hand

### LINEAR PROGRAMMING MODULE Part 2 - Solution Algorithm

LINEAR PROGRAMMING MODULE Part 2 - Solution Algorithm Name: THE SIMPLEX SOLUTION METHOD It should be obvious to the reader by now that the graphical method for solving linear programs is limited to models

### Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

### Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras

Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras Linear Programming solutions - Graphical and Algebraic Methods

### Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

### Simplex Method. Introduction:

Introduction: In the previous chapter, we discussed about the graphical method for solving linear programming problems. Although the graphical method is an invaluable aid to understand the properties of

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

### LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad

LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources

### Chapter 4: The Mechanics of the Simplex Method

Chapter 4: The Mechanics of the Simplex Method The simplex method is a remarkably simple and elegant algorithmic engine for solving linear programs. In this chapter we will examine the internal mechanics

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### Standard Form of a Linear Programming Problem

494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

### Linear Programming. April 12, 2005

Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

### What is Linear Programming?

Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

### Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

### 10 Linear Programming

10 Linear Programming Learning Objectives: After studying this unit you will be able to: Formulate the Linear Programming Problem Solve the Linear Programming Problem with two variables using graphical

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

### Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

### Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

### Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method

The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible

### Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

### Linear Programming with Post-Optimality Analyses

Linear Programming with Post-Optimality Analyses Wilson Problem: Wilson Manufacturing produces both baseballs and softballs, which it wholesales to vendors around the country. Its facilities permit the

### Linear Programming Models: Graphical and Computer Methods

Linear Programming Models: Graphical and Computer Methods Learning Objectives Students will be able to: 1. Understand the basic assumptions and properties of linear programming (LP). 2. Graphically solve

### 4.3 The Simplex Method and the Standard Maximization Problem

. The Simplex Method and the Standard Maximiation Problem Question : What is a standard maximiation problem? Question : What are slack variables? Question : How do you find a basic feasible solution? Question

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### The Simplex Method. yyye

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #05 1 The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

### Lecture 1: Linear Programming Models. Readings: Chapter 1; Chapter 2, Sections 1&2

Lecture 1: Linear Programming Models Readings: Chapter 1; Chapter 2, Sections 1&2 1 Optimization Problems Managers, planners, scientists, etc., are repeatedly faced with complex and dynamic systems which

### Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

### Outline. Linear Programming (LP): Simplex Search. Simplex: An Extreme-Point Search Algorithm. Basic Solutions

Outline Linear Programming (LP): Simplex Search Benoît Chachuat McMaster University Department of Chemical Engineering ChE 4G03: Optimization in Chemical Engineering 1 Basic Solutions

### 7.1 Modelling the transportation problem

Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources

### Introduction to Linear Programming and Graphical Method

Course: COMMERCE (CBCS) Subject: Business Mathematics Lesson: Introduction to Linear Programming and Graphical Method Authors Name: Dr. Gurmeet Kaur, Associate Professor, Daulat Ram College,University

### I. Solving Linear Programs by the Simplex Method

Optimization Methods Draft of August 26, 2005 I. Solving Linear Programs by the Simplex Method Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston,

### Using the Simplex Method in Mixed Integer Linear Programming

Integer Using the Simplex Method in Mixed Integer UTFSM Nancy, 17 december 2015 Using the Simplex Method in Mixed Integer Outline Mathematical Programming Integer 1 Mathematical Programming Optimisation

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

### is redundant. If you satisfy the other four constraints, then you automatically satisfy x 1 0. (In fact, if the first two constraints hold, then x 1 m

Linear Programming Notes II: Graphical Solutions 1 Graphing Linear Inequalities in the Plane You can solve linear programming problems involving just two variables by drawing a picture. The method works

### LINEAR PROGRAMMING: MODEL FORMULATION AND 2-1

LINEAR PROGRAMMING: MODEL FORMULATION AND GRAPHICAL SOLUTION 2-1 Chapter Topics Model Formulation A Maximization Model Example Graphical Solutions of Linear Programming Models A Minimization Model Example

### Duality in Linear Programming

Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

### Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

### Mathematics Notes for Class 12 chapter 12. Linear Programming

1 P a g e Mathematics Notes for Class 12 chapter 12. Linear Programming Linear Programming It is an important optimization (maximization or minimization) technique used in decision making is business and

### 1 of 43. Simultaneous Equations

1 of 43 Simultaneous Equations Simultaneous Equations (Graphs) There is one pair of values that solves both these equations: x + y = 3 y x = 1 We can find the pair of values by drawing the lines x + y

### 3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### 3 Does the Simplex Algorithm Work?

Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

### value is determined is called constraints. It can be either a linear equation or inequality.

Contents 1. Index 2. Introduction 3. Syntax 4. Explanation of Simplex Algorithm Index Objective function the function to be maximized or minimized is called objective function. E.g. max z = 2x + 3y Constraints

### Campbellsport School District Understanding by Design (UbD) Template

Campbellsport School District Understanding by Design (UbD) Template Class Curriculum/Content Area: Math Course Length: 1 year Course Title: 6 th Grade Math Date last reviewed: April 24, 2015 Prerequisites:

### LINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH

59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving

### SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS

SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS Hossein Arsham, University of Baltimore, (410) 837-5268, harsham@ubalt.edu Veena Adlakha, University of Baltimore, (410) 837-4969,

### 4 UNIT FOUR: Transportation and Assignment problems

4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced

### Lesson 3: Graphical method for solving LPP. Graphical Method of solving Linear Programming Problems

Unit Lesson 3: Graphical method for solving LPP. Learning outcome.finding the graphical solution to the linear programming model Graphical Method of solving Linear Programming Problems Introduction Dear

### 56:171. Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa.

56:171 Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa Homework #1 (1.) Linear Programming Model Formulation. SunCo processes

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### MTS OPERATIONS RESEARCH...

MTS 363 - OPERATIONS RESEARCH... Dr.I.A.Osinuga Recommended Texts 1. Operations Research (an introduction) Handy A. Taha (3 rd Edition) 2. Optimization (Theory and applications) S.S. Rao 3. Principles

### 4.4 The Simplex Method: Non-Standard Form

4.4 The Simplex Method: Non-Standard Form Standard form and what can be relaxed What were the conditions for standard form we have been adhering to? Standard form and what can be relaxed What were the

### CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS

Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately

### Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

### 3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes

Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Resource

### Sensitivity Analysis with Excel

Sensitivity Analysis with Excel 1 Lecture Outline Sensitivity Analysis Effects on the Objective Function Value (OFV): Changing the Values of Decision Variables Looking at the Variation in OFV: Excel One-

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### The application of linear programming to management accounting

The application of linear programming to management accounting Solutions to Chapter 26 questions Question 26.16 (a) M F Contribution per unit 96 110 Litres of material P required 8 10 Contribution per

### Geometry of Linear Programming

Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### (a) Let x and y be the number of pounds of seed and corn that the chicken rancher must buy. Give the inequalities that x and y must satisfy.

MA 4-4 Practice Exam Justify your answers and show all relevant work. The exam paper will not be graded, put all your work in the blue book provided. Problem A chicken rancher concludes that his flock

### Linear Equations and Inequalities

Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

### LU Factorization Method to Solve Linear Programming Problem

Website: wwwijetaecom (ISSN 2250-2459 ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) LU Factorization Method to Solve Linear Programming Problem S M Chinchole 1 A P Bhadane 2 12 Assistant

### the points are called control points approximating curve

Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

### Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

### Mathematics. Mathematical Practices

Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with

### Assessment Anchors and Eligible Content

M07.A-N The Number System M07.A-N.1 M07.A-N.1.1 DESCRIPTOR Assessment Anchors and Eligible Content Aligned to the Grade 7 Pennsylvania Core Standards Reporting Category Apply and extend previous understandings

### LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right