International Doctoral School Algorithmic Decision Theory: MCDA and MOO

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "International Doctoral School Algorithmic Decision Theory: MCDA and MOO"

Transcription

1 International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire d Informatique de Nantes Atlantique, CNRS, Université de Nantes, France MCDA and MOO, Han sur Lesse, September

2 Overview 1 Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 2 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 3 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

3 Overview Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 1 Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 2 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 3 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

4 Formulation and Example Solving MOLPs by Weighted Sums Variables x R n Objective function Cx where C R p n Constraints Ax = b where A R m n and b R m min {Cx : Ax = b, x 0} (1) X = {x R n : Ax = b, x 0} is the feasible set in decision space Y = {Cx : x X } is the feasible set in objective space

5 Formulation and Example Solving MOLPs by Weighted Sums Variables x R n Objective function Cx where C R p n Constraints Ax = b where A R m n and b R m min {Cx : Ax = b, x 0} (1) X = {x R n : Ax = b, x 0} is the feasible set in decision space Y = {Cx : x X } is the feasible set in objective space

6 Formulation and Example Solving MOLPs by Weighted Sums Variables x R n Objective function Cx where C R p n Constraints Ax = b where A R m n and b R m min {Cx : Ax = b, x 0} (1) X = {x R n : Ax = b, x 0} is the feasible set in decision space Y = {Cx : x X } is the feasible set in objective space

7 Formulation and Example Solving MOLPs by Weighted Sums Variables x R n Objective function Cx where C R p n Constraints Ax = b where A R m n and b R m min {Cx : Ax = b, x 0} (1) X = {x R n : Ax = b, x 0} is the feasible set in decision space Y = {Cx : x X } is the feasible set in objective space

8 Formulation and Example Solving MOLPs by Weighted Sums Example ( ) 3x1 + x min 2 x 1 2x 2 subject to x 2 3 3x 1 x 2 6 x 0 ( 3 1 C = 1 2 ) A = ( ) b = ( 3 6 )

9 Formulation and Example Solving MOLPs by Weighted Sums Example ( ) 3x1 + x min 2 x 1 2x 2 subject to x 2 3 3x 1 x 2 6 x 0 ( 3 1 C = 1 2 ) A = ( ) b = ( 3 6 )

10 Formulation and Example Solving MOLPs by Weighted Sums x 2 x 3 X x 1 x Feasible set in decision space

11 Formulation and Example Solving MOLPs by Weighted Sums Cx 1 Cx Y Cx Cx 3-10 Feasible set in objective space

12 Formulation and Example Solving MOLPs by Weighted Sums Definition Let ˆx X be a feasible solution of the MOLP (1) and let ŷ = C ˆx ˆx is called weakly efficient if there is no x X such that Cx < C ˆx; ŷ = C ˆx is called weakly nondominated ˆx is called efficient if there is no x X such that Cx C ˆx; ŷ = C ˆx is called nondominated ˆx is called properly efficient if it is efficient and if there exists a real number M > 0 such that for all i and x with c T i x < c T i ˆx there is an index j and M > 0 such that c T j x > c T j ˆx and c T i ˆx c T i x c T j x c T j ˆx M

13 Formulation and Example Solving MOLPs by Weighted Sums Definition Let ˆx X be a feasible solution of the MOLP (1) and let ŷ = C ˆx ˆx is called weakly efficient if there is no x X such that Cx < C ˆx; ŷ = C ˆx is called weakly nondominated ˆx is called efficient if there is no x X such that Cx C ˆx; ŷ = C ˆx is called nondominated ˆx is called properly efficient if it is efficient and if there exists a real number M > 0 such that for all i and x with c T i x < c T i ˆx there is an index j and M > 0 such that c T j x > c T j ˆx and c T i ˆx c T i x c T j x c T j ˆx M

14 Formulation and Example Solving MOLPs by Weighted Sums Definition Let ˆx X be a feasible solution of the MOLP (1) and let ŷ = C ˆx ˆx is called weakly efficient if there is no x X such that Cx < C ˆx; ŷ = C ˆx is called weakly nondominated ˆx is called efficient if there is no x X such that Cx C ˆx; ŷ = C ˆx is called nondominated ˆx is called properly efficient if it is efficient and if there exists a real number M > 0 such that for all i and x with c T i x < c T i ˆx there is an index j and M > 0 such that c T j x > c T j ˆx and c T i ˆx c T i x c T j x c T j ˆx M

15 Formulation and Example Solving MOLPs by Weighted Sums Definition Let ˆx X be a feasible solution of the MOLP (1) and let ŷ = C ˆx ˆx is called weakly efficient if there is no x X such that Cx < C ˆx; ŷ = C ˆx is called weakly nondominated ˆx is called efficient if there is no x X such that Cx C ˆx; ŷ = C ˆx is called nondominated ˆx is called properly efficient if it is efficient and if there exists a real number M > 0 such that for all i and x with c T i x < c T i ˆx there is an index j and M > 0 such that c T j x > c T j ˆx and c T i ˆx c T i x c T j x c T j ˆx M

16 Formulation and Example Solving MOLPs by Weighted Sums Cx 1 Cx Y Cx Cx 3-10 Nondominated set

17 Formulation and Example Solving MOLPs by Weighted Sums x 2 x 3 X x 1 x Efficient set

18 Overview Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 1 Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 2 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 3 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

19 Formulation and Example Solving MOLPs by Weighted Sums Let λ 1,, λ p 0 and consider LP(λ) p min λ k ck T x = min λt Cx k=1 subject to Ax = b x 0 with some vector λ 0 (Why not λ = 0 or λ 0?) LP(λ) is a linear programme that can be solved by the Simplex method If λ > 0 then optimal solution of LP(λ) is properly efficient If λ 0 then optimal solution of LP(λ) is weakly efficient Converse also true, because Y convex

20 Formulation and Example Solving MOLPs by Weighted Sums Let λ 1,, λ p 0 and consider LP(λ) p min λ k ck T x = min λt Cx k=1 subject to Ax = b x 0 with some vector λ 0 (Why not λ = 0 or λ 0?) LP(λ) is a linear programme that can be solved by the Simplex method If λ > 0 then optimal solution of LP(λ) is properly efficient If λ 0 then optimal solution of LP(λ) is weakly efficient Converse also true, because Y convex

21 Formulation and Example Solving MOLPs by Weighted Sums Let λ 1,, λ p 0 and consider LP(λ) p min λ k ck T x = min λt Cx k=1 subject to Ax = b x 0 with some vector λ 0 (Why not λ = 0 or λ 0?) LP(λ) is a linear programme that can be solved by the Simplex method If λ > 0 then optimal solution of LP(λ) is properly efficient If λ 0 then optimal solution of LP(λ) is weakly efficient Converse also true, because Y convex

22 Formulation and Example Solving MOLPs by Weighted Sums Let λ 1,, λ p 0 and consider LP(λ) p min λ k ck T x = min λt Cx k=1 subject to Ax = b x 0 with some vector λ 0 (Why not λ = 0 or λ 0?) LP(λ) is a linear programme that can be solved by the Simplex method If λ > 0 then optimal solution of LP(λ) is properly efficient If λ 0 then optimal solution of LP(λ) is weakly efficient Converse also true, because Y convex

23 Formulation and Example Solving MOLPs by Weighted Sums Let λ 1,, λ p 0 and consider LP(λ) p min λ k ck T x = min λt Cx k=1 subject to Ax = b x 0 with some vector λ 0 (Why not λ = 0 or λ 0?) LP(λ) is a linear programme that can be solved by the Simplex method If λ > 0 then optimal solution of LP(λ) is properly efficient If λ 0 then optimal solution of LP(λ) is weakly efficient Converse also true, because Y convex

24 Formulation and Example Solving MOLPs by Weighted Sums Illustration in objective space Y = CX Cx 1 Cx 2 Cx 3 Cx 4 y 1 y 2 {(λ 1 ) T Cx = α 1 } {(λ 2 ) T Cx = α 2 } {(λ 3 ) T Cx = α 3 } λ 1 = (2, 1), λ 2 = (1, 3), λ 3 = (1, 1)

25 Formulation and Example Solving MOLPs by Weighted Sums Illustration in objective space Y = CX Cx 1 Cx 2 Cx 3 Cx 4 y 1 y 2 {(λ 1 ) T Cx = α 1 } {(λ 2 ) T Cx = α 2 } {(λ 3 ) T Cx = α 3 } λ 1 = (2, 1), λ 2 = (1, 3), λ 3 = (1, 1)

26 Formulation and Example Solving MOLPs by Weighted Sums y R p satisfying λ T y = α define a straight line (hyperplane) Since y = Cx and λ T Cx is minimised, we push the line towards the origin (left and down) When the line only touches Y nondominated points are found Nondominated points Y N are on the boundary of Y Y is convex polyhedron and has finite number of facets Y N consists of finitely many facets of Y The normal of the facet can serve as weight vector λ

27 Formulation and Example Solving MOLPs by Weighted Sums y R p satisfying λ T y = α define a straight line (hyperplane) Since y = Cx and λ T Cx is minimised, we push the line towards the origin (left and down) When the line only touches Y nondominated points are found Nondominated points Y N are on the boundary of Y Y is convex polyhedron and has finite number of facets Y N consists of finitely many facets of Y The normal of the facet can serve as weight vector λ

28 Formulation and Example Solving MOLPs by Weighted Sums y R p satisfying λ T y = α define a straight line (hyperplane) Since y = Cx and λ T Cx is minimised, we push the line towards the origin (left and down) When the line only touches Y nondominated points are found Nondominated points Y N are on the boundary of Y Y is convex polyhedron and has finite number of facets Y N consists of finitely many facets of Y The normal of the facet can serve as weight vector λ

29 Formulation and Example Solving MOLPs by Weighted Sums y R p satisfying λ T y = α define a straight line (hyperplane) Since y = Cx and λ T Cx is minimised, we push the line towards the origin (left and down) When the line only touches Y nondominated points are found Nondominated points Y N are on the boundary of Y Y is convex polyhedron and has finite number of facets Y N consists of finitely many facets of Y The normal of the facet can serve as weight vector λ

30 Formulation and Example Solving MOLPs by Weighted Sums y R p satisfying λ T y = α define a straight line (hyperplane) Since y = Cx and λ T Cx is minimised, we push the line towards the origin (left and down) When the line only touches Y nondominated points are found Nondominated points Y N are on the boundary of Y Y is convex polyhedron and has finite number of facets Y N consists of finitely many facets of Y The normal of the facet can serve as weight vector λ

31 Formulation and Example Solving MOLPs by Weighted Sums Question: Can all efficient solutions be found using weighted sums? If ˆx X is efficient, does there exist λ > 0 such that ˆx is optimal solution to min{λ T Cx : Ax = b, x 0}? Lemma A feasible solution x 0 X is efficient if and only if the linear programme max e T z subject to Ax = b Cx + Iz = Cx 0 x, z 0, (2) where e T = (1,, 1) R p and I is the p p identity matrix, has an optimal solution (ˆx, ẑ) with ẑ = 0

32 Formulation and Example Solving MOLPs by Weighted Sums Question: Can all efficient solutions be found using weighted sums? If ˆx X is efficient, does there exist λ > 0 such that ˆx is optimal solution to min{λ T Cx : Ax = b, x 0}? Lemma A feasible solution x 0 X is efficient if and only if the linear programme max e T z subject to Ax = b Cx + Iz = Cx 0 x, z 0, (2) where e T = (1,, 1) R p and I is the p p identity matrix, has an optimal solution (ˆx, ẑ) with ẑ = 0

33 Formulation and Example Solving MOLPs by Weighted Sums Question: Can all efficient solutions be found using weighted sums? If ˆx X is efficient, does there exist λ > 0 such that ˆx is optimal solution to min{λ T Cx : Ax = b, x 0}? Lemma A feasible solution x 0 X is efficient if and only if the linear programme max e T z subject to Ax = b Cx + Iz = Cx 0 x, z 0, (2) where e T = (1,, 1) R p and I is the p p identity matrix, has an optimal solution (ˆx, ẑ) with ẑ = 0

34 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

35 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

36 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

37 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

38 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

39 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

40 Formulation and Example Solving MOLPs by Weighted Sums Proof LP is always feasible with x = x 0, z = 0 (and value 0) Let (ˆx, ẑ) be optimal solution If ẑ = 0 then ẑ = Cx 0 C ˆx = 0 Cx 0 = C ˆx There is no x X such that Cx Cx 0 because (x, Cx 0 Cx) would be better solution x 0 efficient If ˆx 0 efficient there is no x X with Cx Cx 0 there is no z with z = Cx 0 Cx 0 max e T z 0 max e T z = 0

41 Formulation and Example Solving MOLPs by Weighted Sums Lemma A feasible solution x 0 X is efficient if and only if the linear programme min u T b + w T Cx 0 subject to u T A + w T C 0 w e u R m (3) has an optimal solution (û, ŵ) with û T b + ŵ T Cx 0 = 0 Proof The LP (3) is the dual of the LP (2)

42 Formulation and Example Solving MOLPs by Weighted Sums Lemma A feasible solution x 0 X is efficient if and only if the linear programme min u T b + w T Cx 0 subject to u T A + w T C 0 w e u R m (3) has an optimal solution (û, ŵ) with û T b + ŵ T Cx 0 = 0 Proof The LP (3) is the dual of the LP (2)

43 Formulation and Example Solving MOLPs by Weighted Sums Theorem A feasible solution x 0 X is an efficient solution of the MOLP (1) if and only if there exists a λ R p > such that for all x X λ T Cx 0 λ T Cx (4) Note: We already know that optimal solutions of weighted sum problems are efficient

44 Formulation and Example Solving MOLPs by Weighted Sums Theorem A feasible solution x 0 X is an efficient solution of the MOLP (1) if and only if there exists a λ R p > such that for all x X λ T Cx 0 λ T Cx (4) Note: We already know that optimal solutions of weighted sum problems are efficient

45 Formulation and Example Solving MOLPs by Weighted Sums Proof Let x 0 X E By Lemma 4 LP (3) has an optimal solution (û, ŵ) such that û T b = ŵ T Cx 0 (5) û is also an optimal solution of the LP { } min u T b : u T A ŵ T C, (6) which is (3) with w = ŵ fixed There is an optimal solution of the dual of (6) { } max ŵ T Cx : Ax = b, x 0 (7)

46 Formulation and Example Solving MOLPs by Weighted Sums Proof Let x 0 X E By Lemma 4 LP (3) has an optimal solution (û, ŵ) such that û T b = ŵ T Cx 0 (5) û is also an optimal solution of the LP { } min u T b : u T A ŵ T C, (6) which is (3) with w = ŵ fixed There is an optimal solution of the dual of (6) { } max ŵ T Cx : Ax = b, x 0 (7)

47 Formulation and Example Solving MOLPs by Weighted Sums Proof Let x 0 X E By Lemma 4 LP (3) has an optimal solution (û, ŵ) such that û T b = ŵ T Cx 0 (5) û is also an optimal solution of the LP { } min u T b : u T A ŵ T C, (6) which is (3) with w = ŵ fixed There is an optimal solution of the dual of (6) { } max ŵ T Cx : Ax = b, x 0 (7)

48 Formulation and Example Solving MOLPs by Weighted Sums Proof Let x 0 X E By Lemma 4 LP (3) has an optimal solution (û, ŵ) such that û T b = ŵ T Cx 0 (5) û is also an optimal solution of the LP { } min u T b : u T A ŵ T C, (6) which is (3) with w = ŵ fixed There is an optimal solution of the dual of (6) { } max ŵ T Cx : Ax = b, x 0 (7)

49 Formulation and Example Solving MOLPs by Weighted Sums Proof By weak duality u T b ŵ T Cx for all feasible solutions u of (6) and for all feasible solutions x of (7) We already know that û T b = ŵ T Cx 0 from (5) x 0 is an optimal solution of (7) Note that (7) is equivalent to { } min ŵ T Cx : Ax = b, x 0 with ŵ e > 0 from the constraints in (3)

50 Formulation and Example Solving MOLPs by Weighted Sums Proof By weak duality u T b ŵ T Cx for all feasible solutions u of (6) and for all feasible solutions x of (7) We already know that û T b = ŵ T Cx 0 from (5) x 0 is an optimal solution of (7) Note that (7) is equivalent to { } min ŵ T Cx : Ax = b, x 0 with ŵ e > 0 from the constraints in (3)

51 Formulation and Example Solving MOLPs by Weighted Sums Proof By weak duality u T b ŵ T Cx for all feasible solutions u of (6) and for all feasible solutions x of (7) We already know that û T b = ŵ T Cx 0 from (5) x 0 is an optimal solution of (7) Note that (7) is equivalent to { } min ŵ T Cx : Ax = b, x 0 with ŵ e > 0 from the constraints in (3)

52 Formulation and Example Solving MOLPs by Weighted Sums Proof By weak duality u T b ŵ T Cx for all feasible solutions u of (6) and for all feasible solutions x of (7) We already know that û T b = ŵ T Cx 0 from (5) x 0 is an optimal solution of (7) Note that (7) is equivalent to { } min ŵ T Cx : Ax = b, x 0 with ŵ e > 0 from the constraints in (3)

53 Overview Multiobjective Linear Programming The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 1 Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 2 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 3 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

54 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Modification of the Simplex algorithm for LPs with two objectives min ( (c 1 ) T x, (c 2 ) T x ) subject to Ax = b x 0 (8) We can find all efficient solutions by solving the parametric LP { } min λ 1 (c 1 ) T x + λ 2 (c 2 ) T x : Ax = b, x 0 for all λ = (λ 1, λ 2 ) > 0

55 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Modification of the Simplex algorithm for LPs with two objectives min ( (c 1 ) T x, (c 2 ) T x ) subject to Ax = b x 0 (8) We can find all efficient solutions by solving the parametric LP { } min λ 1 (c 1 ) T x + λ 2 (c 2 ) T x : Ax = b, x 0 for all λ = (λ 1, λ 2 ) > 0

56 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example We can divide the objective by λ 1 + λ 2 without changing the optima, ie λ 1 = λ 1/(λ 1 + λ 2 ), λ 2 = λ 2/(λ 1 + λ 2 and λ 1 + λ 2 = 1 or λ 2 = 1 λ 1 LPs with one parameter 0 λ 1 and parametric objective c(λ) := λc 1 + (1 λ)c 2 { } min c(λ) T x : Ax = b, x 0 (9)

57 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example We can divide the objective by λ 1 + λ 2 without changing the optima, ie λ 1 = λ 1/(λ 1 + λ 2 ), λ 2 = λ 2/(λ 1 + λ 2 and λ 1 + λ 2 = 1 or λ 2 = 1 λ 1 LPs with one parameter 0 λ 1 and parametric objective c(λ) := λc 1 + (1 λ)c 2 { } min c(λ) T x : Ax = b, x 0 (9)

58 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Let B be a feasible basis Recall reduced cost c N = c N cb T B 1 N Reduced cost for the parametric LP c(λ) = λ c 1 + (1 λ) c 2 (10) Suppose ˆB is an optimal basis of (9) for some ˆλ c(ˆλ) 0

59 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Let B be a feasible basis Recall reduced cost c N = c N cb T B 1 N Reduced cost for the parametric LP c(λ) = λ c 1 + (1 λ) c 2 (10) Suppose ˆB is an optimal basis of (9) for some ˆλ c(ˆλ) 0

60 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Let B be a feasible basis Recall reduced cost c N = c N cb T B 1 N Reduced cost for the parametric LP c(λ) = λ c 1 + (1 λ) c 2 (10) Suppose ˆB is an optimal basis of (9) for some ˆλ c(ˆλ) 0

61 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Let B be a feasible basis Recall reduced cost c N = c N cb T B 1 N Reduced cost for the parametric LP c(λ) = λ c 1 + (1 λ) c 2 (10) Suppose ˆB is an optimal basis of (9) for some ˆλ c(ˆλ) 0

62 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Let B be a feasible basis Recall reduced cost c N = c N cb T B 1 N Reduced cost for the parametric LP c(λ) = λ c 1 + (1 λ) c 2 (10) Suppose ˆB is an optimal basis of (9) for some ˆλ c(ˆλ) 0

63 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

64 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

65 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

66 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

67 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

68 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

69 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

70 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

71 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Case 1: c 2 0 From (10) c(λ) 0 for all λ < ˆλ ˆB is optimal basis for all 0 λ ˆλ Case 2: There is at least one i N with c 2 i < 0 there is λ < ˆλ such that c(λ) i = 0 λ c 1 i + (1 λ) c 2 i = 0 λ( c 1 i c 2 i ) + c2 i = 0 c2 i λ = c i 1 c2 i Below this value ˆB is not optimal

72 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example I = {i N : c 2 i < 0, c 1 i 0} λ := max i I c 1 i c i 2 c i 2 (11) ˆB is optimal for all λ [λ, ˆλ] As soon as λ < λ new bases become optimal Entering variable x s has to be chosen where the maximum in (11) is attained for i = s

73 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example I = {i N : c 2 i < 0, c 1 i 0} λ := max i I c 1 i c i 2 c i 2 (11) ˆB is optimal for all λ [λ, ˆλ] As soon as λ < λ new bases become optimal Entering variable x s has to be chosen where the maximum in (11) is attained for i = s

74 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example I = {i N : c 2 i < 0, c 1 i 0} λ := max i I c 1 i c i 2 c i 2 (11) ˆB is optimal for all λ [λ, ˆλ] As soon as λ < λ new bases become optimal Entering variable x s has to be chosen where the maximum in (11) is attained for i = s

75 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example I = {i N : c 2 i < 0, c 1 i 0} λ := max i I c 1 i c i 2 c i 2 (11) ˆB is optimal for all λ [λ, ˆλ] As soon as λ < λ new bases become optimal Entering variable x s has to be chosen where the maximum in (11) is attained for i = s

76 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example I = {i N : c 2 i < 0, c 1 i 0} λ := max i I c 1 i c i 2 c i 2 (11) ˆB is optimal for all λ [λ, ˆλ] As soon as λ < λ new bases become optimal Entering variable x s has to be chosen where the maximum in (11) is attained for i = s

77 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Algorithm (Parametric Simplex for biobjective LPs) Input: Data A, b, C for a biobjective LP Phase I: Solve the auxiliary LP for Phase I using the Simplex algorithm If the optimal value is positive, STOP, X = Otherwise let B be an optimal basis Phase II: Solve the LP (9) for λ = 1 starting from basis B found in Phase I yielding an optimal basis ˆB Compute à and b Phase III: While I = {i N : c 2 i < 0, c 1 i 0} = c 2 i λ := max i I c i 1 c2 i n o c i s argmax i I : 2 c n i 1 c2 i o b r argmin j B : j, à à js > 0 js Let B := (B \ {r}) {s} and update à and b End while Output: Sequence of λ-values and sequence of optimal BFSs

78 Overview Multiobjective Linear Programming The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 1 Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 2 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 3 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

79 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Example LP(λ) min ( 3x1 + x 2 ) x 1 2x 2 subject to x 2 3 3x 1 x 2 6 x 0 min (4λ 1)x 1 + (3λ 2)x 2 subject to x 2 + x 3 = 3 3x 1 x 2 + x 4 = 6 x 0

80 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Use Simplex tableaus showing reduced cost vectors c 1 and c 2 Optimal basis for λ = 1 is B = {3, 4}, optimal basic feasible solution x = (0, 0, 3, 6) Start with Phase 3

81 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Use Simplex tableaus showing reduced cost vectors c 1 and c 2 Optimal basis for λ = 1 is B = {3, 4}, optimal basic feasible solution x = (0, 0, 3, 6) Start with Phase 3

82 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Use Simplex tableaus showing reduced cost vectors c 1 and c 2 Optimal basis for λ = 1 is B = {3, 4}, optimal basic feasible solution x = (0, 0, 3, 6) Start with Phase 3

83 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Iteration 1: c c x x λ = 1, c(λ) = (3, 1, 0, { 0), B 1 = {3, } 4}, x 1 = (0, 0, 3, 6) I = {1, 2}, λ = max 1 3+1, = 2 3 s = 2, r = 3

84 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Iteration 2 c c x x λ = 2/3, c(λ) = (5/3, { 0, 0, } 0), B 2 = {2, 4}, x 2 = (0, 3, 0, 9) I = {1}, λ = max = 1 4 s = 1, r = 4

85 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Iteration 3 c c /3 1/3 9 x x /3 1/3 3 λ = 1/4, c(λ) = (0, 0, 5/4, 0), B 3 = {1, 2}, x 3 = (3, 3, 0, 0) I =

86 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

87 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

88 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

89 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

90 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

91 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

92 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight values λ 1 = 1, λ 2 = 2/3, λ 3 = 1/4, λ 4 = 0 Basic feasible solutions x 1, x 2, x 3 In each iteration c(λ) can be calculated with the previous and current c 1 and c 2 Basis B 1 = (3, 4) and BFS x 1 = (0, 0, 3, 6) are optimal for λ [2/3, 1] Basis B 2 = (2, 4) and BFS x 2 = (0, 3, 0, 9) are optimal for λ [1/4, 2/3], and Basis B 3 = (1, 2) and BFS x 3 = (3, 3, 0, 0) are optimal for λ [0, 1/4] Objective vectors for basic feasible solutions: Cx 1 = (0, 0), Cx 2 = (3, 6), and Cx 3 = (12, 9)

93 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Values λ = 2/3 and λ = 1/4 correspond to weight vectors (2/3, 1/3) and (1/4, 3/4) Contour lines for weighted sum objectives in decision are parallel to efficient edges 2 3 (3x 1 + x 2 ) ( x 1 2x 2 ) = 5 3 x (3x 1 + x 2 ) ( x 1 2x 2 ) = 5 4 x x 2 x 3 X Feasible set in decision space and efficient set 1 x 1 x

94 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Values λ = 2/3 and λ = 1/4 correspond to weight vectors (2/3, 1/3) and (1/4, 3/4) Contour lines for weighted sum objectives in decision are parallel to efficient edges 2 3 (3x 1 + x 2 ) ( x 1 2x 2 ) = 5 3 x (3x 1 + x 2 ) ( x 1 2x 2 ) = 5 4 x x 2 x 3 X Feasible set in decision space and efficient set 1 x 1 x

95 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Values λ = 2/3 and λ = 1/4 correspond to weight vectors (2/3, 1/3) and (1/4, 3/4) Contour lines for weighted sum objectives in decision are parallel to efficient edges 2 3 (3x 1 + x 2 ) ( x 1 2x 2 ) = 5 3 x (3x 1 + x 2 ) ( x 1 2x 2 ) = 5 4 x x 2 x 3 X Feasible set in decision space and efficient set 1 x 1 x

96 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Weight vectors (2/3, 1/3) and (1/4, 3/4) are normal to nondominated edges Cx 1 Cx Y Cx Cx 3-10 Objective space and nondominated set

97 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Example Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP min (x 1, x 2 ) T subject to 0 x i 1 i = 1, 2, 3 Efficient set: {x R 3 : x 1 = x 2 = 0, 0 x 3 1}

98 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Example Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP min (x 1, x 2 ) T subject to 0 x i 1 i = 1, 2, 3 Efficient set: {x R 3 : x 1 = x 2 = 0, 0 x 3 1}

99 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example Example Algorithm finds all nondominated extreme points in objective space and one efficient bfs for each of those Algorithm does not find all efficient solutions just as Simplex algorithm does not find all optimal solutions of an LP min (x 1, x 2 ) T subject to 0 x i 1 i = 1, 2, 3 Efficient set: {x R 3 : x 1 = x 2 = 0, 0 x 3 1}

100 Overview Multiobjective Linear Programming A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples 1 Multiobjective Linear Programming Formulation and Example Solving MOLPs by Weighted Sums 2 The Parametric Simplex Algorithm Biobjective Linear Programmes: Example 3 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples

101 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples min{cx : Ax = b, x 0} Let B be a basis and C = C C B A 1 B A and R = C N How to calculate critical λ if p > 2? ( ) 3 1 At B 1 : C N =, λ 1 2 = 2/3, λ = (2/3, 1/3) T and λ T C N = (5/3, 0) T ( At B 2 : C 3 1 N = 1 2 λ T CN = (0, 5/4) T ), λ = 1/4, λ = (1/4, 3/4) T and Find λ R p, λ > 0 such that λ T R 0 (optimality) and λ T r j = 0 (alternative optimum) for some column r j of R

102 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples min{cx : Ax = b, x 0} Let B be a basis and C = C C B A 1 B A and R = C N How to calculate critical λ if p > 2? ( ) 3 1 At B 1 : C N =, λ 1 2 = 2/3, λ = (2/3, 1/3) T and λ T C N = (5/3, 0) T ( At B 2 : C 3 1 N = 1 2 λ T CN = (0, 5/4) T ), λ = 1/4, λ = (1/4, 3/4) T and Find λ R p, λ > 0 such that λ T R 0 (optimality) and λ T r j = 0 (alternative optimum) for some column r j of R

103 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples min{cx : Ax = b, x 0} Let B be a basis and C = C C B A 1 B A and R = C N How to calculate critical λ if p > 2? ( ) 3 1 At B 1 : C N =, λ 1 2 = 2/3, λ = (2/3, 1/3) T and λ T C N = (5/3, 0) T ( At B 2 : C 3 1 N = 1 2 λ T CN = (0, 5/4) T ), λ = 1/4, λ = (1/4, 3/4) T and Find λ R p, λ > 0 such that λ T R 0 (optimality) and λ T r j = 0 (alternative optimum) for some column r j of R

104 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples min{cx : Ax = b, x 0} Let B be a basis and C = C C B A 1 B A and R = C N How to calculate critical λ if p > 2? ( ) 3 1 At B 1 : C N =, λ 1 2 = 2/3, λ = (2/3, 1/3) T and λ T C N = (5/3, 0) T ( At B 2 : C 3 1 N = 1 2 λ T CN = (0, 5/4) T ), λ = 1/4, λ = (1/4, 3/4) T and Find λ R p, λ > 0 such that λ T R 0 (optimality) and λ T r j = 0 (alternative optimum) for some column r j of R

105 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples min{cx : Ax = b, x 0} Let B be a basis and C = C C B A 1 B A and R = C N How to calculate critical λ if p > 2? ( ) 3 1 At B 1 : C N =, λ 1 2 = 2/3, λ = (2/3, 1/3) T and λ T C N = (5/3, 0) T ( At B 2 : C 3 1 N = 1 2 λ T CN = (0, 5/4) T ), λ = 1/4, λ = (1/4, 3/4) T and Find λ R p, λ > 0 such that λ T R 0 (optimality) and λ T r j = 0 (alternative optimum) for some column r j of R

106 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples min{cx : Ax = b, x 0} Let B be a basis and C = C C B A 1 B A and R = C N How to calculate critical λ if p > 2? ( ) 3 1 At B 1 : C N =, λ 1 2 = 2/3, λ = (2/3, 1/3) T and λ T C N = (5/3, 0) T ( At B 2 : C 3 1 N = 1 2 λ T CN = (0, 5/4) T ), λ = 1/4, λ = (1/4, 3/4) T and Find λ R p, λ > 0 such that λ T R 0 (optimality) and λ T r j = 0 (alternative optimum) for some column r j of R

107 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma If X E then X has an efficient basic feasible solution Proof There is some λ > 0 such that min x X λ T Cx has an optimal solution Thus LP(λ) has an optimal basic feasible solution solution, which is an efficient solution of the MOLP

108 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma If X E then X has an efficient basic feasible solution Proof There is some λ > 0 such that min x X λ T Cx has an optimal solution Thus LP(λ) has an optimal basic feasible solution solution, which is an efficient solution of the MOLP

109 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma If X E then X has an efficient basic feasible solution Proof There is some λ > 0 such that min x X λ T Cx has an optimal solution Thus LP(λ) has an optimal basic feasible solution solution, which is an efficient solution of the MOLP

110 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Definition 1 A feasible basis B is called efficient basis if B is an optimal basis of LP(λ) for some λ R p > 2 Two bases B and ˆB are called adjacent if one can be obtained from the other by a single pivot step 3 Let B be an efficient basis Variable x j, j N is called efficient nonbasic variable at B if there exists a λ R p > such that λ T R 0 and λ T r j = 0, where r j is the column of R corresponding to variable x j 4 Let B be an efficient basis and let x j be an efficient nonbasic variable Then a feasible pivot from B with x j entering the basis (even with negative pivot element) is called an efficient pivot with respect to B and x j

111 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Definition 1 A feasible basis B is called efficient basis if B is an optimal basis of LP(λ) for some λ R p > 2 Two bases B and ˆB are called adjacent if one can be obtained from the other by a single pivot step 3 Let B be an efficient basis Variable x j, j N is called efficient nonbasic variable at B if there exists a λ R p > such that λ T R 0 and λ T r j = 0, where r j is the column of R corresponding to variable x j 4 Let B be an efficient basis and let x j be an efficient nonbasic variable Then a feasible pivot from B with x j entering the basis (even with negative pivot element) is called an efficient pivot with respect to B and x j

112 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Definition 1 A feasible basis B is called efficient basis if B is an optimal basis of LP(λ) for some λ R p > 2 Two bases B and ˆB are called adjacent if one can be obtained from the other by a single pivot step 3 Let B be an efficient basis Variable x j, j N is called efficient nonbasic variable at B if there exists a λ R p > such that λ T R 0 and λ T r j = 0, where r j is the column of R corresponding to variable x j 4 Let B be an efficient basis and let x j be an efficient nonbasic variable Then a feasible pivot from B with x j entering the basis (even with negative pivot element) is called an efficient pivot with respect to B and x j

113 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Definition 1 A feasible basis B is called efficient basis if B is an optimal basis of LP(λ) for some λ R p > 2 Two bases B and ˆB are called adjacent if one can be obtained from the other by a single pivot step 3 Let B be an efficient basis Variable x j, j N is called efficient nonbasic variable at B if there exists a λ R p > such that λ T R 0 and λ T r j = 0, where r j is the column of R corresponding to variable x j 4 Let B be an efficient basis and let x j be an efficient nonbasic variable Then a feasible pivot from B with x j entering the basis (even with negative pivot element) is called an efficient pivot with respect to B and x j

114 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples No efficient basis is optimal for all p objectives at the same time Therefore R always contains positive and negative entries Proposition Let B be an efficient basis There exists an efficient nonbasic variable at B

115 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples No efficient basis is optimal for all p objectives at the same time Therefore R always contains positive and negative entries Proposition Let B be an efficient basis There exists an efficient nonbasic variable at B

116 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples No efficient basis is optimal for all p objectives at the same time Therefore R always contains positive and negative entries Proposition Let B be an efficient basis There exists an efficient nonbasic variable at B

117 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples It is not possible to define efficient nonbasic variables by the existence of a column in R with positive and negative entries Example R = ( ) λ T r 2 = 0 requires λ 2 = 2λ 1 λ T r 1 0 requires λ 1 0, an impossibility for λ > 0

118 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

119 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

120 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

121 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

122 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

123 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

124 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Lemma Let B be an efficient basis and x j be an efficient nonbasic variable Then any efficient pivot from B leads to an adjacent efficient basis ˆB Proof x j efficient entering variable at basis B there is λ R p > with λ T R 0 and λ T r j = 0 x j is nonbasic variable with reduced cost 0 in LP(λ) Reduced costs of LP(λ) do not change after a pivot with x j entering Let ˆB be the resulting basis with feasible pivot and x j entering Because λ T R 0 and λ T r j = 0 at ˆB, ˆB is an optimal basis for LP(λ) and therefore an adjacent efficient basis

125 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples How to identify efficient nonbasic variables? Theorem Let B be an efficient basis and let x j be a nonbasic variable Variable x j is an efficient nonbasic variable if and only if the LP has an optimal value of 0 max e t v subject to Rz r j δ + Iv = 0 z, δ, v 0 (12) (12) is always feasible with (z, δ, v) = 0

126 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples How to identify efficient nonbasic variables? Theorem Let B be an efficient basis and let x j be a nonbasic variable Variable x j is an efficient nonbasic variable if and only if the LP has an optimal value of 0 max e t v subject to Rz r j δ + Iv = 0 z, δ, v 0 (12) (12) is always feasible with (z, δ, v) = 0

127 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Proof By definition x j is an efficient nonbasic variable if the LP min 0 T λ = 0 subject to R T λ 0 (r j ) T λ = 0 I λ e (13) has an optimal objective value of 0, ie if it is feasible (13) is equivalent to min 0 T λ = 0 subject to R T λ 0 (r j ) T λ 0 I λ e (14)

128 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Proof By definition x j is an efficient nonbasic variable if the LP min 0 T λ = 0 subject to R T λ 0 (r j ) T λ = 0 I λ e (13) has an optimal objective value of 0, ie if it is feasible (13) is equivalent to min 0 T λ = 0 subject to R T λ 0 (r j ) T λ 0 I λ e (14)

129 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Proof The dual of (14) is max e T v subject to Rz r j δ + Iv = 0 z, δ, v 0 (15)

130 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Need to show: ALL efficient bases can be reached by efficient pivots Definition Two efficient bases B and ˆB are called connected if one can be obtained from the other by performing only efficient pivots Theorem All efficient bases are connected

131 A Multiobjective Simplex Algorithm Multiobjective Simplex: Examples Need to show: ALL efficient bases can be reached by efficient pivots Definition Two efficient bases B and ˆB are called connected if one can be obtained from the other by performing only efficient pivots Theorem All efficient bases are connected

AM 221: Advanced Optimization Spring Prof. Yaron Singer Lecture 7 February 19th, 2014

AM 221: Advanced Optimization Spring Prof. Yaron Singer Lecture 7 February 19th, 2014 AM 22: Advanced Optimization Spring 204 Prof Yaron Singer Lecture 7 February 9th, 204 Overview In our previous lecture we saw the application of the strong duality theorem to game theory, and then saw

More information

Definition of a Linear Program

Definition of a Linear Program Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

More information

Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method

Graphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the

More information

The Simplex Method. yyye

The Simplex Method.  yyye Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note #05 1 The Simplex Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs

Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs Quiz 1 Sample Questions IE406 Introduction to Mathematical Programming Dr. Ralphs These questions are from previous years and should you give you some idea of what to expect on Quiz 1. 1. Consider the

More information

Section Notes 3. The Simplex Algorithm. Applied Math 121. Week of February 14, 2011

Section Notes 3. The Simplex Algorithm. Applied Math 121. Week of February 14, 2011 Section Notes 3 The Simplex Algorithm Applied Math 121 Week of February 14, 2011 Goals for the week understand how to get from an LP to a simplex tableau. be familiar with reduced costs, optimal solutions,

More information

3 Does the Simplex Algorithm Work?

3 Does the Simplex Algorithm Work? Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

More information

2.3 Convex Constrained Optimization Problems

2.3 Convex Constrained Optimization Problems 42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

More information

Optimization in R n Introduction

Optimization in R n Introduction Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Lecture 7 - Linear Programming

Lecture 7 - Linear Programming COMPSCI 530: Design and Analysis of Algorithms DATE: 09/17/2013 Lecturer: Debmalya Panigrahi Lecture 7 - Linear Programming Scribe: Hieu Bui 1 Overview In this lecture, we cover basics of linear programming,

More information

max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x

max cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

Duality in Linear Programming

Duality in Linear Programming Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

More information

Outline. Linear Programming (LP): Simplex Search. Simplex: An Extreme-Point Search Algorithm. Basic Solutions

Outline. Linear Programming (LP): Simplex Search. Simplex: An Extreme-Point Search Algorithm. Basic Solutions Outline Linear Programming (LP): Simplex Search Benoît Chachuat McMaster University Department of Chemical Engineering ChE 4G03: Optimization in Chemical Engineering 1 Basic Solutions

More information

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.

Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming. Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we

More information

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

More information

By W.E. Diewert. July, Linear programming problems are important for a number of reasons:

By W.E. Diewert. July, Linear programming problems are important for a number of reasons: APPLIED ECONOMICS By W.E. Diewert. July, 3. Chapter : Linear Programming. Introduction The theory of linear programming provides a good introduction to the study of constrained maximization (and minimization)

More information

Linear Programming in Matrix Form

Linear Programming in Matrix Form Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

More information

Algebraic Simplex Method - Introduction Previous

Algebraic Simplex Method - Introduction Previous Algebraic Simplex Method - Introduction To demonstrate the simplex method, consider the following linear programming model: This is the model for Leo Coco's problem presented in the demo, Graphical Method.

More information

SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS

SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS SOLVING LINEAR SYSTEM OF INEQUALITIES WITH APPLICATION TO LINEAR PROGRAMS Hossein Arsham, University of Baltimore, (410) 837-5268, harsham@ubalt.edu Veena Adlakha, University of Baltimore, (410) 837-4969,

More information

Basic solutions in standard form polyhedra

Basic solutions in standard form polyhedra Recap, and outline of Lecture Previously min s.t. c x Ax = b x Converting any LP into standard form () Interpretation and visualization () Full row rank assumption on A () Basic solutions and bases in

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

More information

Lecture 4 Linear Programming Models: Standard Form. August 31, 2009

Lecture 4 Linear Programming Models: Standard Form. August 31, 2009 Linear Programming Models: Standard Form August 31, 2009 Outline: Lecture 4 Standard form LP Transforming the LP problem to standard form Basic solutions of standard LP problem Operations Research Methods

More information

Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

More information

18. Linear optimization

18. Linear optimization 18. Linear optimization EE103 (Fall 2011-12) linear program examples geometrical interpretation extreme points simplex method 18-1 Linear program minimize c 1 x 1 +c 2 x 2 + +c n x n subject to a 11 x

More information

Using the Simplex Method in Mixed Integer Linear Programming

Using the Simplex Method in Mixed Integer Linear Programming Integer Using the Simplex Method in Mixed Integer UTFSM Nancy, 17 december 2015 Using the Simplex Method in Mixed Integer Outline Mathematical Programming Integer 1 Mathematical Programming Optimisation

More information

Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method

Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method Solving Linear Programming Problem with Fuzzy Right Hand Sides: A Penalty Method S.H. Nasseri and Z. Alizadeh Department of Mathematics, University of Mazandaran, Babolsar, Iran Abstract Linear programming

More information

Some representability and duality results for convex mixed-integer programs.

Some representability and duality results for convex mixed-integer programs. Some representability and duality results for convex mixed-integer programs. Santanu S. Dey Joint work with Diego Morán and Juan Pablo Vielma December 17, 2012. Introduction About Motivation Mixed integer

More information

Chap 4 The Simplex Method

Chap 4 The Simplex Method The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

More information

Integer Programming: Algorithms - 3

Integer Programming: Algorithms - 3 Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information

Degeneracy in Linear Programming

Degeneracy in Linear Programming Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

1 Linear Programming. 1.1 Introduction. Problem description: motivate by min-cost flow. bit of history. everything is LP. NP and conp. P breakthrough.

1 Linear Programming. 1.1 Introduction. Problem description: motivate by min-cost flow. bit of history. everything is LP. NP and conp. P breakthrough. 1 Linear Programming 1.1 Introduction Problem description: motivate by min-cost flow bit of history everything is LP NP and conp. P breakthrough. general form: variables constraints: linear equalities

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

Theory of Linear Programming

Theory of Linear Programming Theory of Linear Programming Debasis Mishra April 6, 2011 1 Introduction Optimization of a function f over a set S involves finding the maximum (minimum) value of f (objective function) in the set S (feasible

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

1 Polyhedra and Linear Programming

1 Polyhedra and Linear Programming CS 598CSC: Combinatorial Optimization Lecture date: January 21, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im 1 Polyhedra and Linear Programming In this lecture, we will cover some basic material

More information

7.4 Linear Programming: The Simplex Method

7.4 Linear Programming: The Simplex Method 7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method

More information

Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

More information

Simplex method summary

Simplex method summary Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

More information

The Simplex Method. What happens when we need more decision variables and more problem constraints?

The Simplex Method. What happens when we need more decision variables and more problem constraints? The Simplex Method The geometric method of solving linear programming problems presented before. The graphical method is useful only for problems involving two decision variables and relatively few problem

More information

First Welfare Theorem

First Welfare Theorem First Welfare Theorem Econ 2100 Fall 2015 Lecture 17, November 2 Outline 1 First Welfare Theorem 2 Preliminaries to Second Welfare Theorem Last Class Definitions A feasible allocation (x, y) is Pareto

More information

Good luck, veel succes!

Good luck, veel succes! Final exam Advanced Linear Programming, May 7, 13.00-16.00 Switch off your mobile phone, PDA and any other mobile device and put it far away. No books or other reading materials are allowed. This exam

More information

Geometry of Linear Programming

Geometry of Linear Programming Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms

More information

Proximal mapping via network optimization

Proximal mapping via network optimization L. Vandenberghe EE236C (Spring 23-4) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:

More information

Linear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables

Linear Inequalities and Linear Programming. Systems of Linear Inequalities in Two Variables Linear Inequalities and Linear Programming 5.1 Systems of Linear Inequalities 5.2 Linear Programming Geometric Approach 5.3 Geometric Introduction to Simplex Method 5.4 Maximization with constraints 5.5

More information

Mathematics Notes for Class 12 chapter 12. Linear Programming

Mathematics Notes for Class 12 chapter 12. Linear Programming 1 P a g e Mathematics Notes for Class 12 chapter 12. Linear Programming Linear Programming It is an important optimization (maximization or minimization) technique used in decision making is business and

More information

Lecture 5 Principal Minors and the Hessian

Lecture 5 Principal Minors and the Hessian Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and

More information

Linear Programming: Chapter 5 Duality

Linear Programming: Chapter 5 Duality Linear Programming: Chapter 5 Duality Robert J. Vanderbei October 17, 2007 Operations Research and Financial Engineering Princeton University Princeton, NJ 08544 http://www.princeton.edu/ rvdb Resource

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad

LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources

More information

Systems of Linear Equations

Systems of Linear Equations Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and

More information

Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

More information

Week 5 Integral Polyhedra

Week 5 Integral Polyhedra Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory

More information

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above: Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

More information

Chapter 4. Duality. 4.1 A Graphical Example

Chapter 4. Duality. 4.1 A Graphical Example Chapter 4 Duality Given any linear program, there is another related linear program called the dual. In this chapter, we will develop an understanding of the dual linear program. This understanding translates

More information

CHAPTER 9. Integer Programming

CHAPTER 9. Integer Programming CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral

More information

Applied Algorithm Design Lecture 5

Applied Algorithm Design Lecture 5 Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design

More information

Min-cost flow problems and network simplex algorithm

Min-cost flow problems and network simplex algorithm Min-cost flow problems and network simplex algorithm The particular structure of some LP problems can be sometimes used for the design of solution techniques more efficient than the simplex algorithm.

More information

Scheduling and (Integer) Linear Programming

Scheduling and (Integer) Linear Programming Scheduling and (Integer) Linear Programming Christian Artigues LAAS - CNRS & Université de Toulouse, France artigues@laas.fr Master Class CPAIOR 2012 - Nantes Christian Artigues Scheduling and (Integer)

More information

3.5 Reduction to Standard Form

3.5 Reduction to Standard Form 3.5 Reduction to Standard Form 77 Exercise 3-4-4. Read the following statements carefully to see whether it is true or false. Justify your answer by constructing a simple illustrative example (for false),

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

5.1 Bipartite Matching

5.1 Bipartite Matching CS787: Advanced Algorithms Lecture 5: Applications of Network Flow In the last lecture, we looked at the problem of finding the maximum flow in a graph, and how it can be efficiently solved using the Ford-Fulkerson

More information

3. Linear Programming and Polyhedral Combinatorics

3. Linear Programming and Polyhedral Combinatorics Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the

More information

Minimize subject to. x S R

Minimize subject to. x S R Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such

More information

A Game Theoretic Approach for Solving Multiobjective Linear Programming Problems

A Game Theoretic Approach for Solving Multiobjective Linear Programming Problems LIBERTAS MATHEMATICA, vol XXX (2010) A Game Theoretic Approach for Solving Multiobjective Linear Programming Problems Irinel DRAGAN Abstract. The nucleolus is one of the important concepts of solution

More information

Linear Programming Exercises. Week 1. Exercise 1 Consider the case of the Betta Machine Products Company described in the lecture notes.

Linear Programming Exercises. Week 1. Exercise 1 Consider the case of the Betta Machine Products Company described in the lecture notes. Linear Programming Exercises Week 1 Exercise 1 Consider the case of the Betta Machine Products Company described in the lecture notes. (a) Use a graphical method to obtain the new optimal solution when

More information

Duality of linear conic problems

Duality of linear conic problems Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least

More information

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

More information

56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

More information

Assignment Problems. Guoming Tang

Assignment Problems. Guoming Tang Assignment Problems Guoming Tang A Practical Problem Workers: A, B, C, D Jobs: P, Q, R, S. Cost matrix: Job P Job Q Job R Job S Worker A 1 2 3 4 Worker B 2 4 6 8 Worker C 3 6 9 12 Worker D 4 8 12 16 Given:

More information

DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING

DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING DUAL METHODS IN MIXED INTEGER LINEAR PROGRAMMING by Menal Guzelsoy Presented to the Graduate and Research Committee of Lehigh University in Candidacy for the Degree of Doctor of Philosophy in Industrial

More information

Two-Stage Stochastic Linear Programs

Two-Stage Stochastic Linear Programs Two-Stage Stochastic Linear Programs Operations Research Anthony Papavasiliou 1 / 27 Two-Stage Stochastic Linear Programs 1 Short Reviews Probability Spaces and Random Variables Convex Analysis 2 Deterministic

More information

This exposition of linear programming

This exposition of linear programming Linear Programming and the Simplex Method David Gale This exposition of linear programming and the simplex method is intended as a companion piece to the article in this issue on the life and work of George

More information

Nonlinear Optimization: Algorithms 3: Interior-point methods

Nonlinear Optimization: Algorithms 3: Interior-point methods Nonlinear Optimization: Algorithms 3: Interior-point methods INSEAD, Spring 2006 Jean-Philippe Vert Ecole des Mines de Paris Jean-Philippe.Vert@mines.org Nonlinear optimization c 2006 Jean-Philippe Vert,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Charlie Frogner 1 MIT 2011 1 Slides mostly stolen from Ryan Rifkin (Google). Plan Regularization derivation of SVMs. Analyzing the SVM problem: optimization, duality. Geometric

More information

Linear Programming is the branch of applied mathematics that deals with solving

Linear Programming is the branch of applied mathematics that deals with solving Chapter 2 LINEAR PROGRAMMING PROBLEMS 2.1 Introduction Linear Programming is the branch of applied mathematics that deals with solving optimization problems of a particular functional form. A linear programming

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

The Graphical Simplex Method: An Example

The Graphical Simplex Method: An Example The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that

More information

An Introduction to Linear Programming

An Introduction to Linear Programming An Introduction to Linear Programming Steven J. Miller March 31, 2007 Mathematics Department Brown University 151 Thayer Street Providence, RI 02912 Abstract We describe Linear Programming, an important

More information

OPTIMIZATION. Schedules. Notation. Index

OPTIMIZATION. Schedules. Notation. Index Easter Term 00 Richard Weber OPTIMIZATION Contents Schedules Notation Index iii iv v Preliminaries. Linear programming............................ Optimization under constraints......................3

More information

Chapter 4: The Mechanics of the Simplex Method

Chapter 4: The Mechanics of the Simplex Method Chapter 4: The Mechanics of the Simplex Method The simplex method is a remarkably simple and elegant algorithmic engine for solving linear programs. In this chapter we will examine the internal mechanics

More information

Introduction to Linear Programming.

Introduction to Linear Programming. Chapter 1 Introduction to Linear Programming. This chapter introduces notations, terminologies and formulations of linear programming. Examples will be given to show how real-life problems can be modeled

More information

Discrete Optimization

Discrete Optimization Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.1-4.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 2015-03-31 Todays presentation Chapter 3 Transforms using

More information

Arrangements And Duality

Arrangements And Duality Arrangements And Duality 3.1 Introduction 3 Point configurations are tbe most basic structure we study in computational geometry. But what about configurations of more complicated shapes? For example,

More information

Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

More information

CHAPTER 17. Linear Programming: Simplex Method

CHAPTER 17. Linear Programming: Simplex Method CHAPTER 17 Linear Programming: Simplex Method CONTENTS 17.1 AN ALGEBRAIC OVERVIEW OF THE SIMPLEX METHOD Algebraic Properties of the Simplex Method Determining a Basic Solution Basic Feasible Solution 17.2

More information

Introduction to Convex Optimization for Machine Learning

Introduction to Convex Optimization for Machine Learning Introduction to Convex Optimization for Machine Learning John Duchi University of California, Berkeley Practical Machine Learning, Fall 2009 Duchi (UC Berkeley) Convex Optimization for Machine Learning

More information

Solving Linear Programs

Solving Linear Programs Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

More information