# Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16.

Save this PDF as:

Size: px
Start display at page:

Download "Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16."

## Transcription

1 LINEAR PROGRAMMING II 1 Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. Introduction A minimization problem minimizes the value of the objective function rather than maximizing it. Minimization problems generally involve finding the least-cost way to meet a set of requirements. Classic example -- feeding farm animals. Animals need: 14 units of nutrient A, 12 units of nutrient B, and 18 units of nutrient C. Learning Objective 1: Recognize problems that linear programming can handle. Linear programming lets you optimize an objective function subject to some constraints. The objective function and constraints are all linear. Two feed grains are available, X and Y. A bag of X has 2 units of A, 1 unit of B, and 1 unit of C. A bag of Y has 1 unit of A, 1 unit of B, and 3 units of C. A bag of X costs \$2. A bag of Y costs \$4. Minimize the cost of meeting the nutrient requirements. To solve, express the problem in equation form: Cost = 2X + 4Y objective function to be minimized Constraints: 2X + 1Y \$ 14 nutrient A requirement 1X + 1Y \$ 12 nutrient B requirement 1X + 3Y \$ 18 nutrient C requirement 8 8 Read vertically to see how much of each nutrient is in each grain. X \$ 0, Y \$ 0 non-negativity Learning objective 2: Know the elements of a linear programming problem -- what you need to calculate a solution. The elements are (1) an objective function that shows the cost or profit depending on what choices you make, (2) constraint inequalities that show the limits of what you can do, and (3) non-negativity restrictions, because you cannot turn outputs back into inputs.

2 LINEAR PROGRAMMING II 2 Graph method of solution Graph the constraints as equalities, like before. The constraints are now \$ rather than #, so the feasible area is everything to the right and above all of the constraint lines. You want to find the lowest cost point of this area. It will be a corner. You superimpose isocost lines that you get from the objective function. When you find an isocost line that just nicks one corner of the area, that corner is the solution. Feasible region in minimization problem Isocost lines and optimum Learning objective 3: Understand the principles that the computer uses to solve a linear programming problem. The computer uses the simplex method to systematically trace around the feasible area (the simplex) in the figure above. It goes from one corner to the next until it finds the best value for the objective function. Learning objective 4a: What linear programming problems have no solution? Those that have no feasible area. This means it's impossible to satisfy all the constraints at once. Learning objective 4b: What difference does linearity make? If the constraints are not linear, the feasible area has curved edges. The simplex method doesn't work because you can't be sure that the solution is at a corner. The solution may be in the middle of a curved edge. If the objective function is not linear, the solution may not even be on an edge. It may be in the interior of the feasible area.

3 LINEAR PROGRAMMING II 3 The simplex method of solution for minimization problems The simplex method gets more complicated when you have constraints that are >. The method can't start at the origin (with X = 0, Y = 0, etc.) because that is not a feasible solution. To find a starting place, we invent some new variables in addition to the slack variables. The new variables are called "artificial" and are conventionally labelled with A's. Artificial variables allow us to automatically come up with a feasible solution to start the simplex method. In this case, the starting feasible solution is A 1 =14, A 2 =12, A 3 =18, and all the rest (X, Y, and the S s) =0. The equations now look like this. 2X + 1Y - 1S 1 + 0S 2 + 0S 3 + 1A 1 + 0A 2 + 0A 3 = 14 1X + 1Y + 0S 1-1S 2 + 0S 3 + 0A 1 + 1A 2 + 0A 3 = 12 1X + 3Y + 0S 1 + 0S 2-1S 3 + 0A 1 + 0A 2 + 1A 3 = 18 Each constraint equation has one slack variable (S) and one artificial variable (A) with non-zero coefficients. The slack variable in each equation has a -1 coefficient because in a minimization problem we have to meet or exceed each constraint. This means we have to subtract the slack variable rather than add it as we did when we were maximizing the objective function. The objective function, which we want to minimize, is expanded to: 2X + 4Y + 0S 1 + 0S 2 + 0S 3 + MA 1 + MA 2 + MA 3 = Cost M stands for a mammoth number, meaning a very large unit cost for the A's, large enough to be sure that none of the A's will be in the final solution. In matrix form we have: X Y S 1 S 2 S 3 A 1 A 2 A M -M -M 0 The first thing we do is to get rid of those -M's that are at the bottom of the three columns for the A's. To do this, multiply each of the constraint rows by M and add, element by element, to the last row M-2 5M-4 -M -M -M M The columns for the A's now have one 1 and the rest 0's. The A's, and only them, are in the initial basic feasible solution. The solution is A 1 = 14, A 2 = 12, A 3 = 18, all X's and S's = 0. Cost is 44M, a monstrously mammoth number that we want to reduce. We then proceed with the simplex method as before. The pivot column is the second, because it has the biggest number (5M-4) in the bottom row.

4 LINEAR PROGRAMMING II M-2 5M-4 -M -M -M M To find the pivot row, we divide each number in the last column by the corresponding number in the second column, to get 14/1=14, 12/1=1, and 18/3=6. 6 is the smallest so the third row is the pivot row. The pivot element is the 3. The next step is to use that third row to eliminate the other elements in the second column. We multiply the row by 1/3 and subtract that from the first row. We do the same for the second row. For the bottom row we multiply the third row by (4/3-5M/3) and subtract that from the fourth row. For our new third row, we divide the original third row by 3. We get: X Y S 1 S 2 S 3 A 1 A 2 A M M -M M M+24 This puts Y in the solution, along with A1 and A3. The next iteration adds X to the solution. The iteration after that adds S 1. The final tableau looks like this: X Y S 1 S 2 S 3 A 1 A 2 A M 1-M 1-M 30 This is the final tableau because all the numbers in the bottom row are 0 or negative. Notice that the only M's left are under the A's. The non-zero variables in the solution are shown by the columns that have one 1 and the rest 0's. The solution amounts are in the right column, and match up with X, Y, and S 1 according to where the 1 in each column is. The solution is: X = 9, Y = 3, S 1 = 7. S2 and S3 are not in the final solution, so S 2 = S 3 = 0. The total cost is \$30. The shadow prices for the requirements are in the bottom row, in columns for S2 and S3. Both S 2 and S 3 have a shadow price of -\$1. These mean that it would cost you \$1 if you had to provide one more unit of either nutrient B or nutrient C. Having to provide one more unit of nutrient A costs nothing because you are already providing 7 extra units of A.

5 LINEAR PROGRAMMING II 5 Minimizing with Excel Fortunately, you don t have to do the simplex method by hand anymore. You can get Excel or Quattro Pro to do it for you. The challenge becomes setting the problem up properly. Learning objective 5: Be able to solve small linear programming problems yourself. The tricky part is setting up the objective function and the constraints. Write them on paper (without the S s and A s). Then let your spreadsheet crunch them for you. Here is the minimization example, as set up in Excel: Column B is for Grain X. Column C is for Grain Y. Column D has formulas for total cost and total amounts of nutrients provided. If you type the formula in D3 first, and use \$ signs in the right places, you can copy D3 to D6:D8. Here s the same spreadsheet, showing the formulas in the D column.

6 LINEAR PROGRAMMING II 6 Select Tools and then Solver... from Excel s menu. If you are re-using a spreadsheet from an earlier assignment, the safest way to start is to click on the Reset All button. This clears all the old settings and cell choices, preventing some elusive bugs. Then set the Target Cell to D3 and the Changing Cells to B2:C2. On the Equal To: line, check Min. If you don t do this, your solution will be unbounded. Solver will fly off looking for the upper-right corner of your boundless feasible region. Click on the Add button to add constraints. The nutrient amounts our grain provides, in D6:D8, must be greater than or equal to the required nutrients in E6:E8. Be sure to change the relation in the center to >=. Then click on this box s Add button to save this constraint and get ready to add another one. This time, it s the non-negativity constraints. B2 and C2 must be >= 0. Click on OK once this box is filled in as shown, because we re done adding constraints.

7 LINEAR PROGRAMMING II 7 Here s what the Solver Parameters box should look like when you re ready to solve. Click on Solve. Done! A Solver Results dialog box pops up in front of your spreadsheet. In the Reports section of the Solver Results box, select the Answer and Sensitivity Reports. Then click OK. You will then see that Excel has filled in the best solution, as shown to the right. This says that we satisfy the requirements for the least possible cost with 9 bags of X and 3 bags of Y. The cost is \$30.

9 LINEAR PROGRAMMING II 9 One edge of the feasible region is now parallel to the iso-cost lines. The diagram to the right shows how the lowest iso-cost line that touches the feasible region touches it along a whole line segment, not just at one corner. Excel s solver does not directly tell you that there are multiple solutions. Instead, it seems to pick one solution arbitrarily. When I solved this with Excel, I got an arbitrary value near the middle of this line segment. This was a true solution, but it was only one of many. Any combination of X and Y that sum to 12 from (2,10) to (9,3) is an optimum. I solved again in Excel, this time first clicking the Options button and checking the Assume Linear Model box. Excel came back with the (9,3) solution, which is at one end of the line segment of optimal solutions. The senstivity report, shown here, does have a subtle indication that something is up: The Shadow Price for nutrient C is \$0, even though there is no slack in nutrient C, the amount of C provided being equal to the amount required. The \$0 shadow price for C means that the C constraint is not really active at the (9,3) solution. Ordinarily in a linear programming problem, the number of active constraints (constraints with positive shadow prices) equals the number of variables. We have two variables, X and Y, so ordinarily we would have two active constraints. The fact that we have only one active constraint indicates that we have parallelism, and that the solution displayed is one among many.

12 LINEAR PROGRAMMING II 12 To get the logic behind this spreadsheet, consider row 6, for example. It's the constraint for Monday. The total number of people on the job on Monday equals the number of people who work Monday-Friday, plus Thursday-Monday, Friday-Tuesday, Saturday-Wednesday, and Sunday-Thursday. Row 6 has 1's in those columns. People who work Tuesday-Saturday and Wednesday-Sunday are not working Monday, so Row 6 has 0's in those columns. Cell I6's SUMPRODUCT formula calculates the total number of people working Monday. It must be greater than or equal to what is in J6. An alternative way to set up the problem is: The formulas in Column E do what the first layout does with 0's and 1's. The idea behind them is, for example, that the number of staff working Monday equals total number of people who started their 5-day work week on Monday, Thursday, Friday, Saturday, and Sunday. The constraints are that each of the formulas in the E column has to be greater than or equal to the corresponding Need amount in the F

13 LINEAR PROGRAMMING II 13 column. Both methods also need the non-negativity constraints, that the cells containing the amounts to hire are all >= 0. B. Transportation You are distributing pharmaceuticals from two locations. Location A has 100 units. Location B has 250 units. You have customers at locations C, D, and E, who want 50, 120, and 180 units respectively. Minimize cost, based on these unit transportation costs: From: A B To: C \$5 \$3 D \$10 \$4 E \$12 \$9 Here is a spreadsheet layout for this transportation problem: The key insight is that the variables are the six possible routes, that is, the six possible combinations of the two sources and the three destinations. The constraints are a mixture of >= and <=. Be careful when you enter these to be sure that they are all in the right directions. The constraints are: H5:H6 <= I5:I6 H7:H9 >= I7:I9 B2:G2 >= 0 If Solver gives you an error message that the solution is unbounded, check the directions of your > and < signs. Also check that you did include the non-negativity constraint, that the amounts are all >= 0.

14 LINEAR PROGRAMMING II 14 The dual illustrated Every linear programming problem has a "dual" -- a restatement of the problem that switches the roles of the constraints and the activities. The original problem is called the "primal." Here is the desks and tables example, showing the primal and the dual. The numbers are the same in the primal and the dual, but the columns in one are the rows in the other, the constraint constants in one are the coefficients of the objective function in the other, and the directions of the inequalities are switched. In the primal version of the desks and tables problem we maximize the objective function. We minimize the objective function in the dual. Primal: The constraints in the primal are: D6:D8 <= E6:E8 B2:C2 >= 0. The objective is to maximize D3. Dual: The constraints in the dual are: E5:E6 >= F5:F6 B2:D2 >= 0. The objective is to minimize E3. In the dual you are doing some accounting. You are allocating the profit value of each finished product (desk or table) to the inputs used to make it. These inputs' accounting values tell you how much you should be willing to pay if you can buy more inputs. These accounting values are the shadow prices of the inputs. Because they come from the Dual, they are sometimes called dual values. The E5 >= F5 constraint in the dual says that you must choose values for the three inputs such that the total value of the inputs into a desk is at least as great as \$3, the value of a desk. The E6 >= F6 constraint in the dual says that the values you put on those three inputs must also be such that the total value of the inputs that go into a table is at least as big as \$4, the value of a table. The dual's objective function says that you want to chose values that minimize the total value of your initial stock of available resources. A mind-bender, isn't it? The solutions are on the next page.

15 LINEAR PROGRAMMING II 15 The primal s solution: The primal s Solver Sensitivity Report The dual s solution: The dual s Solver Sensitivity Report The primal s solution amounts (4 and 6) are the shadow prices in the dual. Likewise, the dual s solution values (0,.667, and 1) are the shadow prices in the primal. The simplex method solves the primal and the dual simultaneously. This is how Excel gets the numbers it puts in the Sensitivity Report. Your turn:

### Linear Programming I: Maximization 2009 Samuel L. Baker Assignment 10 is on the last page.

LINEAR PROGRAMMING I 1 Learning objectives: Linear Programming I: Maximization 2009 Samuel L. Baker Assignment 10 is on the last page. 1. Recognize problems that linear programming can handle. 2. Know

### Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

### Solving Linear Programs in Excel

Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

### Chap 4 The Simplex Method

The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

### Linear Programming Models: Graphical and Computer Methods

Linear Programming Models: Graphical and Computer Methods Learning Objectives Students will be able to: 1. Understand the basic assumptions and properties of linear programming (LP). 2. Graphically solve

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

### Linear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables

Linear Inequalities and Linear Programming 5.1 Systems of Linear Inequalities 5.2 Linear Programming Geometric Approach 5.3 Geometric Introduction to Simplex Method 5.4 Maximization with constraints 5.5

### Introduction to Linear Programming and Graphical Method

Course: COMMERCE (CBCS) Subject: Business Mathematics Lesson: Introduction to Linear Programming and Graphical Method Authors Name: Dr. Gurmeet Kaur, Associate Professor, Daulat Ram College,University

### LINEAR PROGRAMMING THE SIMPLEX METHOD

LINEAR PROGRAMMING THE SIMPLE METHOD () Problems involving both slack and surplus variables A linear programming model has to be extended to comply with the requirements of the simplex procedure, that

### CHAPTER 17. Linear Programming: Simplex Method

CHAPTER 17 Linear Programming: Simplex Method CONTENTS 17.1 AN ALGEBRAIC OVERVIEW OF THE SIMPLEX METHOD Algebraic Properties of the Simplex Method Determining a Basic Solution Basic Feasible Solution 17.2

### (a) Let x and y be the number of pounds of seed and corn that the chicken rancher must buy. Give the inequalities that x and y must satisfy.

MA 4-4 Practice Exam Justify your answers and show all relevant work. The exam paper will not be graded, put all your work in the blue book provided. Problem A chicken rancher concludes that his flock

### Standard Form of a Linear Programming Problem

494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

### SUPPLEMENT TO CHAPTER

SUPPLEMENT TO CHAPTER 6 Linear Programming SUPPLEMENT OUTLINE Introduction and Linear Programming Model, 2 Graphical Solution Method, 5 Computer Solutions, 14 Sensitivity Analysis, 17 Key Terms, 22 Solved

### Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

### Using EXCEL Solver October, 2000

Using EXCEL Solver October, 2000 2 The Solver option in EXCEL may be used to solve linear and nonlinear optimization problems. Integer restrictions may be placed on the decision variables. Solver may be

### The Simplex Solution Method

Module A The Simplex Solution Method A-1 A-2 Module A The Simplex Solution Method The simplex method is a general mathematical solution technique for solving linear programming problems. In the simplex

### 7.4 Linear Programming: The Simplex Method

7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method

### The Graphical Simplex Method: An Example

The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### Linear Programming Refining Transportation

Solving a Refinery Problem with Excel Solver Type of Crude or Process Product A B C 1 C 2 D Demand Profits on Crudes 10 20 15 25 7 Products Product Slate for Crude or Process G 0.6 0.5 0.4 0.4 0.3 170

### Algebraic Simplex Method - Introduction Previous

Algebraic Simplex Method - Introduction To demonstrate the simplex method, consider the following linear programming model: This is the model for Leo Coco's problem presented in the demo, Graphical Method.

### Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs

Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs These questions are from previous years and should you give you some idea of what to expect on Quiz 1. 1. Consider the

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### The Simplex Method. What happens when we need more decision variables and more problem constraints?

The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving two decision variables and relatively few problem

### Microsoft Excel: Math and Functions Basics

Microsoft Excel: Math and Functions Basics Fill Handle The Fill Handle is in the bottom left corner of the selected cell. When you place your mouse over this handle, it changes from a thick white selection

### Section Notes 3. The Simplex Algorithm. Applied Math 121. Week of February 14, 2011

Section Notes 3 The Simplex Algorithm Applied Math 121 Week of February 14, 2011 Goals for the week understand how to get from an LP to a simplex tableau. be familiar with reduced costs, optimal solutions,

### Chapter 5.1 Systems of linear inequalities in two variables.

Chapter 5. Systems of linear inequalities in two variables. In this section, we will learn how to graph linear inequalities in two variables and then apply this procedure to practical application problems.

### 7.1 Modelling the transportation problem

Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources

### Using Excel to Find Numerical Solutions to LP's

Using Excel to Find Numerical Solutions to LP's by Anil Arya and Richard A. Young This handout sketches how to solve a linear programming problem using Excel. Suppose you wish to solve the following LP:

### Sensitivity Report in Excel

The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates

### Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method

The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible

### Chapter 5: Solving General Linear Programs

Chapter 5: Solving General Linear Programs So far we have concentrated on linear programs that are in standard form, which have a maximization objective, all constraints of type, all of the right hand

### 4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

### 1 Formulas and Functions April 09 C:\Documents and Settings\skoludek_r\Desktop\MSprogs\Excel\Formulas and Functions handout.doc

1 Formulas and Functions Contents FORMULAS AND FUNCTIONS... 3 Arithmetic formulae... 3 Error Messages... 3 Entering formulae... 4 Addition... 4 Subtraction... 4 Building formulae using mouse... 5 Multiplication...

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### Duality in Linear Programming

Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

### 4.4 The Simplex Method: Non-Standard Form

4.4 The Simplex Method: Non-Standard Form Standard form and what can be relaxed What were the conditions for standard form we have been adhering to? Standard form and what can be relaxed What were the

### problem is to maximize 2x1 +4x2 +3x3 + x4 subject to: 3x1 + x2 + x3 + 4x4» 12 x1 3x2 + 2x3 + 3x4» 7 2x1 + x2 + 3x3 x4» 10 x 0 : I set up the sample te

Linear Programming Notes IV: Solving Linear Programming Problems Using Excel 1 Introduction Software that solves moderately large linear programming problems is readily available. You can find programs

### Chapter 4: The Mechanics of the Simplex Method

Chapter 4: The Mechanics of the Simplex Method The simplex method is a remarkably simple and elegant algorithmic engine for solving linear programs. In this chapter we will examine the internal mechanics

### Sensitivity Analysis with Excel

Sensitivity Analysis with Excel 1 Lecture Outline Sensitivity Analysis Effects on the Objective Function Value (OFV): Changing the Values of Decision Variables Looking at the Variation in OFV: Excel One-

### Simplex method summary

Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

### LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad

LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources

### Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

### Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

### Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial

Using Formulas, Functions, and Data Analysis Tools Excel 2010 Tutorial Excel file for use with this tutorial Tutor1Data.xlsx File Location http://faculty.ung.edu/kmelton/data/tutor1data.xlsx Introduction:

### Linear Programming. April 12, 2005

Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

### USING EXCEL 2010 TO SOLVE LINEAR PROGRAMMING PROBLEMS MTH 125 Chapter 4

ONE-TIME ONLY SET UP INSTRUCTIONS Begin by verifying that the computer you are using has the Solver Add-In enabled. Click on Data in the menu across the top of the window. On the far right side, you should

### 4.3 The Simplex Method and the Standard Maximization Problem

. The Simplex Method and the Standard Maximiation Problem Question : What is a standard maximiation problem? Question : What are slack variables? Question : How do you find a basic feasible solution? Question

### Notes on Excel Forecasting Tools. Data Table, Scenario Manager, Goal Seek, & Solver

Notes on Excel Forecasting Tools Data Table, Scenario Manager, Goal Seek, & Solver 2001-2002 1 Contents Overview...1 Data Table Scenario Manager Goal Seek Solver Examples Data Table...2 Scenario Manager...8

### Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras

Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras Linear Programming solutions - Graphical and Algebraic Methods

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

### Linear Programming IS 601

Linear Programming IS 01 e-optimization.com A Resource Page on Optimization Distribution System at Proctor and Gamble Proctor and Gamble needed to consolidate and re-design their North American distribution

### Components of LP Problem. Chapter 13. Linear Programming (LP): Model Formulation & Graphical Solution. Introduction. Components of LP Problem (Cont.

Chapter 13 Linear Programming (LP): Model Formulation & Graphical Solution Components of LP Problem Decision Variables Denoted by mathematical symbols that does not have a specific value Examples How much

### Tutorial: Using Excel for Linear Optimization Problems

Tutorial: Using Excel for Linear Optimization Problems Part 1: Organize Your Information There are three categories of information needed for solving an optimization problem in Excel: an Objective Function,

### 56:171. Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa.

56:171 Operations Research -- Sample Homework Assignments Fall 1992 Dennis Bricker Dept. of Industrial Engineering University of Iowa Homework #1 (1.) Linear Programming Model Formulation. SunCo processes

### The application of linear programming to management accounting

The application of linear programming to management accounting Solutions to Chapter 26 questions Question 26.16 (a) M F Contribution per unit 96 110 Litres of material P required 8 10 Contribution per

### Solving Linear Programs using Microsoft EXCEL Solver

Solving Linear Programs using Microsoft EXCEL Solver By Andrew J. Mason, University of Auckland To illustrate how we can use Microsoft EXCEL to solve linear programming problems, consider the following

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### value is determined is called constraints. It can be either a linear equation or inequality.

Contents 1. Index 2. Introduction 3. Syntax 4. Explanation of Simplex Algorithm Index Objective function the function to be maximized or minimized is called objective function. E.g. max z = 2x + 3y Constraints

### How to use Excel Spreadsheets for Graphing

How to use Excel Spreadsheets for Graphing 1. Click on the Excel Program on the Desktop 2. You will notice that a screen similar to the above screen comes up. A spreadsheet is divided into Columns (A,

### Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Resource

### Linear Programming: Basic Concepts

Linear Programming: Basic Concepts Table of Contents Three Classic Applications of LP The Wyndor Glass Company Product Mix Problem Formulating the Wyndor Problem on a Spreadsheet The Algebraic Model for

### 1. (a) Multiply by negative one to make the problem into a min: 170A 170B 172A 172B 172C Antonovics Foster Groves 80 88

Econ 172A, W2001: Final Examination, Possible Answers There were 480 possible points. The first question was worth 80 points (40,30,10); the second question was worth 60 points (10 points for the first

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

### Further Maths Matrix Summary

Further Maths Matrix Summary A matrix is a rectangular array of numbers arranged in rows and columns. The numbers in a matrix are called the elements of the matrix. The order of a matrix is the number

Create a Cash Flow Statement Intel Easy Steps 1 2012 Intel Corporation Understanding Cash Flow Considerations Running a business involves continuous flow of money both money received and money spent on

### Using Microsoft Excel

Using Microsoft Excel Key skill [Where it is introduced] To open MS Excel. To open an existing spreadsheet. How to do it! Start > All Programs > Microsost Office > Microsoft Office Excel 2003 File > Open

### Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

### LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

### Computer Skills Microsoft Excel Creating Pie & Column Charts

Computer Skills Microsoft Excel Creating Pie & Column Charts In this exercise, we will learn how to display data using a pie chart and a column chart, color-code the charts, and label the charts. Part

### Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

### 15.053/8 February 26, 2013

15.053/8 February 26, 2013 Sensitivity analysis and shadow prices special thanks to Ella, Cathy, McGraph, Nooz, Stan and Tom 1 Quotes of the Day If the facts don't fit the theory, change the facts. --

### Consolidating and analyzing data

L E S S O N 5 Consolidating and analyzing data Lesson objectives Suggested teaching time To better understand how to analyze and consolidate data in Excel, you will: 25-35 minutes a b c Use the Data, Consolidate

### 4 UNIT FOUR: Transportation and Assignment problems

4 UNIT FOUR: Transportation and Assignment problems 4.1 Objectives By the end of this unit you will be able to: formulate special linear programming problems using the transportation model. define a balanced

### Excel Guide for Finite Mathematics and Applied Calculus

Excel Guide for Finite Mathematics and Applied Calculus Revathi Narasimhan Kean University A technology guide to accompany Mathematical Applications, 6 th Edition Applied Calculus, 2 nd Edition Calculus:

### Excel 102. For more information on the Library and programs, visit BCPLS 5/5/2010 PEMA

Excel 102 Once you are comfortable with the basic parts of Excel, the next step is to figure out how the more advanced tasks can be accomplished. Microsoft Excel can be used to do advanced functions, have

### Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

### Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

### Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

### EXCEL PIVOT TABLE David Geffen School of Medicine, UCLA Dean s Office Oct 2002

EXCEL PIVOT TABLE David Geffen School of Medicine, UCLA Dean s Office Oct 2002 Table of Contents Part I Creating a Pivot Table Excel Database......3 What is a Pivot Table...... 3 Creating Pivot Tables

### is redundant. If you satisfy the other four constraints, then you automatically satisfy x 1 0. (In fact, if the first two constraints hold, then x 1 m

Linear Programming Notes II: Graphical Solutions 1 Graphing Linear Inequalities in the Plane You can solve linear programming problems involving just two variables by drawing a picture. The method works

### Solving Systems of Linear Equations. Substitution

Solving Systems of Linear Equations There are two basic methods we will use to solve systems of linear equations: Substitution Elimination We will describe each for a system of two equations in two unknowns,

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Formulas, Functions and Charts

Formulas, Functions and Charts :: 167 8 Formulas, Functions and Charts 8.1 INTRODUCTION In this leson you can enter formula and functions and perform mathematical calcualtions. You will also be able to

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### How to Make the Most of Excel Spreadsheets

How to Make the Most of Excel Spreadsheets Analyzing data is often easier when it s in an Excel spreadsheet rather than a PDF for example, you can filter to view just a particular grade, sort to view which

### EXCEL SOLVER TUTORIAL

ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plug-in, Solver, that we will be using

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

### Linear Programming with Post-Optimality Analyses

Linear Programming with Post-Optimality Analyses Wilson Problem: Wilson Manufacturing produces both baseballs and softballs, which it wholesales to vendors around the country. Its facilities permit the

### Math 016. Materials With Exercises

Math 06 Materials With Exercises June 00, nd version TABLE OF CONTENTS Lesson Natural numbers; Operations on natural numbers: Multiplication by powers of 0; Opposite operations; Commutative Property of