5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1


 Constance Owen
 1 years ago
 Views:
Transcription
1 5 INTEGER LINEAR PROGRAMMING (ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
2 General Integer Linear Program: (ILP) min c T x Ax b x 0 integer Assumption: A, b integer The integrality condition is non linear: sin (π x j ) = 0 j If x j {0, 1} j, binary LP If not all variables x j are integer, mixed ILP E. Amaldi Fondamenti di R.O. Politecnico di Milano 2
3 Example: max z = 21x x 2 7x 1 + 4x 2 13 x 1, x 2 0 integer 3 x 2 optimal LP solution with z LP = optimal ILP solution with z ILP = 33 Deleting integrality constraints LP with optimal value z LP 2 1 7x 1 + 4x 2 =13 1 Region of the feasible solutions ILP = lattice (finite or infinite points) 2 3 x 1 E. Amaldi Fondamenti di R.O. Politecnico di Milano 3
4 Def.: Given z ILP max c T x (ILP) Ax b x 0 intero X ILP The problem (LP) z LP max c T x Ax b x 0 X LP X ILP is the linear (continuous) relaxation. Property: For each ILP with max we have z ILP z LP, i.e., z LP is an upper bound on the optimal value of ILP. NB: If ILP with min, then z ILP z LP E. Amaldi Fondamenti di R.O. Politecnico di Milano 4
5 Idea: relax the integrality constraints of ILP and round up/down the optimal solution of the linear relaxation LP. If an optimal solution of LP is integer then it is also an optimal solution of ILP. Often the rounded solutions are:  infeasible for ILP  useless (very different from the optimal solution of the ILP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 5
6  infeasible rounded solutions c LP optimum infeasible! ILP optimum  useless rounded solutions When the variables take small values at optimality (a few units) e.g. binary assignment variables (job to machine) or activation variables (plants) E. Amaldi Fondamenti di R.O. Politecnico di Milano 6
7  Usefull rounded solutions When the variables take large values at optimality e.g. number of pieces to produce NB: it also depends on the unit costs (coefficients of the objective functions) E. Amaldi Fondamenti di R.O. Politecnico di Milano 7
8 Knapsack problem n objects j = 1,, n p j v j b profit (value) of object j volume (weight) of object j knapsack capacity Select a subset of objects so as to maximize the total profit while respecting the knapsack capacity. Variables: x j = 1 jth object is selected 0 otherwise E. Amaldi Fondamenti di R.O. Politecnico di Milano 8
9 n max j= 1 n j=1 p j x j v j x j b x j {0,1} j Wide range of direct or indirect applications:  loading (containers, vehicles, CDs, )  investements (p j = expected return, v j = amount to invest, b = available capital)  as a subproblem E. Amaldi Fondamenti di R.O. Politecnico di Milano 9
10 Assignment problem m machines i = 1,, m n jobs j = 1,, n c ij cost of assigning job j to machine i Assumption: n > m Determine an assignment of the jobs to the machines so as to minimize the total cost while assigning at least one job per machine and making sure at. E. Amaldi Fondamenti di R.O. Politecnico di Milano 10
11 Variables: x ij = 1 job j is executed on machine i 0 otherwise m n min i=1 j=1 c ij x ij m i=1 x ij 1 j = 1,, n each job is executed on at most one machine n x ij 1 i = 1,, m j=1 x ij {0,1} i, j at least one job per machine E. Amaldi Fondamenti di R.O. Politecnico di Milano 11
12 Transportation problem (single product) m production plants i = 1,, m n clients j = 1,, n c ij p i d j q ij transportation cost of 1 unit of product from plant i to client j production capacity of plant i demand client j maximum amount to be transported from i to j Determine a transportation plan that minimizes total costs while satisfying plant capacities and client demands. E. Amaldi Fondamenti di R.O. Politecnico di Milano 12
13 min m n j=1 i=1 n j=1 m Assumption: c ij x ij x ij p i x ij d j m i=1 i = 1,, m j = 1,, n n p i j=1 Variables: x ij = amount transported from plant i to client j plant capacity client demand i=1 0 x ij q ij i, j integer transportation capacity d j E. Amaldi Fondamenti di R.O. Politecnico di Milano 13
14 Property of transportation and assignment problems: Optimal solution of the linear relaxation optimal solution of ILP! Property: If right hand side constants are integer, all basic feasible solutions (vertices) of the linear relaxation are integer. In transportation problem, special (mn+n+m) (mn) integer matrix A of the constraints: a ij {1, 0, 1} with exactly three nonzero coefficients per column. Right hand side vector b has all integer components E. Amaldi Fondamenti di R.O. Politecnico di Milano 14
15 Optimal solution of linear relaxation: x * = B 1b 0 B 1 = 1 det B ( ) α... α 11 m α α 1, m... mm T where α ij = (1) i+j det(m ij ) with M ij submatrix obtained from B by deleting row i and column j B integer α ij integer If det(b) = ±1 B 1 integer x * integer In fact A is totally unimodular, that is det(q) = {1,0,1} square submatrix of A E. Amaldi Fondamenti di R.O. Politecnico di Milano 15
16 Scheduling problem m machines k = 1,, m n jobs j = 1,, n For each job j, deadline d j p jk = processing time of job j on machine k (may be = 0) Assumption: each job must be processed once on each machine, following the order of the machine indices 1, 2,, m Determine an optimal sequence in which to process the jobs so as to minimize the completion time (makespan) while satisfying the deadlines. E. Amaldi Fondamenti di R.O. Politecnico di Milano 16
17 Variables: t jk = time at which the proceesing of job j starts on machine k t = upper bound on the completion time of all jobs y ijk = 1 if job i preceeds job j on machine k 0 otherwise and we set M n j=1 d j E. Amaldi Fondamenti di R.O. Politecnico di Milano 17
18 min t t jm + p jm t j t is upper bound on completion timeof all jobs t jm + p jm d j j respect deadlines t ik + p ik t jk + M (1y ijk ) i,j,k i < j (*) t jk + p jk t ik + M y ijk i,j,k i < j (**) t jk + p jk t j,k+1 j,k = 1,, m1 job processed in the given order t 0, t jk 0 j,k y ijk {0,1} i,j,k mixed ILP E. Amaldi Fondamenti di R.O. Politecnico di Milano 18
19 (*) and (**) make sure that 2 jobs are not simultaneously processed on the same machine (*) active when y ijk = 1 (i preceeds j on machine k) and ensures that i is completed before j starts (on k) (**) active when y ijk = 0 (j preceeds i on machine k) and ensures that j is completed before i starts (on k) The formulation can be easily extended to the case where each job j must be processed on the m machines (or on a subset of them) according to a different order. E. Amaldi Fondamenti di R.O. Politecnico di Milano 19
20 Most ILP problems are NPhard efficient algorithms to solve them The existence of a polynomial algorithm would imply that P = NP! Type of methods extremely unlikely implicit enumeration cutting planes heuristic algorithms ( greedy, local serach, ) approximate solutions exact methods (global optimum) E. Amaldi Fondamenti di R.O. Politecnico di Milano 20
21 Implicit enumeration methods explore all feasible solutions explicitly or implicitly. Branch and Bound method Dynamic programming (see optimal paths in acyclic graphs) E. Amaldi Fondamenti di R.O. Politecnico di Milano 21
4.6 Linear Programming duality
4.6 Linear Programming duality To any minimization (maximization) LP we can associate a closely related maximization (minimization) LP. Different spaces and objective functions but in general same optimal
More informationDiscrete Optimization
Discrete Optimization [Chen, Batson, Dang: Applied integer Programming] Chapter 3 and 4.14.3 by Johan Högdahl and Victoria Svedberg Seminar 2, 20150331 Todays presentation Chapter 3 Transforms using
More information. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2
4. Basic feasible solutions and vertices of polyhedra Due to the fundamental theorem of Linear Programming, to solve any LP it suffices to consider the vertices (finitely many) of the polyhedron P of the
More information6. Mixed Integer Linear Programming
6. Mixed Integer Linear Programming Javier Larrosa Albert Oliveras Enric RodríguezCarbonell Problem Solving and Constraint Programming (RPAR) Session 6 p.1/40 Mixed Integer Linear Programming A mixed
More informationChapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NPhard problem. What should I do? A. Theory says you're unlikely to find a polytime algorithm. Must sacrifice one
More informationApproximation Algorithms
Approximation Algorithms or: How I Learned to Stop Worrying and Deal with NPCompleteness Ong Jit Sheng, Jonathan (A0073924B) March, 2012 Overview Key Results (I) General techniques: Greedy algorithms
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. !approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of
More information! Solve problem to optimality. ! Solve problem in polytime. ! Solve arbitrary instances of the problem. #approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NPhard problem What should I do? A Theory says you're unlikely to find a polytime algorithm Must sacrifice one of three
More informationUsing the Simplex Method in Mixed Integer Linear Programming
Integer Using the Simplex Method in Mixed Integer UTFSM Nancy, 17 december 2015 Using the Simplex Method in Mixed Integer Outline Mathematical Programming Integer 1 Mathematical Programming Optimisation
More informationWeek 5 Integral Polyhedra
Week 5 Integral Polyhedra We have seen some examples 1 of linear programming formulation that are integral, meaning that every basic feasible solution is an integral vector. This week we develop a theory
More informationScheduling and (Integer) Linear Programming
Scheduling and (Integer) Linear Programming Christian Artigues LAAS  CNRS & Université de Toulouse, France artigues@laas.fr Master Class CPAIOR 2012  Nantes Christian Artigues Scheduling and (Integer)
More informationDiscrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131
Discrete (and Continuous) Optimization Solutions of Exercises 1 WI4 131 Kees Roos Technische Universiteit Delft Faculteit Informatietechnologie en Systemen Afdeling Informatie, Systemen en Algoritmiek
More informationApplied Algorithm Design Lecture 5
Applied Algorithm Design Lecture 5 Pietro Michiardi Eurecom Pietro Michiardi (Eurecom) Applied Algorithm Design Lecture 5 1 / 86 Approximation Algorithms Pietro Michiardi (Eurecom) Applied Algorithm Design
More informationGood luck, veel succes!
Final exam Advanced Linear Programming, May 7, 13.0016.00 Switch off your mobile phone, PDA and any other mobile device and put it far away. No books or other reading materials are allowed. This exam
More informationINTEGER PROGRAMMING. Integer Programming. Prototype example. BIP model. BIP models
Integer Programming INTEGER PROGRAMMING In many problems the decision variables must have integer values. Example: assign people, machines, and vehicles to activities in integer quantities. If this is
More informationAlgorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
More informationTransportation Polytopes: a Twenty year Update
Transportation Polytopes: a Twenty year Update Jesús Antonio De Loera University of California, Davis Based on various papers joint with R. Hemmecke, E.Kim, F. Liu, U. Rothblum, F. Santos, S. Onn, R. Yoshida,
More information11. APPROXIMATION ALGORITHMS
11. APPROXIMATION ALGORITHMS load balancing center selection pricing method: vertex cover LP rounding: vertex cover generalized load balancing knapsack problem Lecture slides by Kevin Wayne Copyright 2005
More information24. The Branch and Bound Method
24. The Branch and Bound Method It has serious practical consequences if it is known that a combinatorial problem is NPcomplete. Then one can conclude according to the present state of science that no
More informationScheduling Shop Scheduling. Tim Nieberg
Scheduling Shop Scheduling Tim Nieberg Shop models: General Introduction Remark: Consider non preemptive problems with regular objectives Notation Shop Problems: m machines, n jobs 1,..., n operations
More informationOptimization in R n Introduction
Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing
More informationLecture 3. Linear Programming. 3B1B Optimization Michaelmas 2015 A. Zisserman. Extreme solutions. Simplex method. Interior point method
Lecture 3 3B1B Optimization Michaelmas 2015 A. Zisserman Linear Programming Extreme solutions Simplex method Interior point method Integer programming and relaxation The Optimization Tree Linear Programming
More informationLecture 3: Linear Programming Relaxations and Rounding
Lecture 3: Linear Programming Relaxations and Rounding 1 Approximation Algorithms and Linear Relaxations For the time being, suppose we have a minimization problem. Many times, the problem at hand can
More information3. Linear Programming and Polyhedral Combinatorics
Massachusetts Institute of Technology Handout 6 18.433: Combinatorial Optimization February 20th, 2009 Michel X. Goemans 3. Linear Programming and Polyhedral Combinatorics Summary of what was seen in the
More informationApproximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques. My T. Thai
Approximation Algorithms: LP Relaxation, Rounding, and Randomized Rounding Techniques My T. Thai 1 Overview An overview of LP relaxation and rounding method is as follows: 1. Formulate an optimization
More informationOptimization Modeling for Mining Engineers
Optimization Modeling for Mining Engineers Alexandra M. Newman Division of Economics and Business Slide 1 Colorado School of Mines Seminar Outline Linear Programming Integer Linear Programming Slide 2
More informationComplexity Theory. IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar
Complexity Theory IE 661: Scheduling Theory Fall 2003 Satyaki Ghosh Dastidar Outline Goals Computation of Problems Concepts and Definitions Complexity Classes and Problems Polynomial Time Reductions Examples
More informationLinear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.
Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.
More information2. (a) Explain the strassen s matrix multiplication. (b) Write deletion algorithm, of Binary search tree. [8+8]
Code No: R05220502 Set No. 1 1. (a) Describe the performance analysis in detail. (b) Show that f 1 (n)+f 2 (n) = 0(max(g 1 (n), g 2 (n)) where f 1 (n) = 0(g 1 (n)) and f 2 (n) = 0(g 2 (n)). [8+8] 2. (a)
More information(a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular.
Theorem.7.: (Properties of Triangular Matrices) (a) The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is lower triangular. (b) The product
More informationA Constraint Programming based Column Generation Approach to Nurse Rostering Problems
Abstract A Constraint Programming based Column Generation Approach to Nurse Rostering Problems Fang He and Rong Qu The Automated Scheduling, Optimisation and Planning (ASAP) Group School of Computer Science,
More informationIEOR 4404 Homework #2 Intro OR: Deterministic Models February 14, 2011 Prof. Jay Sethuraman Page 1 of 5. Homework #2
IEOR 4404 Homework # Intro OR: Deterministic Models February 14, 011 Prof. Jay Sethuraman Page 1 of 5 Homework #.1 (a) What is the optimal solution of this problem? Let us consider that x 1, x and x 3
More informationProximal mapping via network optimization
L. Vandenberghe EE236C (Spring 234) Proximal mapping via network optimization minimum cut and maximum flow problems parametric minimum cut problem application to proximal mapping Introduction this lecture:
More informationClassification  Examples
Lecture 2 Scheduling 1 Classification  Examples 1 r j C max given: n jobs with processing times p 1,...,p n and release dates r 1,...,r n jobs have to be scheduled without preemption on one machine taking
More informationDiscuss the size of the instance for the minimum spanning tree problem.
3.1 Algorithm complexity The algorithms A, B are given. The former has complexity O(n 2 ), the latter O(2 n ), where n is the size of the instance. Let n A 0 be the size of the largest instance that can
More informationMincost flow problems and network simplex algorithm
Mincost flow problems and network simplex algorithm The particular structure of some LP problems can be sometimes used for the design of solution techniques more efficient than the simplex algorithm.
More informationEquilibrium computation: Part 1
Equilibrium computation: Part 1 Nicola Gatti 1 Troels Bjerre Sorensen 2 1 Politecnico di Milano, Italy 2 Duke University, USA Nicola Gatti and Troels Bjerre Sørensen ( Politecnico di Milano, Italy, Equilibrium
More informationSingle machine parallel batch scheduling with unbounded capacity
Workshop on Combinatorics and Graph Theory 21th, April, 2006 Nankai University Single machine parallel batch scheduling with unbounded capacity Yuan Jinjiang Department of mathematics, Zhengzhou University
More informationStanford University CS261: Optimization Handout 6 Luca Trevisan January 20, In which we introduce the theory of duality in linear programming.
Stanford University CS261: Optimization Handout 6 Luca Trevisan January 20, 2011 Lecture 6 In which we introduce the theory of duality in linear programming 1 The Dual of Linear Program Suppose that we
More information1 Introduction. Linear Programming. Questions. A general optimization problem is of the form: choose x to. max f(x) subject to x S. where.
Introduction Linear Programming Neil Laws TT 00 A general optimization problem is of the form: choose x to maximise f(x) subject to x S where x = (x,..., x n ) T, f : R n R is the objective function, S
More information2.3 Scheduling jobs on identical parallel machines
2.3 Scheduling jobs on identical parallel machines There are jobs to be processed, and there are identical machines (running in parallel) to which each job may be assigned Each job = 1,,, must be processed
More informationLecture 1: Linear Programming Models. Readings: Chapter 1; Chapter 2, Sections 1&2
Lecture 1: Linear Programming Models Readings: Chapter 1; Chapter 2, Sections 1&2 1 Optimization Problems Managers, planners, scientists, etc., are repeatedly faced with complex and dynamic systems which
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationWhat is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
More informationCan linear programs solve NPhard problems?
Can linear programs solve NPhard problems? p. 1/9 Can linear programs solve NPhard problems? Ronald de Wolf Linear programs Can linear programs solve NPhard problems? p. 2/9 Can linear programs solve
More informationmax cx s.t. Ax c where the matrix A, cost vector c and right hand side b are given and x is a vector of variables. For this example we have x
Linear Programming Linear programming refers to problems stated as maximization or minimization of a linear function subject to constraints that are linear equalities and inequalities. Although the study
More informationSystems of Linear Equations
Systems of Linear Equations Beifang Chen Systems of linear equations Linear systems A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and
More informationLINEAR PROGRAMMING PROBLEM: A GEOMETRIC APPROACH
59 LINEAR PRGRAMMING PRBLEM: A GEMETRIC APPRACH 59.1 INTRDUCTIN Let us consider a simple problem in two variables x and y. Find x and y which satisfy the following equations x + y = 4 3x + 4y = 14 Solving
More informationLecture 3: Finding integer solutions to systems of linear equations
Lecture 3: Finding integer solutions to systems of linear equations Algorithmic Number Theory (Fall 2014) Rutgers University Swastik Kopparty Scribe: Abhishek Bhrushundi 1 Overview The goal of this lecture
More informationRecovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branchandbound approach
MASTER S THESIS Recovery of primal solutions from dual subgradient methods for mixed binary linear programming; a branchandbound approach PAULINE ALDENVIK MIRJAM SCHIERSCHER Department of Mathematical
More informationMath 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
More informationLinear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
More informationLecture 11: 01 Quadratic Program and Lower Bounds
Lecture :  Quadratic Program and Lower Bounds (3 units) Outline Problem formulations Reformulation: Linearization & continuous relaxation Branch & Bound Method framework Simple bounds, LP bound and semidefinite
More informationGraphical method. plane. (for max) and down (for min) until it touches the set of feasible solutions. Graphical method
The graphical method of solving linear programming problems can be applied to models with two decision variables. This method consists of two steps (see also the first lecture): 1 Draw the set of feasible
More informationCHAPTER 9. Integer Programming
CHAPTER 9 Integer Programming An integer linear program (ILP) is, by definition, a linear program with the additional constraint that all variables take integer values: (9.1) max c T x s t Ax b and x integral
More informationDefinition of a Linear Program
Definition of a Linear Program Definition: A function f(x 1, x,..., x n ) of x 1, x,..., x n is a linear function if and only if for some set of constants c 1, c,..., c n, f(x 1, x,..., x n ) = c 1 x 1
More informationClassification  Examples 1 1 r j C max given: n jobs with processing times p 1,..., p n and release dates
Lecture 2 Scheduling 1 Classification  Examples 11 r j C max given: n jobs with processing times p 1,..., p n and release dates r 1,..., r n jobs have to be scheduled without preemption on one machine
More informationa 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
More informationLinear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.
1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that
More informationDantzigWolfe bound and DantzigWolfe cookbook
DantzigWolfe bound and DantzigWolfe cookbook thst@man.dtu.dk DTUManagement Technical University of Denmark 1 Outline LP strength of the DantzigWolfe The exercise from last week... The DantzigWolfe
More informationOutline. Linear Programming (LP): Simplex Search. Simplex: An ExtremePoint Search Algorithm. Basic Solutions
Outline Linear Programming (LP): Simplex Search Benoît Chachuat McMaster University Department of Chemical Engineering ChE 4G03: Optimization in Chemical Engineering 1 Basic Solutions
More informationNotes on Determinant
ENGG2012B Advanced Engineering Mathematics Notes on Determinant Lecturer: Kenneth Shum Lecture 918/02/2013 The determinant of a system of linear equations determines whether the solution is unique, without
More information1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
More informationGeometry of Linear Programming
Chapter 2 Geometry of Linear Programming The intent of this chapter is to provide a geometric interpretation of linear programming problems. To conceive fundamental concepts and validity of different algorithms
More informationAutomated Scheduling, School of Computer Science and IT, University of Nottingham 1. Job Shop Scheduling. Disjunctive Graph.
Job hop cheduling Contents 1. Problem tatement 2. Disjunctive Graph. he hifting Bottleneck Heuristic and the Makespan Literature: 1. cheduling, heory, Algorithms, and ystems, Michael Pinedo, Prentice Hall,
More information2.3.4 Project planning
.. Project planning project consists of a set of m activities with their duration: activity i has duration d i, i =,..., m. estimate Some pairs of activities are subject to a precedence constraint: i j
More informationResource Allocation and Scheduling
Lesson 3: Resource Allocation and Scheduling DEIS, University of Bologna Outline Main Objective: joint resource allocation and scheduling problems In particular, an overview of: Part 1: Introduction and
More informationMATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 2. x n. a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 a 31 a 32 a 3n b 3. a m1 a m2 a mn b m
MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS 1. SYSTEMS OF EQUATIONS AND MATRICES 1.1. Representation of a linear system. The general system of m equations in n unknowns can be written a 11 x 1 + a 12 x 2 +
More informationPractical Guide to the Simplex Method of Linear Programming
Practical Guide to the Simplex Method of Linear Programming Marcel Oliver Revised: April, 0 The basic steps of the simplex algorithm Step : Write the linear programming problem in standard form Linear
More informationMinimum Makespan Scheduling
Minimum Makespan Scheduling Minimum makespan scheduling: Definition and variants Factor 2 algorithm for identical machines PTAS for identical machines Factor 2 algorithm for unrelated machines Martin Zachariasen,
More information26 Linear Programming
The greatest flood has the soonest ebb; the sorest tempest the most sudden calm; the hottest love the coldest end; and from the deepest desire oftentimes ensues the deadliest hate. Th extremes of glory
More information1 Determinants and the Solvability of Linear Systems
1 Determinants and the Solvability of Linear Systems In the last section we learned how to use Gaussian elimination to solve linear systems of n equations in n unknowns The section completely sidestepped
More informationChapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS 3.2 TERMINOLOGY
Chapter 3 LINEAR PROGRAMMING GRAPHICAL SOLUTION 3.1 SOLUTION METHODS Once the problem is formulated by setting appropriate objective function and constraints, the next step is to solve it. Solving LPP
More informationInteger Programming Formulation
Integer Programming Formulation 1 Integer Programming Introduction When we introduced linear programs in Chapter 1, we mentioned divisibility as one of the LP assumptions. Divisibility allowed us to consider
More informationDeterminants. Dr. Doreen De Leon Math 152, Fall 2015
Determinants Dr. Doreen De Leon Math 52, Fall 205 Determinant of a Matrix Elementary Matrices We will first discuss matrices that can be used to produce an elementary row operation on a given matrix A.
More informationSolving Mixed Integer Linear Programs Using Branch and Cut Algorithm
1 Solving Mixed Integer Linear Programs Using Branch and Cut Algorithm by Shon Albert A Project Submitted to the Graduate Faculty of North Carolina State University in Partial Fulfillment of the Requirements
More informationDynamic programming. Doctoral course Optimization on graphs  Lecture 4.1. Giovanni Righini. January 17 th, 2013
Dynamic programming Doctoral course Optimization on graphs  Lecture.1 Giovanni Righini January 1 th, 201 Implicit enumeration Combinatorial optimization problems are in general NPhard and we usually
More informationprinceton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora
princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 6: Provable Approximation via Linear Programming Lecturer: Sanjeev Arora Scribe: One of the running themes in this course is the notion of
More informationWarshall s Algorithm: Transitive Closure
CS 0 Theory of Algorithms / CS 68 Algorithms in Bioinformaticsi Dynamic Programming Part II. Warshall s Algorithm: Transitive Closure Computes the transitive closure of a relation (Alternatively: all paths
More informationAn Introduction to Linear Programming
An Introduction to Linear Programming Steven J. Miller March 31, 2007 Mathematics Department Brown University 151 Thayer Street Providence, RI 02912 Abstract We describe Linear Programming, an important
More informationInteger programming solution methods  introduction
Integer programming solution methods  introduction J E Beasley Capital budgeting There are four possible projects, which each run for 3 years and have the following characteristics. Capital requirements
More informationA Branch and Bound Algorithm for Solving the Binary Bilevel Linear Programming Problem
A Branch and Bound Algorithm for Solving the Binary Bilevel Linear Programming Problem John Karlof and Peter Hocking Mathematics and Statistics Department University of North Carolina Wilmington Wilmington,
More informationJUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS. Received December May 12, 2003; revised February 5, 2004
Scientiae Mathematicae Japonicae Online, Vol. 10, (2004), 431 437 431 JUSTINTIME SCHEDULING WITH PERIODIC TIME SLOTS Ondřej Čepeka and Shao Chin Sung b Received December May 12, 2003; revised February
More informationImproved Algorithms for Data Migration
Improved Algorithms for Data Migration Samir Khuller 1, YooAh Kim, and Azarakhsh Malekian 1 Department of Computer Science, University of Maryland, College Park, MD 20742. Research supported by NSF Award
More informationGRAPH THEORY and APPLICATIONS. Trees
GRAPH THEORY and APPLICATIONS Trees Properties Tree: a connected graph with no cycle (acyclic) Forest: a graph with no cycle Paths are trees. Star: A tree consisting of one vertex adjacent to all the others.
More informationSolving Curved Linear Programs via the Shadow Simplex Method
Solving Curved Linear rograms via the Shadow Simplex Method Daniel Dadush 1 Nicolai Hähnle 2 1 Centrum Wiskunde & Informatica (CWI) 2 Bonn Universität CWI Scientific Meeting 01/15 Outline 1 Introduction
More informationSolving Integer Programming with BranchandBound Technique
Solving Integer Programming with BranchandBound Technique This is the divide and conquer method. We divide a large problem into a few smaller ones. (This is the branch part.) The conquering part is done
More informationECEN 5682 Theory and Practice of Error Control Codes
ECEN 5682 Theory and Practice of Error Control Codes Convolutional Codes University of Colorado Spring 2007 Linear (n, k) block codes take k data symbols at a time and encode them into n code symbols.
More informationFairness in Routing and Load Balancing
Fairness in Routing and Load Balancing Jon Kleinberg Yuval Rabani Éva Tardos Abstract We consider the issue of network routing subject to explicit fairness conditions. The optimization of fairness criteria
More informationPermutation Betting Markets: Singleton Betting with Extra Information
Permutation Betting Markets: Singleton Betting with Extra Information Mohammad Ghodsi Sharif University of Technology ghodsi@sharif.edu Hamid Mahini Sharif University of Technology mahini@ce.sharif.edu
More informationEfficient and Robust Allocation Algorithms in Clouds under Memory Constraints
Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints Olivier Beaumont,, Paul RenaudGoud Inria & University of Bordeaux Bordeaux, France 9th Scheduling for Large Scale Systems
More informationLINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA Hyderabad
LINEAR PROGRAMMING P V Ram B. Sc., ACA, ACMA 98481 85073 Hyderabad Page 1 of 19 Question: Explain LPP. Answer: Linear programming is a mathematical technique for determining the optimal allocation of resources
More informationA Linear Programming Based Method for Job Shop Scheduling
A Linear Programming Based Method for Job Shop Scheduling Kerem Bülbül Sabancı University, Manufacturing Systems and Industrial Engineering, OrhanlıTuzla, 34956 Istanbul, Turkey bulbul@sabanciuniv.edu
More informationEstablishing a mathematical model (Ch. 2): 1. Define the problem, gathering data;
Establishing a mathematical model (Ch. ): 1. Define the problem, gathering data;. Formulate the model; 3. Derive solutions;. Test the solution; 5. Apply. Linear Programming: Introduction (Ch. 3). An example
More informationNear Optimal Solutions
Near Optimal Solutions Many important optimization problems are lacking efficient solutions. NPComplete problems unlikely to have polynomial time solutions. Good heuristics important for such problems.
More informationLinear Programming I
Linear Programming I November 30, 2003 1 Introduction In the VCR/guns/nuclear bombs/napkins/star wars/professors/butter/mice problem, the benevolent dictator, Bigus Piguinus, of south Antarctica penguins
More informationMathematics of Cryptography
CHAPTER 2 Mathematics of Cryptography Part I: Modular Arithmetic, Congruence, and Matrices Objectives This chapter is intended to prepare the reader for the next few chapters in cryptography. The chapter
More informationMath 407A: Linear Optimization
Math 407A: Linear Optimization Lecture 4: LP Standard Form 1 1 Author: James Burke, University of Washington LPs in Standard Form Minimization maximization Linear equations to linear inequalities Lower
More informationScheduling Home Health Care with Separating Benders Cuts in Decision Diagrams
Scheduling Home Health Care with Separating Benders Cuts in Decision Diagrams André Ciré University of Toronto John Hooker Carnegie Mellon University INFORMS 2014 Home Health Care Home health care delivery
More informationMinimizing the Number of Machines in a UnitTime Scheduling Problem
Minimizing the Number of Machines in a UnitTime Scheduling Problem Svetlana A. Kravchenko 1 United Institute of Informatics Problems, Surganova St. 6, 220012 Minsk, Belarus kravch@newman.basnet.by Frank
More information