# Degeneracy in Linear Programming

Save this PDF as:

Size: px
Start display at page:

## Transcription

1

2 Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students at MIT shouldn t learn about degeneracy. And I heard that students have already studied convicts sex. Photo removed due to copyright restrictions. Photo removed due to copyright restrictions. Pat Robertson Stan Ellen DeGeneres Actually, they studied convex sets. 2

3 What is degeneracy? As you know, the simplex algorithm starts at a corner point and moves to an adjacent corner point by increasing the value of a non-basic variable x s with a positive cost coefficient. Typically, the entering variable x s does increase in value, and the objective value z improves. But it is possible that x s does not increase at all. This situation can occur when one of the RHS coefficients is. In this case, the objective value and solution does not change, but there is an exiting variable. This situation is called degeneracy. -z x 1 x 2 x 3 x = = 6 = 2 A basic feasible solution is called degenerate if one of its RHS coefficients (excluding the objective value) is. This bfs is degenerate. 3

4 Thanks. That was a short tutorial. No, Nooz**. This tutorial has many more slides. Degeneracy adds complications to the simplex algorithm. And if you understand what occurs under degeneracy, you really understand what is going on with the simplex algorithm. Incidentally, if you are reading this tutorial before you have understood the simplex algorithm, you should stop reading. You really need to understand the simplex algorithm in order to understand this tutorial. Nooz Ella ** As you know, No, Nooz is good news. 4

5 Degeneracy and Basic Feasible Solutions We may think that every two distinct bases lead to two different solutions. This would be true if there was no degeneracy. But with degeneracy, we can have two different bases, and the same feasible solution. -z x 1 x 2 x 3 x 4 -z x 1 x 2 x 3 x = = = 6-3/ /2 = = 2-1/2 12 1/2 1 = 2 We now pivot on the 2 in Constraint 2 and obtain a second tableau. Both tableaus correspond to the same feasible solution with z = 2, x 1 = x 2 = x 4 = ; x 3 = 6. But the basic variables and the coefficients of the two tableaus are different. 5

6 z x 1 x 2 x 3 x 4 z x 1 x 2 x 3 x = = = 6-3/ /2 = = 2-1/2 12 1/2 1 = 2 Not only are the two tableaus different, but the second tableau satisfies the optimality conditions. This means that the first basic feasible solution was optimal, even though we were not aware that this solution was optimal when we looked at the first tableau. But this all seems very technical. Is it really important? Tom, it turns out to be very important. We can show that the simplex algorithm is finite and guaranteed to be valid when there is no degeneracy. When there is degeneracy, we have to modify the algorithm to guarantee finiteness. Tom 6

7 I m now going to reveal a secret. The definition of degeneracy given here is slightly different than the one given in the lecture on geometry. To the right is a picture of what I said in that lecture. When a corner point is the solution of two different sets of equality constraints, then this is called degeneracy. This will turn out to be important for the simplex algorithm. It wasn t that I was misinforming you. There just wasn t a better way of describing the situation during that lecture. From Lecture 3. 7

8 -z x 1 x 2 x 3 x 4 -z x 1 x 2 x 3 x = = = 6-3/ /2 = = 2-1/2 12 1/2 1 = 2 Whenever two different bases correspond to the same basic solution, then some basic variable must be. (If variable x s is pivoted in, its value will change unless the RHS is.) But it is possible for the RHS to be, and for there still to be only one basis for that solution. The tableau to my right illustrates this point. -z x 1 x 2 x = -2-3/2 3 1 = = 2 We say that we say that a basis is degenerate if a basic variable is. This is far simpler than the alternative definition in which one needs to check if there are two bases corresponding to the same solution.. 8

9 The Finiteness of the Simplex Algorithm when there is no degeneracy Recall that the simplex algorithm tries to increase a non-basic variable x s. If there is no degeneracy, then x s will be positive after the pivot, and the objective value will improve. Recall also that each solution produced by the simplex algorithm is a basic feasible solution with m basic variables, where m is the number of constraints. There are a finite number of ways of choosing the basic variables. (An upper bound is n! / (n-m)! m!, which is the number of ways of selecting m basic variables out of n.) So, the simplex algorithm moves from bfs to bfs. And it never repeats a bfs because the objective is constantly improving. This shows that the simplex method is finite, so long as there is no degeneracy. 9

10 Cycling If a sequence of pivots starting from some basic feasible solution ends up at the exact same basic feasible solution, then we refer to this as cycling. If the simplex method cycles, it can cycle forever. Klee and Minty [1972] gave an example in which the simplex algorithm really does cycle. Here is their example, with the pivot elements outlined. -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 3/4-2 1/ / / / Initial tableau -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS / / After 1 pivot 1

11 Cycling Example Continued -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS /8-3 3/4-1/2 1/ After 2 pivots -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1-1/ / /2-1 1/2 1-3/64 1 3/16 1/16-1/8-1/8 1 1/2 1 1/ After 3 pivots -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 1/ / /4 5 1/3 1 1/3-2/3 2 1/ After 4 pivots 11

12 Cycling Example Continued -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 1 3/ / /4 28 1/ / /6 1 1/ After 5 pivots -z x 1 x 2 x 3 x 4 x 5 x 6 x 7 RHS 1 3/4-2 1/ / / / After 6 pivots And Klee and Minty said The first shall be last and the last shall be first, and they saw that their example of cycling was good. 12

13 I have another admission. In the lecture on geometry, I said that the simplex method was finite. But it s only finite if we are guaranteed not to repeat solutions. In particular, it is finite if there is no degeneracy. I still don t understand what you are talking about. But I am very saddened that you didn t tell the truth in the other lecture. Cheer up, Stan. There is a technique that prevents bases from repeating in the simplex method, even if they are degenerate bases. This will guarantee the finiteness of the simplex algorithm, provided that the technique is used. 13

14 Is the simplex method finite? So, how do we know that the simplex method will terminate if there is degeneracy? There are several approaches to guaranteeing that the simplex method will be finite, including one developed by Professors Magnanti and Orlin. And there is the perturbation technique that entirely avoids degeneracy. But we re going to show you Bland s rule, developed by Bob Bland. It s the simplest rule to guarantee finiteness of the simplex method. Photo of Bob Bland removed due to copyright restrictions. Bob Bland 14

15 Bland s Rule. 1.The entering variable should be the lowest index variable with positive reduced cost. 2.The leaving variable (in case of a tie in the min ratio test) should be the lowest index row. (It is the row closest to the top, regardless of the leaving variable.) -z x 1 x 2 x 3 x 4 x 5 x 6 Variables x 1, x 2, and x 7 are all eligible to enter the basis. We choose the lowest index one, which is x 1. {click now} We can pivot on the 4 in the column for x 1. Or we can pivot on the 1. We pivot on the 4 because it is the row that is closes to the top = = 6 1 = 2 1 = 15

16 More on Bland s rule This seems both easy and practical. But why does it work? If you use Bland s rule, the simplex algorithm will never repeat a basis. But no one knows why it works. It remains a mystery to this day. Nooz is not being serious. I proved that using the rule will prevent bases from repeating. I know why it works, and so does anyone who has read my proof. But the proof is too complicated to present here. So, please take our word for it. Photo of Bob Bland removed due to copyright restrictions. Bob Bland 16

17 Degeneracy and the Simplex Algorithm The simplex method without degeneracy The solution changes after each pivot. The objective value strictly improves after a pivot. The simplex method is guaranteed to be finite. Two different tableaus in canonical form give two different solutions. The simplex method with degeneracy The solution may stay the same after a pivot. The objective value may stay the same. The simplex method may cycle and be infinite. But it becomes finite if we use the Bland s rule or several other approaches. It is possible that there are two different sets of basic variables that give the same solution. 17

18 Degeneracy vs. Alternative Optima Finally, degeneracy is similar to but different from the condition for alternate optima. In degeneracy, one of the RHS values is. For alternate optima, in an optimal tableau one of the non-basic cost coefficients is. -z x 1 x 2 x 3 x = = = 2 The optimal solution is: z = 8, x 1 = x 2 =, x 3 = 6, and x 4 = 2. x 1 is nonbasic, and its cost coefficient is. Increasing x 1 (and adjusting x 3 and x 4 ) does not change z, and so the solution value remains optimal. 18

19 Summary Degeneracy is important because we want the simplex method to be finite, and the generic simplex method is not finite if bases are permitted to be degenerate. In principle, cycling can occur if there is degeneracy. In practice, cycling does not arise, but no one really knows why not. Perhaps it does occur, but people assume that the simplex algorithm is just taking too long for some other reason, and they never discover the cycling. Researchers have developed several different approaches to ensure the finiteness of the simplex method, even if the bases can be degenerate. Bob Bland developed a very simple rule that prevents cycling. 19

20 It also turns out that one can test a student s knowledge of the simplex algorithm by asking questions about what will happen if the current bfs is degenerate. Does this mean that we can expect questions on a test that involve degeneracy? That is exactly what I mean. I m sure that the students will understand it well. As for me, I m not taking for credit. 2

21 Last Slide And that is all for our tutorial on degeneracy. We hope to see you again for our next tutorial. We thank Stan, Tom, Ella, and Nooz for sharing all of their insights on degeneracy. I also want to thank Ellen DeGeneres for making a cameo appearance. Amit Mita 21

### Converting a Linear Program to Standard Form

Converting a Linear Program to Standard Form Hi, welcome to a tutorial on converting an LP to Standard Form. We hope that you enjoy it and find it useful. Amit, an MIT Beaver Mita, an MIT Beaver 2 Linear

### Simplex method summary

Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

### Chap 4 The Simplex Method

The Essence of the Simplex Method Recall the Wyndor problem Max Z = 3x 1 + 5x 2 S.T. x 1 4 2x 2 12 3x 1 + 2x 2 18 x 1, x 2 0 Chap 4 The Simplex Method 8 corner point solutions. 5 out of them are CPF solutions.

### 3 Does the Simplex Algorithm Work?

Does the Simplex Algorithm Work? In this section we carefully examine the simplex algorithm introduced in the previous chapter. Our goal is to either prove that it works, or to determine those circumstances

### Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

### 15.053/8 February 26, 2013

15.053/8 February 26, 2013 Sensitivity analysis and shadow prices special thanks to Ella, Cathy, McGraph, Nooz, Stan and Tom 1 Quotes of the Day If the facts don't fit the theory, change the facts. --

### Definition of a Linear Program

Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1

### Chapter 4: The Mechanics of the Simplex Method

Chapter 4: The Mechanics of the Simplex Method The simplex method is a remarkably simple and elegant algorithmic engine for solving linear programs. In this chapter we will examine the internal mechanics

### The Graphical Simplex Method: An Example

The Graphical Simplex Method: An Example Consider the following linear program: Max 4x 1 +3x Subject to: x 1 +3x 6 (1) 3x 1 +x 3 () x 5 (3) x 1 +x 4 (4) x 1, x 0. Goal: produce a pair of x 1 and x that

### Solving Linear Programs

Solving Linear Programs 2 In this chapter, we present a systematic procedure for solving linear programs. This procedure, called the simplex method, proceeds by moving from one feasible solution to another,

### Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

### 1 Solving LPs: The Simplex Algorithm of George Dantzig

Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

### International Doctoral School Algorithmic Decision Theory: MCDA and MOO

International Doctoral School Algorithmic Decision Theory: MCDA and MOO Lecture 2: Multiobjective Linear Programming Department of Engineering Science, The University of Auckland, New Zealand Laboratoire

### IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

### Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture - 15 Limited Resource Allocation Today we are going to be talking about

### Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### 7.4 Linear Programming: The Simplex Method

7.4 Linear Programming: The Simplex Method For linear programming problems with more than two variables, the graphical method is usually impossible, so the simplex method is used. Because the simplex method

### Basic Components of an LP:

1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

### LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

### Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

### Linear Programming: Theory and Applications

Linear Programming: Theory and Applications Catherine Lewis May 11, 2008 1 Contents 1 Introduction to Linear Programming 3 1.1 What is a linear program?...................... 3 1.2 Assumptions.............................

### This exposition of linear programming

Linear Programming and the Simplex Method David Gale This exposition of linear programming and the simplex method is intended as a companion piece to the article in this issue on the life and work of George

### 4.6 Linear Programming duality

4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

### Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in

### Duality in Linear Programming

Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

### 6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation

6.207/14.15: Networks Lecture 15: Repeated Games and Cooperation Daron Acemoglu and Asu Ozdaglar MIT November 2, 2009 1 Introduction Outline The problem of cooperation Finitely-repeated prisoner s dilemma

### Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

### Practical Guide to the Simplex Method of Linear Programming

Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear

### Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 \$3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

### Lecture 2: August 29. Linear Programming (part I)

10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week 7 Lecture Notes Discrete Probability Continued Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. The Bernoulli

### 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### 56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

### Linear Programming. March 14, 2014

Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

### Chapter 2 Solving Linear Programs

Chapter 2 Solving Linear Programs Companion slides of Applied Mathematical Programming by Bradley, Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando Oliveira Maria Antónia Carravilla A

### Linear Programming in Matrix Form

Linear Programming in Matrix Form Appendix B We first introduce matrix concepts in linear programming by developing a variation of the simplex method called the revised simplex method. This algorithm,

### Linear Programming I

Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

### Nonlinear Programming Methods.S2 Quadratic Programming

Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective

### Mathematical finance and linear programming (optimization)

Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may

### 6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium

6.254 : Game Theory with Engineering Applications Lecture 5: Existence of a Nash Equilibrium Asu Ozdaglar MIT February 18, 2010 1 Introduction Outline Pricing-Congestion Game Example Existence of a Mixed

### 1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

### FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION REDUCIBILITY ( LECTURE 16) SLIDES FOR 15-453 SPRING 2011 1 / 20 THE LANDSCAPE OF THE CHOMSKY HIERARCHY ( LECTURE 16) SLIDES FOR 15-453 SPRING 2011 2 / 20 REDUCIBILITY

### OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

### 7.1 Modelling the transportation problem

Chapter Transportation Problems.1 Modelling the transportation problem The transportation problem is concerned with finding the minimum cost of transporting a single commodity from a given number of sources

### SIMS 255 Foundations of Software Design. Complexity and NP-completeness

SIMS 255 Foundations of Software Design Complexity and NP-completeness Matt Welsh November 29, 2001 mdw@cs.berkeley.edu 1 Outline Complexity of algorithms Space and time complexity ``Big O'' notation Complexity

### Lecture 3: Finding integer solutions to systems of linear equations

Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture

### Fractions and Decimals

Fractions and Decimals Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles December 1, 2005 1 Introduction If you divide 1 by 81, you will find that 1/81 =.012345679012345679... The first

### Week 5 Integral Polyhedra

Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory

### Standard Form of a Linear Programming Problem

494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

### Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON

Computational Geometry Lab: FEM BASIS FUNCTIONS FOR A TETRAHEDRON John Burkardt Information Technology Department Virginia Tech http://people.sc.fsu.edu/ jburkardt/presentations/cg lab fem basis tetrahedron.pdf

### Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY

Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP

### Linear Equations in Linear Algebra

1 Linear Equations in Linear Algebra 1.2 Row Reduction and Echelon Forms ECHELON FORM A rectangular matrix is in echelon form (or row echelon form) if it has the following three properties: 1. All nonzero

### A Labeling Algorithm for the Maximum-Flow Network Problem

A Labeling Algorithm for the Maximum-Flow Network Problem Appendix C Network-flow problems can be solved by several methods. In Chapter 8 we introduced this topic by exploring the special structure of

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

### Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

### LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting

### Computational aspects of simplex and MBU-simplex algorithms using different anti-cycling pivot rules

Computational aspects of simplex and MBU-simplex algorithms using different anti-cycling pivot rules Tibor Illés, Adrienn Nagy October 8, 2012 Abstract Several variations of index selection rules for simplex

### Recall that in base 10, the digits of a number are just coefficients of powers of the base (10):

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### Lecture Notes 2: Matrices as Systems of Linear Equations

2: Matrices as Systems of Linear Equations 33A Linear Algebra, Puck Rombach Last updated: April 13, 2016 Systems of Linear Equations Systems of linear equations can represent many things You have probably

### 1 Portfolio Selection

COS 5: Theoretical Machine Learning Lecturer: Rob Schapire Lecture # Scribe: Nadia Heninger April 8, 008 Portfolio Selection Last time we discussed our model of the stock market N stocks start on day with

### Zeros of a Polynomial Function

Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we

### Row Echelon Form and Reduced Row Echelon Form

These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation

### Linear Programming. Solving LP Models Using MS Excel, 18

SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

### 1 Introduction. 2 Prediction with Expert Advice. Online Learning 9.520 Lecture 09

1 Introduction Most of the course is concerned with the batch learning problem. In this lecture, however, we look at a different model, called online. Let us first compare and contrast the two. In batch

### 1 Review of Least Squares Solutions to Overdetermined Systems

cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares

### 18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 28, Lagrange Multipliers

18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 28, Lagrange Multipliers JOEL LEWIS: Hi. Welcome back to recitation. In lecture, you've been learning about how to solve multivariable optimization

### What is Linear Programming?

Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

### We know a formula for and some properties of the determinant. Now we see how the determinant can be used.

Cramer s rule, inverse matrix, and volume We know a formula for and some properties of the determinant. Now we see how the determinant can be used. Formula for A We know: a b d b =. c d ad bc c a Can we

### Binary Number System. 16. Binary Numbers. Base 10 digits: 0 1 2 3 4 5 6 7 8 9. Base 2 digits: 0 1

Binary Number System 1 Base 10 digits: 0 1 2 3 4 5 6 7 8 9 Base 2 digits: 0 1 Recall that in base 10, the digits of a number are just coefficients of powers of the base (10): 417 = 4 * 10 2 + 1 * 10 1

### 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 6.080 / 6.089 Great Ideas in Theoretical Computer Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

### Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli

Situation 23: Simultaneous Equations Prepared at the University of Georgia EMAT 6500 class Date last revised: July 22 nd, 2013 Nicolina Scarpelli Prompt: A mentor teacher and student teacher are discussing

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### 2.3 Convex Constrained Optimization Problems

42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions

### The Basics of FEA Procedure

CHAPTER 2 The Basics of FEA Procedure 2.1 Introduction This chapter discusses the spring element, especially for the purpose of introducing various concepts involved in use of the FEA technique. A spring

### Point and Interval Estimates

Point and Interval Estimates Suppose we want to estimate a parameter, such as p or µ, based on a finite sample of data. There are two main methods: 1. Point estimate: Summarize the sample by a single number

### princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora

princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of

### Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

### Basic Terminology for Systems of Equations in a Nutshell. E. L. Lady. 3x 1 7x 2 +4x 3 =0 5x 1 +8x 2 12x 3 =0.

Basic Terminology for Systems of Equations in a Nutshell E L Lady A system of linear equations is something like the following: x 7x +4x =0 5x +8x x = Note that the number of equations is not required

### Solving Linear Programs in Excel

Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

### Pre-Algebra Class 3 - Fractions I

Pre-Algebra Class 3 - Fractions I Contents 1 What is a fraction? 1 1.1 Fractions as division............................... 2 2 Representations of fractions 3 2.1 Improper fractions................................

### Rocker Arm Geometry And Valvetrain Alignment A Detailed Explanation Of Valvetrain Alignment Goals

Rocker Arm Geometry And Valvetrain Alignment A Detailed Explanation Of Valvetrain Alignment Goals From the February, 2009 issue of Circle Track magazine By Bob Bolles Engine performance is like a complicated

### CHAPTER 3 Numbers and Numeral Systems

CHAPTER 3 Numbers and Numeral Systems Numbers play an important role in almost all areas of mathematics, not least in calculus. Virtually all calculus books contain a thorough description of the natural,

### 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

### PhysicsAndMathsTutor.com

D Linear programming - Simplex algorithm. The tableau below is the initial tableau for a maximising linear programming problem in x, y and z. Basic variable x y z r s t Value r 4 7 5 0 0 64 s 0 0 0 6 t

### LS.6 Solution Matrices

LS.6 Solution Matrices In the literature, solutions to linear systems often are expressed using square matrices rather than vectors. You need to get used to the terminology. As before, we state the definitions

### Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

### Mortgage Secrets. What the banks don t want you to know.

Mortgage Secrets What the banks don t want you to know. Copyright Notice: Copyright 2006 - All Rights Reserved Contents may not be shared or transmitted in any form, so don t even think about it. Trust

### 7 Gaussian Elimination and LU Factorization

7 Gaussian Elimination and LU Factorization In this final section on matrix factorization methods for solving Ax = b we want to take a closer look at Gaussian elimination (probably the best known method

### Congruences. Robert Friedman

Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition

### State Spaces Graph Search Searching. Graph Search. CPSC 322 Search 2. Textbook 3.4. Graph Search CPSC 322 Search 2, Slide 1

Graph Search CPSC 322 Search 2 Textbook 3.4 Graph Search CPSC 322 Search 2, Slide 1 Lecture Overview 1 State Spaces 2 Graph Search 3 Searching Graph Search CPSC 322 Search 2, Slide 2 State Spaces Idea:

### Lectures 5-6: Taylor Series

Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

### Minimize subject to. x S R

Chapter 12 Lagrangian Relaxation This chapter is mostly inspired by Chapter 16 of [1]. In the previous chapters, we have succeeded to find efficient algorithms to solve several important problems such

### Algorithms 2/17/2015. Double Summations. Enough Mathematical Appetizers! Algorithms. Algorithms. Algorithm Examples. Algorithm Examples

Double Summations Table 2 in 4 th Edition: Section 1.7 5 th Edition: Section.2 6 th and 7 th Edition: Section 2.4 contains some very useful formulas for calculating sums. Enough Mathematical Appetizers!

### Network Models 8.1 THE GENERAL NETWORK-FLOW PROBLEM

Network Models 8 There are several kinds of linear-programming models that exhibit a special structure that can be exploited in the construction of efficient algorithms for their solution. The motivation

### Newton Divided-Difference Interpolating Polynomials

Section 3 Newton Divided-Difference Interpolating Polynomials The standard form for representing an nth order interpolating polynomial is straightforward. There are however, other representations of nth