# Section 1. Inequalities

Save this PDF as:

Size: px
Start display at page:

Download "Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5"

## Transcription

1 Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5. The sign > stands for greater than. In a similar way we can write 5 > 3 in this shorthand form. These statements are called inequalities. Recall the number line (introduced in an earlier worksheet): It is drawn so that the numbers increase from left to right. Alternatively the numbers decrease from right to left. Any number which lies to the right of another on the number line is greater than it and any number which lies to the left of another on the number line is less than it. Example 1 : 6 < 0 5 > 2 5 < < 3 We can also use inequalities in algebraic expressions. So 21a is less than 30a is written 21a < 30a (only true if a > 0) The expression a > 1 means that a is one of all the numbers to the right of 1 on the number line. We draw this using an open circle and an arrow heading to the right. The open circle sits over 1 and indicates that the actual number 1 is not included. That is a is bigger than 1 but not equal to 1: Example 2 : x > 2

2 Example 3 : x < 4 This indicates all numbers to the left of 4 but not including 4. If we wish to include 4 in the above example we would write x 4. This is shorthand for less than or equal to 4. x a x < a or x = a and x a x > a or x = a For, read implies. A closed circle or dot is used on the number line when the actual number is included in the inequality. Example 4 : x This indicates all the numbers to the right of 7 and 7 itself. We can combine signs to make further algebraic expressions. For example 3 x < 2 means all numbers greater than or equal to 3 but smaller than or equal to 2. That 3 and 2 and all the numbers in between. You may also see the notation [ 3, 2] used to represent this interval. Example 5 : 0 < x 1 means all numbers greater than zero and less than or equal to one. In interval notation this is represented by (0, 1]. To draw this type of inequality on the number line we use a line drawn between the open or closed circles over the numbers. So 0 < x 1 is drawn as Example 6 : 1 x 1 Page 2

3 Example 7 : The number of matches in a box could be as little as 47 or as many as 58. If x stands for the number of matches in a box then we can write that 47 x 58 Exercises: 1. Write inequalities for the following: (a) Numbers less than or equal to 6 (b) Numbers between 1 and 4 inclusive (c) Numbers between 2 and 5 exclusive 2. Which of the numbers indicated satisfy the accompanying inequality? (a) x 3 1, 2, 3, 3 1, (b) x < 4 2, 7, 8 1, 0 2 (c) 5 x < 3 6, 4, 0, 1 2, 3 (d) 2 < x , 2 1 2, 4, 5 1 4, 5.5, 7 3. Graph the following inequalities on number lines: (a) x 1 (b) x > 4 (c) 1 < x < 5 Section 2 Solving Inequalities Solving inequalities is similar to solving equations as in worksheet 2.2. We may add or subtract numbers or algebraic terms from both or all sides of the inequality to isolate the variable from the rest of the expression. Similarly we can multiply and divide each side with one very important qualification. When multiplying or dividing both sides of an inequality by a negative number the sign must be reversed. Page 3

4 Example 1 : Given 2x < 4 we want to solve for x. Divide both sides by 2 and reverse the inequality. We get 2x 2 > 4 2 and after cancelling we get x > 2 Only do this when multiplying or dividing both sides of the inequality by a negative number. Let s see what happens when we don t do this. Example 2 : Observe that 1 < 2 is a true statement. 1 < < < 2 We have ended up with 1 < 2, which is a false statement. Some examples of solving inequalities follow. Example 3 : x x x 1 Example 4 : x 2 5 x x 3 Example 5 : 5x x 10 5 x 2 Page 4

5 Example 6 : 3 2x x x 2 2x x 1 Example 7 : 5x + 3 2x + 2 5x + 3 2x 2x + 2 2x 3x x 2 3 3x 1 x 1 3 Example 8 : 3(x + 2 ) < 5(2x + 5) 3 3x + 2 < 10x x 10x + 2 < 25 7x < x < 23 x > 23 7 x > 23 7 Exercises: 1. Solve the following inequalities: (a) x 7 < 5 (b) 2x + 3 > 8 (c) 4(m + 1) m 3 (d) m (e) 6 m < 8 4m (f) 3y + 2 5y + 10 Page 5

6 (g) y > y (h) 4(x + 1 ) 2(x + 3 ) x+1 (i) x+3 < 4x (j) 4(m + 3) + 5(2m 1) > 7m + 6 Section 3 Absolute Values and Inequalities The absolute value of a number was discussed in Worksheet 1.7. Recall that the absolute value of a, written a, is the distance in units that a is away from the origin. For example 7 = 7. Alternatively you could define it as a = + a 2. So when we combine absolute values and inequalities we are looking for all numbers that are either less than or greater than a certain distance away from the origin. Example 1 : The equation x < 3 represents all the numbers whose distance away from the origin is less than 3 units. We could rewrite this inequality as 3 < x < 3. If we draw this on the number line we get To solve inequalities involving absolute values we often need to rewrite the inequality without the absolute value signs as we have just done in the above example. Example 2 : x > 1 can be rewritten as x > 1 or x < 1 In other words all the numbers whose distance away from the origin is greater than 1 unit. Notice that the solution is just the converse of 1 x 1. Since x 1 is easier to solve than x > 1 we can begin by solving 1 x 1 and the solution will be its converse. Page 6

7 Example 3 : x x x 2 this is the same as 2 x 2 Example 4 : x + 3 < 5 5 < x + 3 < 5 Here we note that the expression inside the absolute value sign is treated as a single entity, as if it were in brackets, and must be rewritten before you try to solve it. So 5 < x + 3 < < x < < x < 2 When dealing with a three-sided inequality like the above we follow the same rules as if it were two-sided, i.e. everything that we do to one side of the inequality we must do to all the other sides. Example 5 : Solve: x 2 4 Consider the converse: x 2 < 4. Then 4 < x 2 < 4 2 < x < 6 Hence the solution is the converse x 2 or x 6 Page 7

8 This can also be viewed graphically: 4 y = Notice that the function y = x 2 is at or above the line y = 4 for x 2 and x 6. To graph y = x 2, we set up a table of values as follows: x y Exercises: 1. Solve the following inequalities, and graph the solutions on a number line: (a) x 3 (b) x > 4 (c) x (d) x + 1 < 6 (e) x 4 2 Page 8

9 Exercises 2.4 Introduction to Inequalities 1. (a) Show the following inequalities on a number line: i. x > 3 ii. x 2.5 iii. 1 < x 4 iv. x > 6 or x < 8 v. [0, 5) vi. ( 2, 4] (b) Write down the appropriate inequalities from the following information. i. ii iii. Sophie s blood alcohol level was at least 0.07 iv. Tony had no more than 2 traffic offences. v. The number of drug offences was no more than 200. vi. To enter the theatre, you must be at least 18 years old or under 12 months old. vii. To join the veteran s team, you must be 35 or more. (c) i. Is x = 1.5 a solution to 7x + 5 > 19? ii. Is x = 2 a solution to 4 x < 6? 2. Solve: (a) x 3 2 (b) y > 6 (c) 2x < 24 (d) 1 < x + 2 < 5 (e) 2a + 4 > 3a 11 (f) 2x + 7 > 10 (g) 3(t + 5) 2(t + 1) (h) 1(x + 3) 3 (x 2) 2 4 (i) x = 7 (j) 6 x = 7 (k) y > 2 (l) 2x + 1 < 3 (m) x 5 5 (n) x + 13 < 2 Page 9

10 Answers 2.4 Section 1 1. (a) x 6 (b) 1 x 4 (c) 2 < x < 5 2. (a) 3, 3 1, 4 1 (b) 7, 8 1 (c) 4, 0, 1 (d) 2 1, 4, 5 1, (a) (b) (c) Section 2 1. (a) x < 12 (b) x > (c) m 7 3 (d) m 7 (e) m < 2 3 (f) y 4 (g) y < 19 (h) x 3 (i) x > (j) m > 1 7 Section 3 1. (a) (b) (c) (d) (e) 3 x x < 4 or x > 4 3 x < x < x 2 or x 6 Page 10

11 Exercises (a) i. ii. iii. iv. v. vi (b) i. x > 1 or x 0.5 ii. 1 < x 3 iii. S 0.07 iv. T 2 v. D 200 vi. x 18 or x < 1 vii. A 35 (c) (i) No (ii) No 2. (a) x 5 (b) y < 6 (c) x < 12 (d) 3 < x < 3 (e) a < 15 (f) x < 3 2 (g) t 13 (h) x 12 (i) x = 7 or x = 7 (j) x = 1 or x = 13 (k) y > 2 or y < 2 (l) 2 < x < 1 (m) x 10 or x 0 (n) No solutions Page 11

### Domain of a Composition

Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such

### CAHSEE on Target UC Davis, School and University Partnerships

UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

### MATH 90 CHAPTER 1 Name:.

MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.

### Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

### is the degree of the polynomial and is the leading coefficient.

Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...

### Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### Solving Quadratic & Higher Degree Inequalities

Ch. 8 Solving Quadratic & Higher Degree Inequalities We solve quadratic and higher degree inequalities very much like we solve quadratic and higher degree equations. One method we often use to solve quadratic

### SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

### Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:

Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the

### 1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

### 9 Multiplication of Vectors: The Scalar or Dot Product

Arkansas Tech University MATH 934: Calculus III Dr. Marcel B Finan 9 Multiplication of Vectors: The Scalar or Dot Product Up to this point we have defined what vectors are and discussed basic notation

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

### CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

### Most unit conversions are very easy in Mathcad because the units are direct multiplications into the other unit system. 1 kg

Most unit conversions are very easy in Mathcad because the units are direct multiplications into the other unit system. 1 kg 2.20 lb kg 11.023 lb In the example above, 1 kg equals 2.20 lb, so kg is times

### Welcome to Math 19500 Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 2013 An important feature of the following Beamer slide presentations is that you, the reader, move

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Algebra I Credit Recovery

Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,

### Solving Exponential Equations

Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

### Section 9.5: Equations of Lines and Planes

Lines in 3D Space Section 9.5: Equations of Lines and Planes Practice HW from Stewart Textbook (not to hand in) p. 673 # 3-5 odd, 2-37 odd, 4, 47 Consider the line L through the point P = ( x, y, ) that

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### Equations. #1-10 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0

College Algebra Review Problems for Final Exam Equations #1-10 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve

### Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework

Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal

### 1. Graphing Linear Inequalities

Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means

### FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA

FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x

### Numeracy Preparation Guide. for the. VETASSESS Test for Certificate IV in Nursing (Enrolled / Division 2 Nursing) course

Numeracy Preparation Guide for the VETASSESS Test for Certificate IV in Nursing (Enrolled / Division Nursing) course Introduction The Nursing course selection (or entrance) test used by various Registered

### PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

### The Epsilon-Delta Limit Definition:

The Epsilon-Delta Limit Definition: A Few Examples Nick Rauh 1. Prove that lim x a x 2 = a 2. (Since we leave a arbitrary, this is the same as showing x 2 is continuous.) Proof: Let > 0. We wish to find

### Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

### Functions and their Graphs

Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated

MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible

### A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles

A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...

### A Quick Algebra Review

1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Pre-Calculus Graphing Calculator Handbook

Pre-Calculus Graphing Calculator Handbook I. Graphing Functions A. Button for Functions This button is used to enter any function to be graphed. You can enter up to 10 different functions at a time. Use

### Limits. Graphical Limits Let be a function defined on the interval [-6,11] whose graph is given as:

Limits Limits: Graphical Solutions Graphical Limits Let be a function defined on the interval [-6,11] whose graph is given as: The limits are defined as the value that the function approaches as it goes

### ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form

ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola

### Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by

### A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions

A Second Course in Mathematics Concepts for Elementary Teachers: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved First Draft February 8, 2006 1 Contents 25

### Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

### A power series about x = a is the series of the form

POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

### Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

### Linear Equations in One Variable

Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve

### 1 Description of The Simpletron

Simulating The Simpletron Computer 50 points 1 Description of The Simpletron In this assignment you will write a program to simulate a fictional computer that we will call the Simpletron. As its name implies

### The IS-LM Model Ing. Mansoor Maitah Ph.D.

The IS-LM Model Ing. Mansoor Maitah Ph.D. Constructing the Keynesian Cross Equilibrium is at the point where Y = C + I + G. If firms were producing at Y 1 then Y > E Because actual expenditure exceeds

### ACCUPLACER Arithmetic & Elementary Algebra Study Guide

ACCUPLACER Arithmetic & Elementary Algebra Study Guide Acknowledgments We would like to thank Aims Community College for allowing us to use their ACCUPLACER Study Guides as well as Aims Community College

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### MATH 21. College Algebra 1 Lecture Notes

MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### X On record with the USOE.

Textbook Alignment to the Utah Core Algebra 2 Name of Company and Individual Conducting Alignment: Chris McHugh, McHugh Inc. A Credential Sheet has been completed on the above company/evaluator and is

### Section 1.1. Introduction to R n

The Calculus of Functions of Several Variables Section. Introduction to R n Calculus is the study of functional relationships and how related quantities change with each other. In your first exposure to

### 2013 MBA Jump Start Program

2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of

### North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions 01 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

### Phase Portraits for u = A u

Phase Portraits for u = A u How to Construct a Phase Portrait Badly Threaded Solution Curves Solution Curve Tangent Matching Phase Portrait Illustration Phase plot by computer Revised Computer Phase plot

### Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

### M0312 Assignments on Grade Tally Sheet Spring 2011 Section # Name

M0312 Assignments on Grade Tally Sheet Spring 2011 Section # Name Date Packet Work Points MyMathLab Sections 1/18/11 Line 1: Pop Test 1.1, page 1-7 1.1 Pop Test 1.2, page 1-8 1.2 Scientific Notation Worksheet,

### Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations

Grade 4 - Module 5: Fraction Equivalence, Ordering, and Operations Benchmark (standard or reference point by which something is measured) Common denominator (when two or more fractions have the same denominator)

### 1.3. DOT PRODUCT 19. 6. If θ is the angle (between 0 and π) between two non-zero vectors u and v,

1.3. DOT PRODUCT 19 1.3 Dot Product 1.3.1 Definitions and Properties The dot product is the first way to multiply two vectors. The definition we will give below may appear arbitrary. But it is not. It

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### 1 The Concept of a Mapping

Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 1 The Concept of a Mapping The concept of a mapping (aka function) is important throughout mathematics. We have been dealing

### ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section

ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by

### BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

### Math 131 College Algebra Fall 2015

Math 131 College Algebra Fall 2015 Instructor's Name: Office Location: Office Hours: Office Phone: E-mail: Course Description This course has a minimal review of algebraic skills followed by a study of

### For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

### Chesapeake College. Syllabus. MAT 031 Elementary Algebra (silcox87517) John H. Silcox

Chesapeake College Syllabus MAT 031 Elementary Algebra (silcox87517) John H. Silcox Phone 410-778-4540 (W) Phone 410-348-5370 (H) john.silcox@1972.usna.com Syllabus For MAT 031 I. OFFICE HOURS: One hour

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

ADULT LEARNING ACADEMY PRE-ALGEBRA WORKBOOK UNIT 6: INTEGERS Debbie Char and Lisa Whetstine St. Louis Community College First Version: 01/12/2015 MoHealthWINs This workforce solution was funded by a grant

### Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES

Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations

### Requisite Approval must be attached

Requisite Approval must be attached CITRUS COMMUNITY COLLEGE DISTRICT DEPARTMENT Mathematics COURSE NUMBER MATH 148 TITLE Intermediate Algebra I THIS COURSE IS CLASSIFIED AS: DEGREE APPLICABLE UNIT VALUE

### Sensitivity Report in Excel

The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### A Year-long Pathway to Complete MATH 1111: College Algebra

A Year-long Pathway to Complete MATH 1111: College Algebra A year-long path to complete MATH 1111 will consist of 1-2 Learning Support (LS) classes and MATH 1111. The first semester will consist of the

### G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) Final Practice Exam

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) Final Practice Exam G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d

### Review of Basic Algebraic Concepts

Section. Sets of Numbers and Interval Notation Review of Basic Algebraic Concepts. Sets of Numbers and Interval Notation. Operations on Real Numbers. Simplifying Expressions. Linear Equations in One Variable.

### YOU CAN COUNT ON NUMBER LINES

Key Idea 2 Number and Numeration: Students use number sense and numeration to develop an understanding of multiple uses of numbers in the real world, the use of numbers to communicate mathematically, and

### Algebra and Geometry Review (61 topics, no due date)

Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties

### DRAFT. Algebra 1 EOC Item Specifications

DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as

### 1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6 Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described by piecewise functions. LEARN ABOUT the Math A city parking lot

### Mohawk Valley Community College MVCC MA115 Mr. Bauer

Mohawk Valley Community College MVCC MA115 Course description: This is a dual credit course. Successful completion of the course will give students 1 VVS Credit and 3 MVCC Credit. College credits do have

### Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

### a. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F

FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### ALGEBRA I (Common Core)

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA I (Common Core) Wednesday, August 12, 2015 8:30 to 11:30 a.m. MODEL RESPONSE SET Table of Contents Question 25...................

### Midterm 2 Review Problems (the first 7 pages) Math 123-5116 Intermediate Algebra Online Spring 2013

Midterm Review Problems (the first 7 pages) Math 1-5116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in

### How to Graph Trigonometric Functions

How to Graph Trigonometric Functions This handout includes instructions for graphing processes of basic, amplitude shifts, horizontal shifts, and vertical shifts of trigonometric functions. The Unit Circle

### Accuplacer Arithmetic Study Guide

Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how

### Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve

### You know from calculus that functions play a fundamental role in mathematics.

CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections