# What is Linear Programming?

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to be optimized, and a set of constraints to be satisfied by x. A linear program is an optimization problem where all involved functions are linear in x; in particular, all the constraints are linear inequalities and equalities. Linear programming is the subject of studying and solving linear programs. Linear programming was born during the second World War out of the necessity of solving military logistic problems. It remains one of the most used mathematical techniques in today s modern societies. 1.1 A Toy Problem A local furniture shop makes chairs and tables. The projected profits for the two products are, respectively, \$20 per chair and \$30 per table. The projected demands for chairs and tables are 400 and 100, respectively. Each chair requires 2 cubic feet of wood while each table requires 4 cubic feet. The shop has a total amount of 1,000 cubic feet of wood in store. How many chairs and tables should the shop make in order to maximize its profit? Let x 1 be the number of chairs and x 2 the number of tables to be made. There are the two variables, or unknowns, for this problem. The shop wants to maximize its total profit, 20x x 2, subject to the constraints that (a) the total amount of wood used to make the two products can not exceed the 500 cubic feet available, and (b) the numbers of chairs and tables to be made 5

2 6 CHAPTER 1. WHAT IS LINEAR PROGRAMMING? should not exceed the demands. In additional, we should not forget that the number of chairs and tables made need to be nonnegative. Putting all these together, we have an optimization problem: max 20x x 2 s.t. 2x 1 + 4x x x (1.1) where 20x x 2 is the objective function, s.t. is the shorthand for subject to which is followed by constraints of this problem. This optimization problem is clearly a linear program where all the functions involved, both in the objective and in the constraints, are linear functions of x 1 and x From Concrete to Abstract Let us look at an abstract production model. A company produces n products using m kinds of materials. For the next month, the unit profits for the n products are projected to be, respectively, c 1, c 2,, c n. The amounts of materials available to the company in the next month are, respectively, b 1, b 2,, b m. The amount of material i consumed by a unit of product j is given by a ij 0 for i = 1, 2,, m and j = 1, 2,, n (some a ij could be zero if prodict j does not consume material i). The question facing the company is, given the limited availability of materials, what is the quantity the company should produce in the next month for each product in order to achieve the maximum total profit? The decision variables are obviously the amounts of production for the n products in the next month. Let us call them x 1, x 2,, x n. The optimization model is to maximize the total profit, subject to the material availability constraints for all m materials, and the nonnegativity constraints on the n variables. In mathematical terms, the model is the following linear program:

3 1.2. FROM CONCRETE TO ABSTRACT 7 max c 1 x 1 + c 2 x c n x n s.t. a 11 x 1 + a 12 x a 1n x n b 1 a 21 x 1 + a 22 x a 2n x n b 2. a m1 x 1 + a m2 x a mn x n b m x 1, x 2,, x n 0 (1.2) The nonnegativity constraints can be vital, but are often forgotten by beginners. Why is nonnegativity important here? First, in the above context, it does not make sense to expect the company to produce a negative amount of a product. Moreover, if one product, say product k, is not profitable, corresponding to a c k < 0, without the nonnegativity constraints the model would produce a solution x k < 0 and generate a profit c k x k > 0. In fact, since a negative amount of product k would not consume any material but instead generate materials, one could drive the profit to infinity by forcing x k to go to negative infinity. Hence, the model would be totally wrong had one forgot nonnegativity. The linear program in (1.2) is tedious to write. One can shorten the expressions using the summation notation. For example, the total profit can be represented by the left-hand side instead of the right-hand side of the following identity n c i x i = c 1 x 1 + c 2 x c n x n. i=1 However, a much more concise way is to use matrices and vectors. If we let c = (c 1, c 2,, c n ) T and x = (x 1, x 2,, x n ) T. Then the total profit becomes c T x. In a matrix-vector notation, the linear program (1.2) becomes max s.t. c T x Ax b x 0 (1.3) where A R m n and b R m. The inequalities are always understood as component-wise comparisons.

4 8 CHAPTER 1. WHAT IS LINEAR PROGRAMMING? 1.3 A Standard Form A linear program can have an objective of either minimization or maximization, while its constraints can have any combination of linear inequalities and equalities. It is impractical to study linear programs and to design algorithms for them without introducing a so-called standard form a unifying framework encompassing most, if not all, individual forms of linear programs. Different standard forms exist in the literature that may offer different advantages under different circumstances. Here we will mostly use the following standard form: min s.t. c T x Ax = b x 0 (1.4) where the matrix A is assumed to be m n with m < n, b R m and c, x R n. The triple (A, b, c) represents problem data that need to be specified, and x is the variable to be determined. In fact, once the size of A is given, the sizes of all the other quantities follow accordingly from the rule of matrix multiplications. In plain English, a standard linear program is one that is a minimization problem with a set of equality constraints but no inequality constraints except nonnegativity on all variables. We will always assume that A has full rank, or in other words, the rows of A are linearly independent which ensures that the equations in Ax = b are consistent for any right-hand side b R m. We make this assumption to simplify the matter without loss of generality, because redundant or inconsistent linear equations can always be detected, and removed if so desired, through standard linear algebra techniques. Moreover, the requirement m < n ensures that in general there are infinite many solutions to the equation Ax = b, leaving degrees of freedom for nonnegative and optimal solutions. A linear program, say LP-A, is said to be equivalent to a linear program LP-B if an optimal solution of LP-A, if it exists, can be obtained from an optimal solution of LP-B through some simple algebraic operations. This equivalence allows one to solve LP-B and obtain a solution to LP-A. We claim that every linear program is equivalent to a standard-form linear program though a transformation, which usually requires adding extra variables and constraints. Obviously, maximizing a function is equivalent to minimizing the negative of the function. A common trick to transform an inequality a T x β into an equivalent equality is to add a so-called slack

5 1.3. A STANDARD FORM 9 variable η so that a T x β a T x + η = β, η 0. Let us consider the toy problem (1.1). With the addition of slack variables x 3, x 4, x 5 (we can name them anyway we want), we transform the linear program on the left to the one on the right: max 20x x 2 s.t. 2x 1 + 4x x x x 1, x 2 0 = max 20x x 2 s.t. 2x 1 + 4x 2 + x 3 = 1000 x 1 + x 4 = 400 x 2 + x 5 = 100 x 1, x 2, x 3, x 4, x 5 0 After switching to minimization, we turn the linear program on the right to an equivalent linear program of the standard form: min 20x 1 30x 2 + 0x 3 + 0x 4 + 0x 5 s.t. 2x 1 + 4x 2 + x 3 + 0x 4 + 0x 5 = 1000 x 1 + 0x 2 + 0x 3 + x 4 + 0x 5 = 400 0x 1 + x 2 + 0x 3 + 0x 4 + x 5 = 100 x 1, x 2, x 3, x 4, x 5 0 where c T = ( ), b is unchanged and A = (1.5) This new coefficient matrix is obtained by padding the 3-by-3 identity matrix to the right of the original coefficient matrix. Similarly, the general linear program (1.3) can be transformed into min s.t. c T x Ax + s = b x, s 0 (1.6) where s R m is the slack variable vector. This linear program is in the standard form because it is a minimization problem with only equality constraints and nonnegativity on all variables. The variable in (1.6) consists of x R n and s R m, and the new data triple is obtained by the construction ( ) c A [A I], b b, c, 0 where I is the m-by-m identity matrix and 0 R m.

6 10 CHAPTER 1. WHAT IS LINEAR PROGRAMMING? 1.4 Feasibility and Solution Sets Let us call the following set F = {x R n : Ax = b, x 0} R n (1.7) the feasibility set of the linear program (1.4). Points in the feasibility set are called feasible points, out of which we seek an optimal solution x that minimizes the objective function c T x. With the help of the feasibility set notation, we can write our standard linear program into a concise form min{c T x : x F}. (1.8) A polyhedron in R n is a subset of R n defined by points satisfying a collection of linear inequalities and/or equalities. For example, a hyper-plane {x R n : a T x = β} is a polyhedron where a R n and β R, and a half-space {x R n : a T x β} is a polyhedron as well. In geometric terms, a polyhedron is nothing but the intersection of a collection of hyper-planes and half-spaces. In particular, the empty set and a singleton set (that contains only a single point) are polyhedra. Clearly, the feasibility set F in (1.7) for linear program (1.4) is a polyhedron in R n. It may be empty if some constraints are contradictory (say, x 1 1 and x 1 1), or it may be an unbounded set, say, F = {x R 2 : x 1 x 2 = 0, x 0} R 2, (1.9) which is the half diagonal-line emitting from the origin towards infinity. Most of times, F will be a bounded, nonempty set. A bounded polyhedron is also called a polytope. The optimal solution set, or just solution set for short, of a linear program consists of all feasible points that optimizes its objective function. In particular, we denote the solution set of the standard linear program (1.4) or (1.8) as S. Since S F, S is empty whenever F is empty. However, S can be empty even if F is not.

7 1.5. THREE POSSIBILITIES 11 The purpose of a linear programming algorithm is to determine where S is empty or not and, in the latter case, to find a member x of S. In case such an x exists, we can write S = {x F : c T x = c T x } or S = {x R n : c T x = c T x } F. (1.10) That is, S is the intersection of a hyper-plane with the polyhedron F. Hence, S itself is a polyhedron. If the intersection is a singleton S = {x }, then x is the unique optimal solution; otherwise, there must exist infinitely many optimal solutions to the linear program. 1.5 Three Possibilities A linear program is infeasible if its feasibility set is empty; otherwise, it is feasible. A linear program is unbounded if it is feasible but its objective function can be made arbitrarily good. For example, if a linear program is a minimization problem and unbounded, then its objective value can be made arbitrarily small while maintaining feasibility. In other words, we can drive the objective value to negative infinity within the feasibility set. The situation is similar for a unbounded maximization problem where we can drive the objective value to positive infinity. Clearly, a linear program is unbounded only if its feasibility set is a unbounded set. However, a unbounded feasibility set does not necessarily imply that the linear program itself is unbounded. To make it clear, let us formally define the term unbounded for a set and for a linear program. We say a set F is unbounded if there exists a sequence {x k } F such that x k as k. On the other hand, we say a linear program min{c T x : x F} is unbounded if there exists a sequence {x k } F such that c T x k as k. Hence, for a linear program the term unbounded means objective unbounded. When the feasibility set F is unbounded, whether or not the corresponding linear program is unbounded depends entirely on the objective function. For example, consider F given by (1.9). The linear program max{x 1 + x 2 : (x 1, x 2 ) F} = max{2x 1 : x 1 0} is unbounded. However, when the objective is changed to minimization instead, the resulting linear program has an optimal solution at the origin.

8 12 CHAPTER 1. WHAT IS LINEAR PROGRAMMING? If a linear program is feasible but not (objective) unbounded, then it must achieve a finite optimal value within its feasibility set; in other words, it has an optimal solution x S F. To sum up, for any given linear program there are three possibilities: 1. The linear program is infeasible, i.e., F =. In this case, S =. 2. The linear program is feasible but (objective) unbounded. In this case, F must be an unbounded set and S =. 3. The linear program is feasible and has an optimal solution x S F. In this case, the feasibility set F can be either unbounded or bounded. These three possibilities imply that if F is both feasible and bounded, then the corresponding linear program must have an optimal solution x S F, regardless of what objective it has.

### Geometry of Linear Programming

Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms

### . P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

### Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### Outline. Linear Programming (LP): Simplex Search. Simplex: An Extreme-Point Search Algorithm. Basic Solutions

Outline Linear Programming (LP): Simplex Search Benoît Chachuat McMaster University Department of Chemical Engineering ChE 4G03: Optimization in Chemical Engineering 1 Basic Solutions

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### 1 Polyhedra and Linear Programming

CS 598CSC: Combinatorial Optimization Lecture date: January 21, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im 1 Polyhedra and Linear Programming In this lecture, we will cover some basic material

### The Simplex Method. yyye

Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #05 1 The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

### Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs

Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs These questions are from previous years and should you give you some idea of what to expect on Quiz 1. 1. Consider the

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### 4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

### max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

### I. Solving Linear Programs by the Simplex Method

Optimization Methods Draft of August 26, 2005 I. Solving Linear Programs by the Simplex Method Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston,

### Module1. x 1000. y 800.

Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

### Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

### Good luck, veel succes!

Final exam Advanced Linear Programming, May 7, 13.00-16.00 Switch off your mobile phone, PDA and any other mobile device and put it far away. No books or other reading materials are allowed. This exam

### The Graphical Simplex Method: An Example

The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

### Lecture 3: Linear Programming Relaxations and Rounding

Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can

### 3. Linear Programming and Polyhedral Combinatorics

Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

### Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

### 18. Linear optimization

18. Linear optimization EE103 (Fall 2011-12) linear program examples geometrical interpretation extreme points simplex method 18-1 Linear program minimize c 1 x 1 +c 2 x 2 + +c n x n subject to a 11 x

### Theory of Linear Programming

Theory of Linear Programming Debasis Mishra April 6, 2011 1 Introduction Optimization of a function f over a set S involves finding the maximum (minimum) value of f (objective function) in the set S (feasible

### Chap 4 The Simplex Method

The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

### CHAPTER 17. Linear Programming: Simplex Method

CHAPTER 17 Linear Programming: Simplex Method CONTENTS 17.1 AN ALGEBRAIC OVERVIEW OF THE SIMPLEX METHOD Algebraic Properties of the Simplex Method Determining a Basic Solution Basic Feasible Solution 17.2

### 3 Does the Simplex Algorithm Work?

Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

### Introduction to Linear Programming.

Chapter 1 Introduction to Linear Programming. This chapter introduces notations, terminologies and formulations of linear programming. Examples will be given to show how real-life problems can be modeled

### Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

### a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.

Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given

### is redundant. If you satisfy the other four constraints, then you automatically satisfy x 1 0. (In fact, if the first two constraints hold, then x 1 m

Linear Programming Notes II: Graphical Solutions 1 Graphing Linear Inequalities in the Plane You can solve linear programming problems involving just two variables by drawing a picture. The method works

### Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method

The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible

### Algebraic Simplex Method - Introduction Previous

Algebraic Simplex Method - Introduction To demonstrate the simplex method, consider the following linear programming model: This is the model for Leo Coco's problem presented in the demo, Graphical Method.

### Lecture 1: Linear Programming Models. Readings: Chapter 1; Chapter 2, Sections 1&2

Lecture 1: Linear Programming Models Readings: Chapter 1; Chapter 2, Sections 1&2 1 Optimization Problems Managers, planners, scientists, etc., are repeatedly faced with complex and dynamic systems which

### Chapter 1 Linear Programming. Paragraph 2 Developing Ideas for an Algorithm solving Linear Optimization

Chapter 1 Linear Programming Paragraph 2 Developing Ideas for an Algorithm solving Linear Optimization What we did so far How to model an optimization problem Data, Variables, Constraints, Objective We

### Systems of Linear Equations

Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

### Linear Programming. April 12, 2005

Linear Programming April 1, 005 Parts of this were adapted from Chapter 9 of i Introduction to Algorithms (Second Edition) /i by Cormen, Leiserson, Rivest and Stein. 1 What is linear programming? The first

### 24. The Branch and Bound Method

24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NP-complete. Then one can conclude according to the present state of science that no

### Min-cost flow problems and network simplex algorithm

Min-cost flow problems and network simplex algorithm The particular structure of some LP problems can be sometimes used for the design of solution techniques more efficient than the simplex algorithm.

### Lecture 2: August 29. Linear Programming (part I)

10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

### By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

### 3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Section Notes 3. The Simplex Algorithm. Applied Math 121. Week of February 14, 2011

Section Notes 3 The Simplex Algorithm Applied Math 121 Week of February 14, 2011 Goals for the week understand how to get from an LP to a simplex tableau. be familiar with reduced costs, optimal solutions,

### 1. (a) Multiply by negative one to make the problem into a min: 170A 170B 172A 172B 172C Antonovics Foster Groves 80 88

Econ 172A, W2001: Final Examination, Possible Answers There were 480 possible points. The first question was worth 80 points (40,30,10); the second question was worth 60 points (10 points for the first

### MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.

MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column

### LINEAR PROGRAMMING THE SIMPLEX METHOD

LINEAR PROGRAMMING THE SIMPLE METHOD () Problems involving both slack and surplus variables A linear programming model has to be extended to comply with the requirements of the simplex procedure, that

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

### Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

### Lecture 4 Linear Programming Models: Standard Form. August 31, 2009

Linear Programming Models: Standard Form August 31, 2009 Outline: Lecture 4 Standard form LP Transforming the LP problem to standard form Basic solutions of standard LP problem Operations Research Methods

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### The Simplex Method. What happens when we need more decision variables and more problem constraints?

The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving two decision variables and relatively few problem

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS Systems of Equations and Matrices Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

### Simplex method summary

Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

### SYSTEMS OF EQUATIONS

SYSTEMS OF EQUATIONS 1. Examples of systems of equations Here are some examples of systems of equations. Each system has a number of equations and a number (not necessarily the same) of variables for which

### Duality of linear conic problems

Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

### Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

### 1. LINEAR EQUATIONS. A linear equation in n unknowns x 1, x 2,, x n is an equation of the form

1. LINEAR EQUATIONS A linear equation in n unknowns x 1, x 2,, x n is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b, where a 1, a 2,..., a n, b are given real numbers. For example, with x and

### Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras

Fundamentals of Operations Research Prof.G. Srinivasan Department of Management Studies Lecture No. # 03 Indian Institute of Technology, Madras Linear Programming solutions - Graphical and Algebraic Methods

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

### Vector Spaces II: Finite Dimensional Linear Algebra 1

John Nachbar September 2, 2014 Vector Spaces II: Finite Dimensional Linear Algebra 1 1 Definitions and Basic Theorems. For basic properties and notation for R N, see the notes Vector Spaces I. Definition

### Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

### LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad

LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources

### Row Echelon Form and Reduced Row Echelon Form

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### 3.4. Solving simultaneous linear equations. Introduction. Prerequisites. Learning Outcomes

Solving simultaneous linear equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Basic concepts of linear optimization

Chapter 1 Basic concepts of linear optimization Overview In 1827, the French mathematician Jean-Baptiste Joseph Fourier (1768 1830) published a method for solving systems of linear inequalities. This publication

### Linear Programming with Post-Optimality Analyses

Linear Programming with Post-Optimality Analyses Wilson Problem: Wilson Manufacturing produces both baseballs and softballs, which it wholesales to vendors around the country. Its facilities permit the

### MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +

### Mathematics Notes for Class 12 chapter 12. Linear Programming

1 P a g e Mathematics Notes for Class 12 chapter 12. Linear Programming Linear Programming It is an important optimization (maximization or minimization) technique used in decision making is business and

### Simplex Method. Introduction:

Introduction: In the previous chapter, we discussed about the graphical method for solving linear programming problems. Although the graphical method is an invaluable aid to understand the properties of

### LINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH

59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### SUPPLEMENT TO CHAPTER

SUPPLEMENT TO CHAPTER 6 Linear Programming SUPPLEMENT OUTLINE Introduction and Linear Programming Model, 2 Graphical Solution Method, 5 Computer Solutions, 14 Sensitivity Analysis, 17 Key Terms, 22 Solved

### Using the Simplex Method in Mixed Integer Linear Programming

Integer Using the Simplex Method in Mixed Integer UTFSM Nancy, 17 december 2015 Using the Simplex Method in Mixed Integer Outline Mathematical Programming Integer 1 Mathematical Programming Optimisation

### The Simplex Solution Method

Module A The Simplex Solution Method A-1 A-2 Module A The Simplex Solution Method The simplex method is a general mathematical solution technique for solving linear programming problems. In the simplex

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 \$3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

### Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### Basic solutions in standard form polyhedra

Recap, and outline of Lecture Previously min s.t. c x Ax = b x Converting any LP into standard form () Interpretation and visualization () Full row rank assumption on A () Basic solutions and bases in

### Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

### Linear Programming in Matrix Form

Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

### Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

### Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

### Linear Programming Models: Graphical and Computer Methods

Linear Programming Models: Graphical and Computer Methods Learning Objectives Students will be able to: 1. Understand the basic assumptions and properties of linear programming (LP). 2. Graphically solve

### 3y 1 + 5y 2. y 1 + y 2 20 y 1 0, y 2 0.

1 Linear Programming A linear programming problem is the problem of maximizing (or minimizing) a linear function subject to linear constraints. The constraints may be equalities or inequalities. 1.1 Example

### The Canonical and Dictionary Forms of Linear Programs

The Canonical and Dictionary Forms of Linear Programs Recall the general optimization problem: Minimize f(x) subect to x D (1) The real valued function f is called the obective function, and D the constraint

### Linear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables

Linear Inequalities and Linear Programming 5.1 Systems of Linear Inequalities 5.2 Linear Programming Geometric Approach 5.3 Geometric Introduction to Simplex Method 5.4 Maximization with constraints 5.5

### x if x 0, x if x < 0.

Chapter 3 Sequences In this chapter, we discuss sequences. We say what it means for a sequence to converge, and define the limit of a convergent sequence. We begin with some preliminary results about the

### Unified Lecture # 4 Vectors

Fall 2005 Unified Lecture # 4 Vectors These notes were written by J. Peraire as a review of vectors for Dynamics 16.07. They have been adapted for Unified Engineering by R. Radovitzky. References [1] Feynmann,

### UNIT 2 MATRICES - I 2.0 INTRODUCTION. Structure

UNIT 2 MATRICES - I Matrices - I Structure 2.0 Introduction 2.1 Objectives 2.2 Matrices 2.3 Operation on Matrices 2.4 Invertible Matrices 2.5 Systems of Linear Equations 2.6 Answers to Check Your Progress

### Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

### Solutions to Math 51 First Exam January 29, 2015

Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not

### Linear Systems. Singular and Nonsingular Matrices. Find x 1, x 2, x 3 such that the following three equations hold:

Linear Systems Example: Find x, x, x such that the following three equations hold: x + x + x = 4x + x + x = x + x + x = 6 We can write this using matrix-vector notation as 4 {{ A x x x {{ x = 6 {{ b General

### Duality in Linear Programming

Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow