# Let s explore the content and skills assessed by Heart of Algebra questions.

Save this PDF as:

Size: px
Start display at page:

Download "Let s explore the content and skills assessed by Heart of Algebra questions."

## Transcription

1 Chapter 9 Heart of Algebra Heart of Algebra focuses on the mastery of linear equations, systems of linear equations, and linear functions. The ability to analyze and create linear equations, inequalities, and functions is essential for success in college and careers, as is the ability to solve linear equations and systems fluently. The questions in Heart of Algebra include both multiple-choice questions and student-produced response questions. On some questions, the use of a calculator is not permitted; on other questions, the use of a calculator is allowed. The questions in Heart of Algebra vary significantly in form and appearance. They may be straightforward fluency exercises or pose challenges of strategy or understanding, such as interpreting the relationship between graphical and algebraic representations or solving as a process of reasoning. You will be required to demonstrate both procedural skill and a deep understanding of concepts. Let s explore the content and skills assessed by Heart of Algebra questions. Linear Equations, Linear Inequalities, and Linear Functions in Context The SAT Math Test will require you to demonstrate a deep understanding of several core algebra topics, namely linear equations, systems of linear equations, and linear functions. These topics are fundamental to the learning and work often required in college and career. When you use algebra to analyze and solve a problem in real life, a key step is to represent the context of the problem algebraically. To do this, you may need to define one or more variables that represent quantities in the context. Then you need to write one or more expressions, equations, inequalities, or functions that represent the relationships described in the context. For example, once you write an equation that represents the context, you solve the equation. Then you interpret the solution to the equation in terms of the context. Questions on the SAT Math Test may assess your ability to accomplish any or all of these steps. 233

4 m at h Absolute Value Absolute value expressions, inequalities, and equations are included in Heart of Algebra. (Graphs of absolute value equations and functions are in Passport to Advanced Math.) One definition of absolute value is x, if x 0 x = x, if x < 0 The absolute value of any real number is nonnegative. An important consequence of this definition is that x = x for any real number x. Another important consequence of this definition is that if a and b are any two real numbers, then a b is equal to the distance between a and b on the number line. ExamplE 5 The SAT Math Test will require you to have a deep understanding of absolute value, not simply that the absolute value of any real number is nonnegative. Example 5, for instance, requires you to apply your knowledge of two concepts, absolute value and inequality, to represent the relationship described in a specific context. The stratosphere is the layer of the Earth s atmosphere that is more than 0 kilometers (km) and less than 50 km above the Earth s surface. Which of the following inequalities describes all possible heights x, in km, above the Earth s surface that are in the stratosphere? A) x + 0 < 50 B) x 0 < 50 C) x + 30 < 20 D) x 30 < 20 The question states that the stratosphere is the layer of the Earth s atmosphere that is greater than 0 km and less than 50 km above the Earth s surface. Thus, the possible heights x, in km, above the Earth s surface that are in the stratosphere are given by the inequality 0 < x < 50. To answer the question, you need to find an absolute value inequality that is equivalent to 0 < x < 50. The inequality 0 < x < 50 describes the open interval (0, 50). To describe an interval with an absolute value inequality, use the midpoint and the size of the interval. The midpoint of (0, 50) is = 30. Then observe that 2 the interval (0, 50) consists of all points that are within 20 of the midpoint. That is, (0, 50) consists of x, whose distance from 30 on the number line is less than 20. The distance between x and 30 on the number line is x 30. Therefore, the possible values of x are described by x 30 < 20, which is choice D. 236

5 h e a rt of algebra Systems of Linear Equations and Inequalities in Context You may need to define more than one variable and create more than one equation or inequality to represent a context and answer a question. There are questions on the SAT Math Test that require you to create and solve a system of equations or create a system of inequalities. ExamplE 6 Maizah bought a pair of pants and a briefcase at a department store. The sum of the prices before sales tax was \$ There was no sales tax on the pants and a 9% sales tax on the briefcase. The total Maizah paid, including the sales tax, was \$ What was the price, in dollars, of the pants? To answer the question, you first need to define the variables. The question discusses the prices of a pair of pants and a briefcase and asks you to find the price of the pants. So it is appropriate to let P be the price of the pants, in dollars, and to let B be the price of the briefcase, in dollars. Since the sum of the prices before sales tax was \$30.00, the equation P + B = 30 is true. A sales tax of 9% was added to the price of the briefcase. Since 9% is equal to 0.09, the price of the briefcase with tax was B B =.09B. There was no sales tax on the pants, and the total Maizah paid, including tax, was \$36.75, so the equation P +.09B = holds. Now, you need to solve the system P + B = 30 P +.09B = Subtracting the sides of the first equation from the corresponding sides of the second equation gives you (P +.09B) (P + B) = , which simplifies to 0.09B = Now you can divide each side of 0.09B = 6.75 by This gives you В = = 75. This is the value of B, the price, in dollars, 0.09 of the briefcase. The question asks for the price, in dollars, of the pants, which is P. You can substitute 75 for B in the equation P + B = 30, which gives you P + 75 = 30, or P = = 55, so the pants cost \$55. (Note that this example has no choices. It is a student-produced response question. On the SAT, you would grid your answer in the spaces provided on the answer sheet.) You can use either of two approaches combination or substitution when solving a system of linear equations. One may get you to the answer more quickly than the other, depending on the equations you re working with and what you re solving for. Practice using both to give you greater flexibility on test day. While this question may seem complex, as it involves numerous steps, solving it requires a strong understanding of the same underlying principles outlined above: defining variables, creating equations to represent relationships, solving equations, and interpreting the solution. 237

6 m at h ExamplE 7 Each morning, John jogs at 6 miles per hour and rides a bike at 2 miles per hour. His goal is to jog and ride his bike a total of at least 9 miles in less than hour. If John jogs j miles and rides his bike b miles, which of the following systems of inequalities represents John s goal? j A) + b < 6 2 j + b 9 B) C) j + b 6 2 j + b < 9 6j + 2b 9 j + b < D) 6j + 2b < j + b 9 In Example 7, the answer choices each contain two parts. Use this to your advantage by tackling one part at a time and eliminating answers that don t work. You should be able to quickly rearrange three-part equations such as the rate equation (rate = distance / time) for any of the three parts. Example 7 requires you to solve the equation for time. 238 John jogs j miles and rides his bike b miles; his goal to jog and ride his bike a total of at least 9 miles is represented by the inequality j + b 9. This eliminates choices B and C. Since rate time = distance, it follows that time is equal to distance divided by rate. John jogs j miles at 6 miles per hour, so the time he jogs is equal j miles j to = hours. Similarly, since John rides his bike b miles 6 miles/hour 6 b at 2 miles per hour, the time he rides his bike is hours. Thus, John s goal 2 to complete his jog and his bike ride in less than hour can be represented j b j b by the inequality + = <. The system j + b 9 and + < is choice A. Fluency in Solving Linear Equations, Linear Inequalities, and Systems of Linear Equations Creating linear equations, linear inequalities, and systems of linear equations that represent a context is a key skill for success in college and careers. It is also essential to be able to fluently solve linear equations, linear inequalities, and systems of linear equations. Some of the questions in the Heart of Algebra section of the SAT Math Test present equations, inequalities, or systems without a context and directly assess your fluency in solving them. Some fluency questions allow the use of a calculator; other questions do not permit the use of a calculator and test your ability to solve equations, inequalities, and systems of equations by hand. Even for questions where a

7 h e a rt of algebra calculator is allowed, you may be able to answer the question more quickly without using a calculator, such as in Example 9. Part of what the SAT Math Test assesses is your ability to decide when using a calculator to answer a question is appropriate. Example 8 is an example of a question that could appear on either the calculator or no-calculator portion of the Math Test. ExamplE 8 3( ) 5 3 y = + 5y 2 What is the solution to the equation above? 3 3 Expanding the left-hand side of the equation gives 3y = + 5y, which can be rewritten as 8y =. Multiplying each side of 8y = by 0, the least common multiple of 2 and 5, clears the denominators: 80y = = 5 6 = Therefore, y = _ = ExamplE 9 2(3x 2.4) = 3(3x 2.4) What is the solution to the equation above? You could solve this in the same way as Example 8, by multiplying everything out and simplifying. But the structure of the equation reveals that 2 times a quantity, 3x 2.4, is equal to 3 times the same quantity. This is only possible if the quantity 3x 2.4 is equal to zero. Thus, 3x 2.4 = 0, or 3x = 2.4. Therefore, the solution is x = 0.8. ExamplE 0 While a calculator is permitted on one portion of the SAT Math Test, it s important to not over-rely on a calculator. Some questions, such as Example 9, can be solved more efficiently without using a calculator. Your ability to choose when to use and when not to use a calculator is one of the things the SAT Math Test assesses, so be sure to practice this in your studies. 2x = 4y + 6 2(2y + 3) = 3x 5 What is the solution (x, y) to the system of equations above? This is an example of a system you can solve quickly by substitution. Since 2x = 4y + 6, it follows that x = 2y + 3. Now you can substitute x for 2y + 3 in the second equation. This gives you 2( x) = 3x 5, which simplifies to 5x = 5, or x =. Substituting for x in the first equation gives you 2 = 4y + 6, which simplifies to 4y = 8, or y = 2. Therefore, the solution to the system is (, 2). In Example 6, the combination approach yields an efficient solution to the question. In Example 0, substitution turns out to be a fast approach. These examples illustrate the benefits of knowing both approaches and thinking critically about which approach may be faster on a given question. 239

8 m at h In the preceding examples, you have found a unique solution to linear equations and to systems of two linear equations in two variables. But not all such equations and systems have solutions, and some have infinitely many solutions. Some questions on the SAT Math Test assess your ability to determine whether an equation or a system has one solution, no solutions, or infinitely many solutions. The Relationships among Linear Equations, Lines in the Coordinate Plane, and the Contexts They Describe A system of two linear equations in two variables can be solved by graphing the lines in the coordinate plane. For example, you can graph the system of equations in Example 0 in the xy-plane: y O x (, 2) The point of intersection gives the solution to the system. If the equations in a system of two linear equations in two variables are graphed, each graph will be a line. There are three possibilities: Graphing systems of two linear equations is another effective approach to solving them. Practice arranging linear equations into y = mx + b form and graphing them in the coordinate plane.. The lines intersect in one point. In this case, the system has a unique solution. 2. The lines are parallel. In this case, the system has no solution. 3. The lines are identical. In this case, every point on the line is a solution, and so the system has infinitely many solutions. By putting the equations in the system into slope-intercept form, the second and third cases can be identified. If the lines have the same slope and different y-intercepts, they are parallel; if both the slope and the y-intercept are the same, the lines are identical. How are the second and third cases represented algebraically? Examples and 2 concern this question. 240

9 h e a rt of algebra ExamplE 2y + 6x = 3 y + 3x = 2 How many solutions (x, y) are there to the system of equations above? A) Zero B) One C) Two D) More than two If you multiply each side of y + 3x = 2 by 2, you get 2y + 6x = 4. Then subtracting each side of 2y + 6x = 3 from the corresponding side of 2y + 6x = 4 gives 0 =. This is a false statement. Therefore, the system has zero solutions (x, y). Alternatively, you could graph the two equations. The graphs are parallel lines, so there are no points of intersection. y When the graphs of a system of two linear equations are parallel lines, as in Example, the O x system has zero solutions. If the question states that a system of two linear equations has an infinite number of solutions, as in Example 2, the equations must be equivalent. ExamplE 2 3s 2t = a 5s + bt = 7 In the system of equations above, a and b are constants. If the system has infinitely many solutions, what is the value of a? If a system of two linear equations in two variables has infinitely many solutions, the two equations in the system must be equivalent. Since the two equations are presented in the same form, the second equation must be equal to the first equation multiplied by a constant. Since the coeffcient 24

10 m at h of s in the second equation is 5 times the coeffcient of s in the first equation, multiply each side of the first equation by 5. This gives you the system 5s + 0t = 5a 5s + bt = 7 Since these two equations are equivalent and have the same coeffcient of s, the coeffcients of t and the constants on the right-hand side must also be the 7 same. Thus, b = 0 and 5a = 7. Therefore, the value of a is. 5 There will also be questions on the SAT Math Test that assess your knowledge of the relationship between the algebraic and the geometric representations of a line, that is, between an equation of a line and its graph. The key concepts are: If the slopes of line l and line k are each defined (that is, if neither line is a vertical line), then Line land line k are parallel if and only if they have the same slope. Line land line k are perpendicular if and only if the product of their slopes is. ExamplE 3 y The SAT Math Test will further assess your understanding of linear equations by, for instance, asking you to select a linear equation that describes a given graph, select a graph that describes a given linear equation, or determine how a graph may be impacted by a change in its equation. The graph of line k is shown in the xy-plane above. Which of the following is an equation of a line that is perpendicular to line k? A) y = 2x + B) y = x C) y = x D) y = 2x + 4 O x 242

11 h e a rt of algebra Note that the graph of line k passes through the points (0, 6) and (3, 0). 0 6 Thus, the slope of line k is _ = 2. Since the product of the slopes of 3 0 perpendicular lines is, a line that is perpendicular to line k will have slope. All the choices are in slope-intercept form, and so the coeffcient of 2 x is the slope of the line represented by the equation. Therefore, choice C, y = x + 3, is an equation of a line with slope, and thus this line is 2 2 perpendicular to line k. Example 3 requires a strong understanding of slope as well as the ability to calculate slope: slope = rise / run = change in x / change in y. Parallel lines have slopes that are equal. Perpendicular lines have slopes whose product is. As we ve noted, some contexts can be described with a linear equation. The graph of a linear equation is a line. A line has geometric properties such as its slope and its y-intercept. These geometric properties can often be interpreted in terms of the context. The SAT Math Test has questions that assess your ability to make these interpretations. For example, look back at the contexts in Examples to 3. You created a linear function, f(n) = n, that describes the number of miles of paved road County X will have n years after 204. This equation can be graphed in the coordinate plane, with n on the horizontal axis and f(n) on the vertical axis. This graph is a line with slope 8 and vertical intercept 783. The slope, 8, gives the number of miles of new paved roads added each year, and the vertical intercept gives the number of miles of paved roads in 204, the year that corresponds to n = 0. ExamplE 4 A voter registration drive was held in Town Y. The number of voters, V, registered T days after the drive began can be estimated by the equation V = 3, T. What is the best interpretation of the number 65 in this equation? A) The number of registered voters at the beginning of the registration drive B) The number of registered voters at the end of the registration drive C) The total number of voters registered during the drive D) The number of voters registered each day during the drive The correct answer is choice D. For each day that passes, it is the next day of the registration drive, and so T increases by. When T increases by, the value of V = 3, T increases by 65. That is, the number of voters registered increased by 65 for each day of the drive. Therefore, 65 is the number of voters registered each day during the drive. You should note that choice A describes the number 3,450, and the numbers described by choices B and C can be found only if you know how many days the registration drive lasted; this information is not given in the question. Mastery of linear equations, systems of linear equations, and linear functions is built upon key skills such as analyzing rates and ratios. Several key skills are discussed in the next domain, Problem Solving and Data Analysis. 243

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### In this section, we ll review plotting points, slope of a line and different forms of an equation of a line.

Math 1313 Section 1.2: Straight Lines In this section, we ll review plotting points, slope of a line and different forms of an equation of a line. Graphing Points and Regions Here s the coordinate plane:

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

### Linear Equations Review

Linear Equations Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The y-intercept of the line y = 4x 7 is a. 7 c. 4 b. 4 d. 7 2. What is the y-intercept

### Ordered Pairs. Graphing Lines and Linear Inequalities, Solving System of Linear Equations. Cartesian Coordinates System.

Ordered Pairs Graphing Lines and Linear Inequalities, Solving System of Linear Equations Peter Lo All equations in two variables, such as y = mx + c, is satisfied only if we find a value of x and a value

### Section 3.4 The Slope Intercept Form: y = mx + b

Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept Reminding! m = y x = y 2 y 1 x 2 x 1 Slope of a horizontal line is 0 Slope of a vertical line is Undefined Graph a linear

### Section 1.4 Graphs of Linear Inequalities

Section 1.4 Graphs of Linear Inequalities A Linear Inequality and its Graph A linear inequality has the same form as a linear equation, except that the equal symbol is replaced with any one of,,

### Slope-Intercept Equation. Example

1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### Practice Math Placement Exam

Practice Math Placement Exam The following are problems like those on the Mansfield University Math Placement Exam. You must pass this test or take MA 0090 before taking any mathematics courses. 1. What

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### COMPARING LINEAR AND NONLINEAR FUNCTIONS

1 COMPARING LINEAR AND NONLINEAR FUNCTIONS LEARNING MAP INFORMATION STANDARDS 8.F.2 Compare two s, each in a way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example,

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Sect The Slope-Intercept Form

Concepts # and # Sect. - The Slope-Intercept Form Slope-Intercept Form of a line Recall the following definition from the beginning of the chapter: Let a, b, and c be real numbers where a and b are not

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

### Helpsheet. Giblin Eunson Library LINEAR EQUATIONS. library.unimelb.edu.au/libraries/bee. Use this sheet to help you:

Helpsheet Giblin Eunson Library LINEAR EQUATIONS Use this sheet to help you: Solve linear equations containing one unknown Recognize a linear function, and identify its slope and intercept parameters Recognize

### Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4)

Chapter 2: Functions and Linear Functions 1. Know the definition of a relation. Math 155 (DoVan) Exam 1 Review (Sections 3.1, 3.2, 5.1, 5.2, Chapters 2 & 4) 2. Know the definition of a function. 3. What

### Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by

### Unit 5: Coordinate Geometry Practice Test

Unit 5: Coordinate Geometry Practice Test Math 10 Common Name: Block: Please initial this box to indicate you carefully read over your test and checked your work for simple mistakes. What I can do in this

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### 2-4 Writing Linear Equations. Write an equation in slope-intercept form for the line described. 2. passes through ( 2, 3) and (0, 1) SOLUTION:

Write an equation in slope-intercept form for the line described 2 passes through ( 2, 3) and (0, 1) Substitute m = 1 and in the point slope form 4 passes through ( 8, 2); Substitute m = and (x, y) = (

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### Advanced Algebra 2. I. Equations and Inequalities

Advanced Algebra 2 I. Equations and Inequalities A. Real Numbers and Number Operations 6.A.5, 6.B.5, 7.C.5 1) Graph numbers on a number line 2) Order real numbers 3) Identify properties of real numbers

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### SECTION 0.11: SOLVING EQUATIONS. LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations.

(Section 0.11: Solving Equations) 0.11.1 SECTION 0.11: SOLVING EQUATIONS LEARNING OBJECTIVES Know how to solve linear, quadratic, rational, radical, and absolute value equations. PART A: DISCUSSION Much

### ModuMath Algebra Lessons

ModuMath Algebra Lessons Program Title 1 Getting Acquainted With Algebra 2 Order of Operations 3 Adding & Subtracting Algebraic Expressions 4 Multiplying Polynomials 5 Laws of Algebra 6 Solving Equations

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Writing the Equation of a Line in Slope-Intercept Form

Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing

### Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

### Section P.9 Notes Page 1 P.9 Linear Inequalities and Absolute Value Inequalities

Section P.9 Notes Page P.9 Linear Inequalities and Absolute Value Inequalities Sometimes the answer to certain math problems is not just a single answer. Sometimes a range of answers might be the answer.

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### Algebra 1 Chapter 3 Vocabulary. equivalent - Equations with the same solutions as the original equation are called.

Chapter 3 Vocabulary equivalent - Equations with the same solutions as the original equation are called. formula - An algebraic equation that relates two or more real-life quantities. unit rate - A rate

### REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95

REVIEW SHEETS INTERMEDIATE ALGEBRA MATH 95 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts which are taught in the specified math course. The sheets

### 2.1 Systems of Linear Equations

. Systems of Linear Equations Question : What is a system of linear equations? Question : Where do systems of equations come from? In Chapter, we looked at several applications of linear functions. One

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### 2. Simplify. College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key. Use the distributive property to remove the parentheses

College Algebra Student Self-Assessment of Mathematics (SSAM) Answer Key 1. Multiply 2 3 5 1 Use the distributive property to remove the parentheses 2 3 5 1 2 25 21 3 35 31 2 10 2 3 15 3 2 13 2 15 3 2

### Systems of Linear Equations - Introduction

Systems of Linear Equations - Introduction What are Systems of Linear Equations Use an Example of a system of linear equations If we have two linear equations, y = x + 2 and y = 3x 6, can these two equations

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Sample Math Questions: Multiple-Choice

Chapter 23 Sample Math Questions: Multiple-Choice In the previous chapters, you learned about the four areas covered by the SAT Math Test. On the test, questions from the areas are mixed together, requiring

### The slope m of the line passes through the points (x 1,y 1 ) and (x 2,y 2 ) e) (1, 3) and (4, 6) = 1 2. f) (3, 6) and (1, 6) m= 6 6

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### Lines and Linear Equations. Slopes

Lines and Linear Equations Slopes Consider walking on a line from left to right. The slope of a line is a measure of its steepness. A positive slope rises and a negative slope falls. A slope of zero means

### COGNITIVE TUTOR ALGEBRA

COGNITIVE TUTOR ALGEBRA Numbers and Operations Standard: Understands and applies concepts of numbers and operations Power 1: Understands numbers, ways of representing numbers, relationships among numbers,

### Student Lesson: Absolute Value Functions

TEKS: a(5) Tools for algebraic thinking. Techniques for working with functions and equations are essential in understanding underlying relationships. Students use a variety of representations (concrete,

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### Write the Equation of the Line Review

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

### Equations and Inequalities

Rational Equations Overview of Objectives, students should be able to: 1. Solve rational equations with variables in the denominators.. Recognize identities, conditional equations, and inconsistent equations.

### Exam 2 Review. 3. How to tell if an equation is linear? An equation is linear if it can be written, through simplification, in the form.

Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? To solve an equation is to find the solution set, that is, to find the set of all elements in the domain of the

### Grade 8 Math. Content Skills Learning Targets Assessment Resources & Technology

St. Michael-Albertville Middle School East Teacher: Dawn Tveitbakk Grade 8 Math September 2014 UEQ: (new) CEQ: WHAT IS THE LANGUAGE OF ALGEBRA? HOW ARE FUNCTIONS USED? HOW CAN ALGEBRA BE USED TO SOLVE

### x x y y Then, my slope is =. Notice, if we use the slope formula, we ll get the same thing: m =

Slope and Lines The slope of a line is a ratio that measures the incline of the line. As a result, the smaller the incline, the closer the slope is to zero and the steeper the incline, the farther the

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### 1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

### Course Name: Course Code: ALEKS Course: Instructor: Course Dates: Course Content: Textbook: Dates Objective Prerequisite Topics

Course Name: MATH 1204 Fall 2015 Course Code: N/A ALEKS Course: College Algebra Instructor: Master Templates Course Dates: Begin: 08/22/2015 End: 12/19/2015 Course Content: 271 Topics (261 goal + 10 prerequisite)

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### Portable Assisted Study Sequence ALGEBRA IIA

SCOPE This course is divided into two semesters of study (A & B) comprised of five units each. Each unit teaches concepts and strategies recommended for intermediate algebra students. The first half of

### MATH 111: EXAM 02 SOLUTIONS

MATH 111: EXAM 02 SOLUTIONS BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period Unless otherwise

### Math 018 Review Sheet v.3

Math 018 Review Sheet v.3 Tyrone Crisp Spring 007 1.1 - Slopes and Equations of Lines Slopes: Find slopes of lines using the slope formula m y y 1 x x 1. Positive slope the line slopes up to the right.

### High School Mathematics Algebra

High School Mathematics Algebra This course is designed to give students the foundation of understanding algebra at a moderate pace. Essential material will be covered to prepare the students for Geometry.

### ALGEBRA 1/ALGEBRA 1 HONORS

ALGEBRA 1/ALGEBRA 1 HONORS CREDIT HOURS: 1.0 COURSE LENGTH: 2 Semesters COURSE DESCRIPTION The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical

### Section 2.2 Equations of Lines

Section 2.2 Equations of Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### ALGEBRA I A PLUS COURSE OUTLINE

ALGEBRA I A PLUS COURSE OUTLINE OVERVIEW: 1. Operations with Real Numbers 2. Equation Solving 3. Word Problems 4. Inequalities 5. Graphs of Functions 6. Linear Functions 7. Scatterplots and Lines of Best

### Section 2.1 Rectangular Coordinate Systems

P a g e 1 Section 2.1 Rectangular Coordinate Systems 1. Pythagorean Theorem In a right triangle, the lengths of the sides are related by the equation where a and b are the lengths of the legs and c is

### Utah Core Curriculum for Mathematics

Core Curriculum for Mathematics correlated to correlated to 2005 Chapter 1 (pp. 2 57) Variables, Expressions, and Integers Lesson 1.1 (pp. 5 9) Expressions and Variables 2.2.1 Evaluate algebraic expressions

### McMurry University Pre-test Practice Exam. 1. Simplify each expression, and eliminate any negative exponent(s).

1. Simplify each expression, and eliminate any negative exponent(s). a. b. c. 2. Simplify the expression. Assume that a and b denote any real numbers. (Assume that a denotes a positive number.) 3. Find

### Algebra. Indiana Standards 1 ST 6 WEEKS

Chapter 1 Lessons Indiana Standards - 1-1 Variables and Expressions - 1-2 Order of Operations and Evaluating Expressions - 1-3 Real Numbers and the Number Line - 1-4 Properties of Real Numbers - 1-5 Adding

### Algebra Course KUD. Green Highlight - Incorporate notation in class, with understanding that not tested on

Algebra Course KUD Yellow Highlight Need to address in Seminar Green Highlight - Incorporate notation in class, with understanding that not tested on Blue Highlight Be sure to teach in class Postive and

### Copyrighted by Gabriel Tang B.Ed., B.Sc. Page 173.

Algebra Chapter : Systems of Equations and Inequalities - Systems of Equations Chapter : Systems of Equations and Inequalities System of Linear Equations: - two or more linear equations on the same coordinate

### Problem Solving and Data Analysis

Chapter 20 Problem Solving and Data Analysis The Problem Solving and Data Analysis section of the SAT Math Test assesses your ability to use your math understanding and skills to solve problems set in

### Section 7.1 Solving Linear Systems by Graphing. System of Linear Equations: Two or more equations in the same variables, also called a.

Algebra 1 Chapter 7 Notes Name Section 7.1 Solving Linear Systems by Graphing System of Linear Equations: Two or more equations in the same variables, also called a. Solution of a System of Linear Equations:

### 3.4. Solving Simultaneous Linear Equations. Introduction. Prerequisites. Learning Outcomes

Solving Simultaneous Linear Equations 3.4 Introduction Equations often arise in which there is more than one unknown quantity. When this is the case there will usually be more than one equation involved.

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Letter to the Student... 5 Letter to the Family... 6 Correlation of Mississippi Competencies and Objectives to Coach Lessons... 7 Pretest...

Table of Contents Letter to the Student........................................... 5 Letter to the Family............................................. 6 Correlation of Mississippi Competencies and Objectives

### a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

### Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.

### Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture

Economics 101 Homework #1 Fall 2014 Due 09/18/2014 in lecture Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on top of the homework

### 5.1. Systems of Linear Equations. Linear Systems Substitution Method Elimination Method Special Systems

5.1 Systems of Linear Equations Linear Systems Substitution Method Elimination Method Special Systems 5.1-1 Linear Systems The possible graphs of a linear system in two unknowns are as follows. 1. The

### IV. ALGEBRAIC CONCEPTS

IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### Florida Math for College Readiness

Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness

### Solving Quadratic Equations by Completing the Square

9. Solving Quadratic Equations by Completing the Square 9. OBJECTIVES 1. Solve a quadratic equation by the square root method. Solve a quadratic equation by completing the square. Solve a geometric application

### 1.01 b) Operate with polynomials.

1.01 Write equivalent forms of algebraic expressions to solve problems. a) Apply the laws of exponents. There are a few rules that simplify our dealings with exponents. Given the same base, there are ways

### 2-5 Rational Functions

-5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4

### graphs, Equations, and inequalities

graphs, Equations, and inequalities You might think that New York or Los Angeles or Chicago has the busiest airport in the U.S., but actually it s Hartsfield-Jackson Airport in Atlanta, Georgia. In 010,

### GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

GRAPHING LINEAR EQUATIONS IN TWO VARIABLES The graphs of linear equations in two variables are straight lines. Linear equations may be written in several forms: Slope-Intercept Form: y = mx+ b In an equation

### Section 1.10 Lines. The Slope of a Line

Section 1.10 Lines The Slope of a Line EXAMPLE: Find the slope of the line that passes through the points P(2,1) and Q(8,5). = 5 1 8 2 = 4 6 = 2 1 EXAMPLE: Find the slope of the line that passes through

### Norwalk La Mirada Unified School District. Algebra Scope and Sequence of Instruction

1 Algebra Scope and Sequence of Instruction Instructional Suggestions: Instructional strategies at this level should include connections back to prior learning activities from K-7. Students must demonstrate

### 4.1 Solving a System of Linear Inequalities

4.1 Solving a System of Linear Inequalities Question 1: How do you graph a linear inequality? Question : How do you graph a system of linear inequalities? In Chapter, we were concerned with systems of