Linear Programming IS 601

Size: px
Start display at page:

Download "Linear Programming IS 601"

Transcription

1 Linear Programming IS 01

2 e-optimization.com A Resource Page on Optimization

3 Distribution System at Proctor and Gamble Proctor and Gamble needed to consolidate and re-design their North American distribution system in the early 1990 s. 50 product categories 0 plants 15 distribution centers 1000 customer zones Solved many transportation problems (one for each product category). Goal: find best distribution plan, which plants to keep open, etc. Closed many plants and distribution centers, and optimized their product sourcing and distribution location. Implemented in 199. Saved $200 million per year. For more details, see 1997 Jan-Feb Interfaces article, Blending OR/MS, Judgement, and GIS: Restructuring P&G s Supply Chain.

4 History of the Diet Problem Stigler (1945) The Cost of Subsistence heuristic solution. Cost = $ Dantzig invents the simplex method (1947) Stigler s problem solved in 120 man days. Cost = $39.9. Dantzig goes on a diet (early 1950 s), applies diet model: 1,500 calories objective: maximize (weight minus water content) 500 food types Initial solutions had problems 500 gallons of vinegar 200 bouillon cubes For more details, see July-Aug 1990 Interfaces article The Diet Problem.

5 Workforce Scheduling at United Airlines United employs 5,000 reservation and customer service agents. Some part-time (2- hour shifts), some full-time (-10 hour shifts). Workload varies greatly over day. Modeled problem as LP: Decision variables: how many employees of each shift length should begin at each potential start time (half-hour intervals). Constraints: minimum required employees for each half-hour. Objective: minimize cost. Saved United about $ million annually, improved customer service, still in use today. For more details, see Jan-Feb 19 Interfaces article United Airlines Station Manpower Planning System.

6 A Product Mix Problem The company has developed the following new products: An -foot glass door with aluminum framing. A 4-foot by -foot double-hung, wood-framed window. The company has three plants Plant 1 produces aluminum frames and hardware. Plant 2 produces wood frames. Plant 3 produces glass and assembles the windows and doors. Questions: 1. Should they go ahead with launching these two new products? 2. If so, what should be the product mix?

7 Developing a Spreadsheet Model Step #1: Data Cells Enter all of the data for the problem on the spreadsheet. Make consistent use of rows and columns. It is a good idea to color code these data cells (e.g., light blue). Doors Windows Unit Profit $300 $500 Available Hou Used Per Unit Produced s Plant Plant Plant

8 Step #2: Changing Cells Add a cell in the spreadsheet for every decision that needs to be made. If you don t have any particular initial values, just enter 0 in each. It is a good idea to color code these changing cells (e.g., yellow with border). Doors Windows Unit Profit $300 $500 Used Per Unit Produced Available Plant Plant Plant Doors Windows Units Produced 0 0

9 Step #3: Target Cell Develop an equation that defines the objective of the model. Typically this equation involves the data cells and the changing cells in order to determine a quantity of interest (e.g., total profit or total cost). It is a good idea to color code this cell (e.g., orange with heavy border). Doors Windows Unit Profit $300 $500 Used Per Unit Produced Available Plant Plant Plant Doors Windows Total Profit Units Produced 1 1 $ G Total Profit =SUMPRODUCT(UnitProfit,UnitsProduced)

10 Step #4: Constraints For any resource that is restricted, calculate the amount of that resource used in a cell on the spreadsheet (an output cell). Define the constraint in three consecutive cells. For example, if Quantity A Quantity B, put these three items (Quantity A,, Quantity B) in consecutive cells. Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 1 1 $ E Used =SUMPRODUCT(C7:D7,UnitsProduced) =SUMPRODUCT(C:D,UnitsProduced) =SUMPRODUCT(C9:D9,UnitsProduced)

11 A Trial Solution Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 4 3 $2,700 The spreadsheet for the problem with a trial solution (4 doors and 3 windows) entered into the changing cells.

12 Algebraic Model for the Problem Let D = the number of doors to produce W = the number of windows to produce Maximize P = $300D + $500W subject to D 4 2W 12 3D + 2W 1 and D 0, W 0.

13 Graphing the Product Mix W Production rate (units per week) for windows A product mix of D = 4 and W = (4, ) A product mix of D = 2 and W = 3 (2, 3) 1 Origin Production rate (units per week) for doors -1 D -2

14 Graph Showing Constraints: D 0 and W 0 W 4 2 Production rate for windows Production rate for doors D

15 Nonnegative Solutions Permitted by D 4 W D = Production rate for windows 0 D 2 4 Production rate for doors

16 Nonnegative Solutions Permitted by Production rate for windows W 2W 12 2 W = Production rate for doors D

17 Boundary Line for Constraint 3D + Production rate for windows W 10 2W 1 (0, 9) (1, 7 1_ ) 2 (2, ) 3 D + 2 W = 1 4 (3, 4 1_ ) 2 (4, 3) 2 (5, 1 1_ ) Production rate for doors (, 0) D

18 Changing Right-Hand Side Creates Parallel Constraint Boundary Lines Production rate for windows W D + 2W = D + 2W = 1 2 3D + 2W = Production rate for doors D

19 Nonnegative Solutions Permitted by 3D + 2W 1 Production rate for windows W D + 2W = Production rate for doors D

20 Graph of Feasible Region Production rate for windows W 10 3 D + 2 W = 1 D = 4 2 W =12 4 Feasible 2 region Production rate for doors D

21 Objective Function (P = 1,500) Production rate for windows W P = 1500 = 300D + 500W 4 Feasible region Production rate for doors D

22 Finding the Optimal Solution Production rate W for windows P = 300 = 300D + 500W P = 3000 = 300D + 500W Optimal solution (2, ) P = 1500 = 300D + 500W 4 Feasible region Production rate for doors 10 D

23 Summary of the Graphical Method Draw the constraint boundary line for each constraint. Use the origin (or any point not on the line) to determine which side of the line is permitted by the constraint. Find the feasible region by determining where all constraints are satisfied simultaneously. Determine the slope of one objective function line. All other objective function lines will have the same slope. Move a straight edge with this slope through the feasible region in the direction of improving values of the objective function. Stop at the last instant that the straight edge still passes through a point in the feasible region. This line given by the straight edge is the optimal objective function line. A feasible point on the optimal objective function line is an optimal solution.

24 The Graphical Method for Solving LP s Formulate the problem as a linear program Plot the constraints Identify the feasible region Draw an imaginary line parallel to the objective function (Z = a) Find the optimal solution

25 Why Use Linear Programming? Linear programs are easy (efficient) to solve The best (optimal) solution is guaranteed to be found (if it exists) Useful sensitivity analysis information is generated Many problems are essentially linear

26 Properties of Linear Programming Solutions An optimal solution must lie on the boundary of the feasible region. There are exactly four possible outcomes of linear programming: A unique optimal solution is found. An infinite number of optimal solutions exist. No feasible solutions exist. The objective function is unbounded (there is no optimal solution). If an LP model has one optimal solution, it must be at a corner point. If an LP model has many optimal solutions, at least two of these optimal solutions are at corner points.

27 The Simplex Method Algorithm 1. Start at a feasible corner point (often the origin). 2. Check if adjacent corner points improve the objective function: a) If so, move to adjacent corner and repeat step 2. b) If not, current corner point is optimal. Stop. x x 1

28 Identifying the Target Cell and Changing Cells Choose the Solver from the Tools menu. Select the cell you wish to optimize in the Set Target Cell window. Choose Max or Min depending on whether you want to maximize or minimize the target cell. Enter all the changing cells in the By Changing Cells window. Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 1 1 $00

29 Adding Constraints To begin entering constraints, click the Add button to the right of the constraints window. Fill in the entries in the resulting Add Constraint dialogue box. Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 1 1 $00

30 The Complete Solver Dialogue Box

31 Some Important Options Click on the Options button, and click in both the Assume Linear Model and the Assume Non-Negative box. Assume Linear Model tells the Solver that this is a linear programming model. Assume Non-Negative adds nonnegativity constraints to all the changing cells.

32 The Solver Results Dialogue Box

33 The Optimal Solution B C D E F G Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 2 $3,00

34 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $200 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 2 $3,400 The profit per door has been revised from $300 to $200. No change occurs in the optimal solution.

35 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $500 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 2 $4,000 The profit per door has been revised from $300 to $500. No change occurs in the optimal solution.

36 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $1,000 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 4 3 $5,500 The profit per door has been revised from $300 to $1,000. The optimal solution changes.

37 Using the Sensitivity Report to Find the Allowable Range Adjustable Cells Final Reduced Objective Allowable Allowable Cell Name Value Cost Coefficient Increase Decrease $C$12 Units Produced Doors $D$12 Units Produced Windows E

38 Graphical Insight into the Allowable Range W Production rate for windows (2, ) is optimal for 0 < P D < 750 Line B P D = 0 (Profit = 0 D W) 4 2 Feasible region Line C P D = 300 (Profit = 300 D W) P D = 750 (Profit = 750 D W) Line A Production rate for doors D The two dashed lines that pass through the solid constraint boundary lines are the objective function lines when P D (the unit profit for doors) is at an endpoint of its allowable range, 0 P D 750.

39 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $450 $400 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 2 $3,300 The profit per door has been revised from $300 to $450. The profit per window has been revised from $500 to $400. No change occurs in the optimal solution.

40 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $00 $300 Used Per Unit Produced Used Available Plant <= 4 Plant <= 12 Plant <= 1 Doors Windows Total Profit Units Produced 4 3 $3,300 The profit per door has been revised from $300 to $00. The profit per window has been revised from $500 to $300. The optimal solution changes.

41 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 13 Plant <= 1 Doors Windows Total Profit Units Produced $3,750 The hours available in plant 2 have been increased from 12 to 13. The total profit increases by $150 per week.

42 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 1 Plant <= 1 Doors Windows Total Profit Units Produced 0 9 $4,500 The hours available in plant 2 have been further increased from 13 to 1. The total profit increases by $750 per week ($150 per hour added in plant 2).

43 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 20 Plant <= 1 Doors Windows Total Profit Units Produced 0 9 $4,500 The hours available in plant 2 have been further increased from 1 to 20. The total profit does not increase any further.

44 Using the Sensitivity Report Adjustable Cells Final Reduced Objective Allowable Allowable Cell Name Value Cost Coefficient Increase Decrease $C$12 Units Produced Doors $D$12 Units Produced Windows E Constraints Final Shadow Constraint Allowable Allowable Cell Name Value Price R.H. Side Increase Decrease $E$7 Plant 1 Used E+30 2 $E$ Plant 2 Used $E$9 Plant 3 Used

45 Graphical Interpretation of the Allowable Range Production rate for windows W 10 (0, 9) 2 W = 1 Profit = 300 (0) (9) = $4,500 Line B (2, ) 2 W = 12 Profit = 300 (2) () = $3, Feasible region for original problem (4, 3) 2 W = Profit = 300 (4) (3) = $2,700 Line C (3 D + 2 W = 1) Line A (D = 4) Production rate for doors D

46 Using the Spreadsheet to do Sensitivity Analysis B C D E F G Doors Windows Unit Profit $300 $500 Used Per Unit Produced Used Available Plant <= 4 Plant <= 13 Plant <= 17 Doors Windows Total Profit Units Produced $3,50 One available hour in plant 3 has been shifted to plant 2. The total profit increases by $50 per week.

Linear Programming. Solving LP Models Using MS Excel, 18

Linear Programming. Solving LP Models Using MS Excel, 18 SUPPLEMENT TO CHAPTER SIX Linear Programming SUPPLEMENT OUTLINE Introduction, 2 Linear Programming Models, 2 Model Formulation, 4 Graphical Linear Programming, 5 Outline of Graphical Procedure, 5 Plotting

More information

Solving Linear Programs using Microsoft EXCEL Solver

Solving Linear Programs using Microsoft EXCEL Solver Solving Linear Programs using Microsoft EXCEL Solver By Andrew J. Mason, University of Auckland To illustrate how we can use Microsoft EXCEL to solve linear programming problems, consider the following

More information

Linear Programming Supplement E

Linear Programming Supplement E Linear Programming Supplement E Linear Programming Linear programming: A technique that is useful for allocating scarce resources among competing demands. Objective function: An expression in linear programming

More information

Question 2: How will changes in the objective function s coefficients change the optimal solution?

Question 2: How will changes in the objective function s coefficients change the optimal solution? Question 2: How will changes in the objective function s coefficients change the optimal solution? In the previous question, we examined how changing the constants in the constraints changed the optimal

More information

Solving Linear Programs in Excel

Solving Linear Programs in Excel Notes for AGEC 622 Bruce McCarl Regents Professor of Agricultural Economics Texas A&M University Thanks to Michael Lau for his efforts to prepare the earlier copies of this. 1 http://ageco.tamu.edu/faculty/mccarl/622class/

More information

Linear Programming Notes VII Sensitivity Analysis

Linear Programming Notes VII Sensitivity Analysis Linear Programming Notes VII Sensitivity Analysis 1 Introduction When you use a mathematical model to describe reality you must make approximations. The world is more complicated than the kinds of optimization

More information

Special Situations in the Simplex Algorithm

Special Situations in the Simplex Algorithm Special Situations in the Simplex Algorithm Degeneracy Consider the linear program: Maximize 2x 1 +x 2 Subject to: 4x 1 +3x 2 12 (1) 4x 1 +x 2 8 (2) 4x 1 +2x 2 8 (3) x 1, x 2 0. We will first apply the

More information

Module1. x 1000. y 800.

Module1. x 1000. y 800. Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

More information

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

More information

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

More information

Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

More information

Using EXCEL Solver October, 2000

Using EXCEL Solver October, 2000 Using EXCEL Solver October, 2000 2 The Solver option in EXCEL may be used to solve linear and nonlinear optimization problems. Integer restrictions may be placed on the decision variables. Solver may be

More information

Linear programming. Learning objectives. Theory in action

Linear programming. Learning objectives. Theory in action 2 Linear programming Learning objectives After finishing this chapter, you should be able to: formulate a linear programming model for a given problem; solve a linear programming model with two decision

More information

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

More information

Images of Microsoft Excel dialog boxes Microsoft. All rights reserved. This content is excluded from our Creative Commons license.

Images of Microsoft Excel dialog boxes Microsoft. All rights reserved. This content is excluded from our Creative Commons license. 1 Images of Microsoft Excel dialog boxes Microsoft. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Tool

More information

Airport Planning and Design. Excel Solver

Airport Planning and Design. Excel Solver Airport Planning and Design Excel Solver Dr. Antonio A. Trani Professor of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia Spring 2012 1 of

More information

EdExcel Decision Mathematics 1

EdExcel Decision Mathematics 1 EdExcel Decision Mathematics 1 Linear Programming Section 1: Formulating and solving graphically Notes and Examples These notes contain subsections on: Formulating LP problems Solving LP problems Minimisation

More information

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2

IEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2 IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3

More information

Sensitivity Report in Excel

Sensitivity Report in Excel The Answer Report contains the original guess for the solution and the final value of the solution as well as the objective function values for the original guess and final value. The report also indicates

More information

15.053/8 February 26, 2013

15.053/8 February 26, 2013 15.053/8 February 26, 2013 Sensitivity analysis and shadow prices special thanks to Ella, Cathy, McGraph, Nooz, Stan and Tom 1 Quotes of the Day If the facts don't fit the theory, change the facts. --

More information

Linear Programming I

Linear Programming I Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins

More information

The Graphical Method: An Example

The Graphical Method: An Example The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

More information

USING EXCEL 2010 TO SOLVE LINEAR PROGRAMMING PROBLEMS MTH 125 Chapter 4

USING EXCEL 2010 TO SOLVE LINEAR PROGRAMMING PROBLEMS MTH 125 Chapter 4 ONE-TIME ONLY SET UP INSTRUCTIONS Begin by verifying that the computer you are using has the Solver Add-In enabled. Click on Data in the menu across the top of the window. On the far right side, you should

More information

OPRE 6201 : 2. Simplex Method

OPRE 6201 : 2. Simplex Method OPRE 6201 : 2. Simplex Method 1 The Graphical Method: An Example Consider the following linear program: Max 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2

More information

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1

Operation Research. Module 1. Module 2. Unit 1. Unit 2. Unit 3. Unit 1 Operation Research Module 1 Unit 1 1.1 Origin of Operations Research 1.2 Concept and Definition of OR 1.3 Characteristics of OR 1.4 Applications of OR 1.5 Phases of OR Unit 2 2.1 Introduction to Linear

More information

3 Introduction to Linear Programming

3 Introduction to Linear Programming 3 Introduction to Linear Programming 24 The development of linear programming has been ranked among the most important scientific advances of the mid-20th century, and we must agree with this assessment.

More information

Standard Form of a Linear Programming Problem

Standard Form of a Linear Programming Problem 494 CHAPTER 9 LINEAR PROGRAMMING 9. THE SIMPLEX METHOD: MAXIMIZATION For linear programming problems involving two variables, the graphical solution method introduced in Section 9. is convenient. However,

More information

Linear Programming Notes V Problem Transformations

Linear Programming Notes V Problem Transformations Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material

More information

EXCEL SOLVER TUTORIAL

EXCEL SOLVER TUTORIAL ENGR62/MS&E111 Autumn 2003 2004 Prof. Ben Van Roy October 1, 2003 EXCEL SOLVER TUTORIAL This tutorial will introduce you to some essential features of Excel and its plug-in, Solver, that we will be using

More information

University of Southern California Marshall Information Services

University of Southern California Marshall Information Services University of Southern California Marshall Information Services Determine Breakeven Price Using Excel - Using Goal Seek, Data Tables, Vlookup & Charts This guide covers how to determine breakeven price

More information

Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16.

Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. LINEAR PROGRAMMING II 1 Linear Programming II: Minimization 2006 Samuel L. Baker Assignment 11 is on page 16. Introduction A minimization problem minimizes the value of the objective function rather than

More information

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept

Introduction to Linear Programming (LP) Mathematical Programming (MP) Concept Introduction to Linear Programming (LP) Mathematical Programming Concept LP Concept Standard Form Assumptions Consequences of Assumptions Solution Approach Solution Methods Typical Formulations Massachusetts

More information

1 Solving LPs: The Simplex Algorithm of George Dantzig

1 Solving LPs: The Simplex Algorithm of George Dantzig Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.

More information

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver

Optimal Scheduling for Dependent Details Processing Using MS Excel Solver BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 8, No 2 Sofia 2008 Optimal Scheduling for Dependent Details Processing Using MS Excel Solver Daniela Borissova Institute of

More information

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS

CHAPTER 11: BASIC LINEAR PROGRAMMING CONCEPTS Linear programming is a mathematical technique for finding optimal solutions to problems that can be expressed using linear equations and inequalities. If a real-world problem can be represented accurately

More information

Degeneracy in Linear Programming

Degeneracy in Linear Programming Degeneracy in Linear Programming I heard that today s tutorial is all about Ellen DeGeneres Sorry, Stan. But the topic is just as interesting. It s about degeneracy in Linear Programming. Degeneracy? Students

More information

LINEAR PROGRAMMING WITH THE EXCEL SOLVER

LINEAR PROGRAMMING WITH THE EXCEL SOLVER cha06369_supa.qxd 2/28/03 10:18 AM Page 702 702 S U P P L E M E N T A LINEAR PROGRAMMING WITH THE EXCEL SOLVER Linear programming (or simply LP) refers to several related mathematical techniques that are

More information

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood

Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood PERFORMANCE EXCELLENCE IN THE WOOD PRODUCTS INDUSTRY EM 8720-E October 1998 $3.00 Using the Simplex Method to Solve Linear Programming Maximization Problems J. Reeb and S. Leavengood A key problem faced

More information

Curve Fitting in Microsoft Excel By William Lee

Curve Fitting in Microsoft Excel By William Lee Curve Fitting in Microsoft Excel By William Lee This document is here to guide you through the steps needed to do curve fitting in Microsoft Excel using the least-squares method. In mathematical equations

More information

1. Graphing Linear Inequalities

1. Graphing Linear Inequalities Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means

More information

Lecture 2: August 29. Linear Programming (part I)

Lecture 2: August 29. Linear Programming (part I) 10-725: Convex Optimization Fall 2013 Lecture 2: August 29 Lecturer: Barnabás Póczos Scribes: Samrachana Adhikari, Mattia Ciollaro, Fabrizio Lecci Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite

ALGEBRA. sequence, term, nth term, consecutive, rule, relationship, generate, predict, continue increase, decrease finite, infinite ALGEBRA Pupils should be taught to: Generate and describe sequences As outcomes, Year 7 pupils should, for example: Use, read and write, spelling correctly: sequence, term, nth term, consecutive, rule,

More information

Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data

Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data In the measurement of the Spin-Lattice Relaxation time T 1, a 180 o pulse is followed after a delay time of t with a 90 o pulse,

More information

How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

More information

3.1 Solving Systems Using Tables and Graphs

3.1 Solving Systems Using Tables and Graphs Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

More information

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem?

Unit 1. Today I am going to discuss about Transportation problem. First question that comes in our mind is what is a transportation problem? Unit 1 Lesson 14: Transportation Models Learning Objective : What is a Transportation Problem? How can we convert a transportation problem into a linear programming problem? How to form a Transportation

More information

5 Systems of Equations

5 Systems of Equations Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

More information

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints

Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and

More information

Linear Programming. March 14, 2014

Linear Programming. March 14, 2014 Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1

More information

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5

FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5 Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities

More information

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations.

EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. EXCEL Tutorial: How to use EXCEL for Graphs and Calculations. Excel is powerful tool and can make your life easier if you are proficient in using it. You will need to use Excel to complete most of your

More information

Simplex method summary

Simplex method summary Simplex method summary Problem: optimize a linear objective, subject to linear constraints 1. Step 1: Convert to standard form: variables on right-hand side, positive constant on left slack variables for

More information

This activity will show you how to draw graphs of algebraic functions in Excel.

This activity will show you how to draw graphs of algebraic functions in Excel. This activity will show you how to draw graphs of algebraic functions in Excel. Open a new Excel workbook. This is Excel in Office 2007. You may not have used this version before but it is very much the

More information

Sensitivity Analysis with Excel

Sensitivity Analysis with Excel Sensitivity Analysis with Excel 1 Lecture Outline Sensitivity Analysis Effects on the Objective Function Value (OFV): Changing the Values of Decision Variables Looking at the Variation in OFV: Excel One-

More information

A Guide to Using Excel in Physics Lab

A Guide to Using Excel in Physics Lab A Guide to Using Excel in Physics Lab Excel has the potential to be a very useful program that will save you lots of time. Excel is especially useful for making repetitious calculations on large data sets.

More information

4.6 Linear Programming duality

4.6 Linear Programming duality 4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal

More information

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method

Lecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming

More information

Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540

Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540 To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration

More information

Dealing with Data in Excel 2010

Dealing with Data in Excel 2010 Dealing with Data in Excel 2010 Excel provides the ability to do computations and graphing of data. Here we provide the basics and some advanced capabilities available in Excel that are useful for dealing

More information

Calc Guide Chapter 9 Data Analysis

Calc Guide Chapter 9 Data Analysis Calc Guide Chapter 9 Data Analysis Using Scenarios, Goal Seek, Solver, others Copyright This document is Copyright 2007 2011 by its contributors as listed below. You may distribute it and/or modify it

More information

with functions, expressions and equations which follow in units 3 and 4.

with functions, expressions and equations which follow in units 3 and 4. Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

More information

Linear Programming. Quantitative Module. Module Outline LEARNING OBJECTIVES. When you complete this module you should be able to

Linear Programming. Quantitative Module. Module Outline LEARNING OBJECTIVES. When you complete this module you should be able to Quantitative Module B Linear rogramming Module Outline REQUIREMENTS OF A LINEAR ROGRAMMING ROBLEM FORMULATING LINEAR ROGRAMMING ROBLEMS Shader Electronics Example GRAHICAL SOLUTION TO A LINEAR ROGRAMMING

More information

Basic Components of an LP:

Basic Components of an LP: 1 Linear Programming Optimization is an important and fascinating area of management science and operations research. It helps to do less work, but gain more. Linear programming (LP) is a central topic

More information

Optimization Modeling for Mining Engineers

Optimization Modeling for Mining Engineers Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2

More information

Quickstart for Desktop Version

Quickstart for Desktop Version Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS

USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS USING EXCEL SOLVER IN OPTIMIZATION PROBLEMS Leslie Chandrakantha John Jay College of Criminal Justice of CUNY Mathematics and Computer Science Department 445 West 59 th Street, New York, NY 10019 lchandra@jjay.cuny.edu

More information

Tutorial: Using Excel for Linear Optimization Problems

Tutorial: Using Excel for Linear Optimization Problems Tutorial: Using Excel for Linear Optimization Problems Part 1: Organize Your Information There are three categories of information needed for solving an optimization problem in Excel: an Objective Function,

More information

Using Microsoft Excel to Plot and Analyze Kinetic Data

Using Microsoft Excel to Plot and Analyze Kinetic Data Entering and Formatting Data Using Microsoft Excel to Plot and Analyze Kinetic Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure 1). Type

More information

What is Linear Programming?

What is Linear Programming? Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to

More information

Laminar Flow in a Baffled Stirred Mixer

Laminar Flow in a Baffled Stirred Mixer Laminar Flow in a Baffled Stirred Mixer Introduction This exercise exemplifies the use of the rotating machinery feature in the CFD Module. The Rotating Machinery interface allows you to model moving rotating

More information

TEACHING AGGREGATE PLANNING IN AN OPERATIONS MANAGEMENT COURSE

TEACHING AGGREGATE PLANNING IN AN OPERATIONS MANAGEMENT COURSE TEACHING AGGREGATE PLANNING IN AN OPERATIONS MANAGEMENT COURSE Johnny C. Ho, Turner College of Business, Columbus State University, Columbus, GA 31907 David Ang, School of Business, Auburn University Montgomery,

More information

Duality in Linear Programming

Duality in Linear Programming Duality in Linear Programming 4 In the preceding chapter on sensitivity analysis, we saw that the shadow-price interpretation of the optimal simplex multipliers is a very useful concept. First, these shadow

More information

Data Visualization. Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004

Data Visualization. Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Data Visualization Prepared by Francisco Olivera, Ph.D., Srikanth Koka Department of Civil Engineering Texas A&M University February 2004 Contents Brief Overview of ArcMap Goals of the Exercise Computer

More information

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

More information

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method

LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS. 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method LECTURE 5: DUALITY AND SENSITIVITY ANALYSIS 1. Dual linear program 2. Duality theory 3. Sensitivity analysis 4. Dual simplex method Introduction to dual linear program Given a constraint matrix A, right

More information

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Excel Tutorial Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Working with Data Entering and Formatting Data Before entering data

More information

WITH APPROXIMATELY $20 BILLION in revenues, Applications of Linear and Integer Programming Models. Chapter3

WITH APPROXIMATELY $20 BILLION in revenues, Applications of Linear and Integer Programming Models. Chapter3 Applications of Linear and Integer Programming Models Chapter3 WITH APPROXIMATELY $20 BILLION in revenues, FedEx Corporation (http://www.fedex.com) has become a world leader in providing integrated transportation,

More information

Analyzing calorimetry data using pivot tables in Excel

Analyzing calorimetry data using pivot tables in Excel Analyzing calorimetry data using pivot tables in Excel 1. Set up the Source Table: Start in format 1. a. Remove the table of weights from the top to a separate page so the top row has the column labels.

More information

Graphing Parabolas With Microsoft Excel

Graphing Parabolas With Microsoft Excel Graphing Parabolas With Microsoft Excel Mr. Clausen Algebra 2 California State Standard for Algebra 2 #10.0: Students graph quadratic functions and determine the maxima, minima, and zeros of the function.

More information

SOLVING EQUATIONS WITH EXCEL

SOLVING EQUATIONS WITH EXCEL SOLVING EQUATIONS WITH EXCEL Excel and Lotus software are equipped with functions that allow the user to identify the root of an equation. By root, we mean the values of x such that a given equation cancels

More information

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS

Sensitivity Analysis 3.1 AN EXAMPLE FOR ANALYSIS Sensitivity Analysis 3 We have already been introduced to sensitivity analysis in Chapter via the geometry of a simple example. We saw that the values of the decision variables and those of the slack and

More information

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005

LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 LECTURE: INTRO TO LINEAR PROGRAMMING AND THE SIMPLEX METHOD, KEVIN ROSS MARCH 31, 2005 DAVID L. BERNICK dbernick@soe.ucsc.edu 1. Overview Typical Linear Programming problems Standard form and converting

More information

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1. Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

More information

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition

More information

Chapter 6: Sensitivity Analysis

Chapter 6: Sensitivity Analysis Chapter 6: Sensitivity Analysis Suppose that you have just completed a linear programming solution which will have a major impact on your company, such as determining how much to increase the overall production

More information

Calibration and Linear Regression Analysis: A Self-Guided Tutorial

Calibration and Linear Regression Analysis: A Self-Guided Tutorial Calibration and Linear Regression Analysis: A Self-Guided Tutorial Part 1 Instrumental Analysis with Excel: The Basics CHM314 Instrumental Analysis Department of Chemistry, University of Toronto Dr. D.

More information

Activity 5. Two Hot, Two Cold. Introduction. Equipment Required. Collecting the Data

Activity 5. Two Hot, Two Cold. Introduction. Equipment Required. Collecting the Data . Activity 5 Two Hot, Two Cold How do we measure temperatures? In almost all countries of the world, the Celsius scale (formerly called the centigrade scale) is used in everyday life and in science and

More information

56:171 Operations Research Midterm Exam Solutions Fall 2001

56:171 Operations Research Midterm Exam Solutions Fall 2001 56:171 Operations Research Midterm Exam Solutions Fall 2001 True/False: Indicate by "+" or "o" whether each statement is "true" or "false", respectively: o_ 1. If a primal LP constraint is slack at the

More information

Introduction to Microsoft Excel 2007/2010

Introduction to Microsoft Excel 2007/2010 to Microsoft Excel 2007/2010 Abstract: Microsoft Excel is one of the most powerful and widely used spreadsheet applications available today. Excel's functionality and popularity have made it an essential

More information

Eleonóra STETTNER, Kaposvár Using Microsoft Excel to solve and illustrate mathematical problems

Eleonóra STETTNER, Kaposvár Using Microsoft Excel to solve and illustrate mathematical problems Eleonóra STETTNER, Kaposvár Using Microsoft Excel to solve and illustrate mathematical problems Abstract At the University of Kaposvár in BSc and BA education we introduced a new course for the first year

More information

GeoGebra Statistics and Probability

GeoGebra Statistics and Probability GeoGebra Statistics and Probability Project Maths Development Team 2013 www.projectmaths.ie Page 1 of 24 Index Activity Topic Page 1 Introduction GeoGebra Statistics 3 2 To calculate the Sum, Mean, Count,

More information

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

More information

Linear Program Solver

Linear Program Solver Linear Program Solver Help Manual prepared for Forest Management course by Bogdan Strimbu 1 Introduction The Linear Program Solver (LiPS) Help manual was developed to help students enrolled in the senior

More information

Chapter 2: Introduction to Linear Programming

Chapter 2: Introduction to Linear Programming Chapter 2: Introduction to Linear Programming You may recall unconstrained optimization from your high school years: the idea is to find the highest point (or perhaps the lowest point) on an objective

More information

PARCC Grade 08 Mathematics Practice Test Released April, 2014 http://practice.parcc.testnav.com/#

PARCC Grade 08 Mathematics Practice Test Released April, 2014 http://practice.parcc.testnav.com/# Non-Calculator Part 1. Solve for. Enter your answer in the space provided. Enter only your solution. ( ) ( ) 2. Which decimal is equivalent to? Select your answer. A. B. C. D. 3. Two lines are graphed

More information

0.1 Linear Programming

0.1 Linear Programming 0.1 Linear Programming 0.1.1 Objectives By the end of this unit you will be able to: formulate simple linear programming problems in terms of an objective function to be maximized or minimized subject

More information

EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

More information

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.

1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where. Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information