# 1. Graphing Linear Inequalities

Size: px
Start display at page:

## Transcription

1 Notation. CHAPTER 4 Linear Programming 1. Graphing Linear Inequalities x apple y means x is less than or equal to y. x y means x is greater than or equal to y. x < y means x is less than y. x > y means x is greater than y. The last two inequalities are called strict inequalities. Our focus will be on the nonstrict inequalities. Algebra of Inequalities Suppose x + 3 < 8. Addition works like for equations: x + 6 < 11 Subtraction works like for equations: x + 2 < 7 (added 3 to each side). (subtracted 4 from each side). Multiplication and division by positive numbers work like for equations: 2x + 12 < 22 =) x + 6 < 11 (each side is divided by 2 or multiplied by 1 2 ). 59

2 60 4. LINEAR PROGRAMMING Multiplication and division by negative numbers changes the direction of the inequality sign: Example. For 3x 2x + 12 < 22 =) x 6 > 11 (each side is divided by -2 or multiplied by 4y and 24 there are 3 possibilities: 3x 4y = 24 3x 4y < 24 3x 4y > 24 4y = 3x y < 3x y > 3x + 24 y = 3 4 x 6 y > 3 4 x 6 y < 3 4 x 6 The three solution sets above are disjoint (do not intersect or overlap), and their graphs fill up the plane. We are familiar with the graph of the linear equation. The graph of one inequality is all the points on one side of the line, the graph of the other all the points on the other side of the line. To determine which side for an inequality, choose a test point not on the line (such as (0, 0) if the line does not pass through the origin). Substitute this point into the linear inequality. For a true statement, the solution region is the side of the line that the test point is on; for a false statement, it is the other side. 1 2 ).

3 1. GRAPHING LINEAR INEQUALITIES 61 3x 4y < 24 3x 4y > < 24 (true) 0 0 > 24 (false) y > 3 4 x 6 y < 3 4 x 6 0 > 0 6 (true) 0 < 0 6 (false) Statement is true, Statement is false, so take side of line (0, 0) is on. so take side opposite (0, 0). The dashed lined indicates that points on the line are not part of the solution. For 3x 4y apple 24 or 3x 4y 24, we would use a solid line to indicate that the boundary line is part of the solution. Note. (1) For y mx + b, the solution region is the line with the points above it. (2) For y apple mx + b, the solution region is the line with the points below it.

4 62 4. LINEAR PROGRAMMING Example. 2x 7 or x 7 2 or x + 0y 7 2. Take (6, 2) as a test point: (2) (true) 2 Thus we take points to the right of the line and we use a solid line because of.

5 1. GRAPHING LINEAR INEQUALITIES 63 Example. A system of inequalities: (1) 2x + 5y apple 20 (2) x 5y 5 Intercepts for (1) are 10 and 4. Intercepts for (2) are 5 and 1. The test point of (0, 0) makes each statement true, so take the points below each line. The solution of the system is the intersection of the individual solutions (in blue). It will be important for linear programming to find the points of intersection of our lines. Here, it appears to be (5, 2). But, as for any graphic solution, we need to check this solution in both equations (1) and (2). 2(5) + 5(2) = 20 (true) 5 5(2) = 5 (true) One can also use the algebraic methods studied earlier to find points of intersection.

6 64 4. LINEAR PROGRAMMING For the TI, rewrite in slope-intercept form ( ) ( 2x + 5y apple 20 5y apple 2x + 20 ) x 5y 5 5y x 5 ) ) ( y apple 2 5 x + 4 y apple 1 5 x + 1 ) and use the Technology Tip on page 180 of the text. Example. (1) 3x + y apple 21 (2) x + y apple 9 (3) x + 3y apple 21 x 0 y 0 The last two inequalities force our region to be limited to the first quadrant. The intercepts for (1) are 7 and 21, for (2) 9 and 9, and for (3) 21 and 7. (0, 0) makes each of (1) (3) true, so the solution regions are on the same side of the lines as (0, 0).

7 1. GRAPHING LINEAR INEQUALITIES 65 Numbering the inequalities and lines helps us to find intersection points or corners of our solution region. Lines (1) and (2) intersect at the corner (6, 3), and lines (2) and (3) intersect at (3, 6). Other corners are (0, 0), (7, 0), and (0, 7). This solution region is bounded since it can be contained in a circle. Example. (1) 3x + y 24 (2) x + y 16 (3) x + 3y 30 x 0 y 0 The intercepts for (1) are 8 and 24, for (2) 16 and 16, and for (3) 30 and 10. (0, 0) makes each of (1) (3) false, so the solution regions are on the side of the lines opposite (0, 0). Corners of the solution region include the x-intercept at 30 and the y-intercept at 24, along with (4, 12), the intersection of lines (1) and (2), and (9, 7), the

8 66 4. LINEAR PROGRAMMING intersection of lines (2) and (3). This is an unbounded region since it cannot be enclosed in a circle. Example. (1) 2x + 3y 24 (2) x + 3y apple 15 (3) y 4 The intercepts for (1) are 12 and 8, for (2) 15 and 5, and for (3) y = 4. (0, 0) makes (2) true and (1) and (3) false, so solution region (1) is the same side of the line as (0, 0) and the solution regions (2) and (3) are on the side of the lines opposite (0, 0). For this example, there is no solution since no region satisfies all three inequalities.

9 1. GRAPHING LINEAR INEQUALITIES 67 Problem (Page 184 #30). x = # of cartons of medium peaches (60 peaches per carton) y = # of cartons of small peaches (70 peaches per carton) (1) 9x + 10y apple 100 (budget) (2) 60x + 70y 420 (minimum) (2) 60x + 70y apple 630 (maximum) The intercepts for (1) are and 10, for (2) 7 and 6, and for (3) and 9. (0, 0) makes (1) and (3) true and (2) false, so solution regions (1) and (3) are on the same side of the line as (0, 0) and the solution region (2) is on the side of the line opposite (0, 0). The feasible region consists of all points with both entries integers in the first quadrant on or between lines (2) and (3). All possible such choices are circled above.

10 2. SOLVING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY 69 To solve, we first find the feasible region, the solution region of the system of constraints. The points within the feasible region are feasible points, one or more of which wil optimize the objective function. Intercepts for (1) are 50 and 80, for (2) are 54 and 72. We will use divisions of 5 on the x-axis and 8 on the y-axis. We find the point where the two lines intersect. 400x + 250y = x 300y = y = 1600 y = 32 40x + 30(32) = x = x = 1200 x = 30

11 70 4. LINEAR PROGRAMMING Thus the corners of the feasible region are (0, 0), (50, 0), (0, 72), and (30, 32). We now look to the objective function M = x + y and graph it on the feasible region for the cases where M = 20, 30, 40, 50, and 60. All of these lines are parallel with smaller M s giving lines closer to the origin and larger M s lines further from the origin. Think of these iso-m lines as a rolling pin. Notice the rolling pin must leave the feasible region at one of its corner points, in this case (0, 0) for a minimum value and (0, 72) for a maximum value. Theorem (Fundamental Theorem of Linear Programming). (1) If the solution to a linear programming problem exists, it will occur at a corner point. (2) If two adjacent corner points are optimal solutions, then all points on the line segment between them are also optimal solutions. (3) Linear programming problems with bounded feasible regions will always have optimal solutions (both a maximum and a minimum). (4) Linear programming problems with unbounded feasible regions may or may not have optimal solutions.

12 2. SOLVING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY 71 Thus, to find the solution to a linear programming problem, we need only check the value of the objective variable at the corner points of the feasible region. CP M (0, 0) 0 (50, 0) 50 (0, 72) 72 (30, 32) 62 Thus the maximum number of computers that can be produced with these constraints is 72, achieved by making 72 portables. The profit in part (A) is 72(\$220) = \$ Now let P = profit, and change the objective to Maximize P = 320x + 220y Since we only changed the objective, and not the constraints, the feasible region and its corner points remain the same. The diagram below has iso-p lines for 4 values of P.

13 72 4. LINEAR PROGRAMMING We check the corner points: CP P (0, 0) 0 (50, 0) (0, 72) (30, 32) Thus the maximum profit is \$16,640 and can be achieved by making 30 standard and 32 portable models. Graphical Methods for Solving Linear Programing Problems (1) Graph the feasible region determined by the constrains. (2) Find the corner points of the feasible region. (3) Find the value of the objective function at each of the corner points. (4) If the feasible region is bounded, the maximum or minimum value of the objective function will occur at one of the corner points.

14 2. SOLVING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY 73 (5) If the feasible region is an unbounded region in the first quadrant and the coe cients of the objective function are positive, then the objective function has a minimum value at a corner point. The objective function will not have a maximum value. Problem (Page 199 #4). Maximize z = 9x + y 8 (1) 6x + y apple 16 >< (2) 2x + y apple 0 subject to x 0 >: y 0 Intercepts for (1) are 8 3 and 16. (2) has only the origin as an intercept, but also pass through (1, 2). Since (0, 0) makes (1) a true statement,we take the points below line (1). Since (2) passes through the origin, We take (1, 0) as a test point, and this makes (2) true, so we take the points below (2). Our feasible region has (0, 0), ( 8 3, 0), and (2, 4) as corner points..

15 74 4. LINEAR PROGRAMMING CP z (0, 0) 0 ( 8 3, 0) 24 (2, 4) 22 Thus the optimal solution is ( 8 3, 0) and the optimal value is 24. Problem (Page 199 #12). Minimize z = 3x + 5y 8 (1) 6x + y 21 >< (2) 2x + y 1 subject to (3) x 3 >: y 0 Intercepts for (1) are 7 2 and 21 and for (2) are 1 2 and 1. Since the intercepts for (2) are so close together, we also use the point (1, 3) as a guide in drawing the line. Since (0, 0) makes all of (1) (3) false, we take the regions above (1) and (2) and to the right of (3).

16 2. SOLVING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY 75 The only corner point is (3, 7). The value of z at (3, 7) is = 44, and by point (5) of the graphical method, this must be a minimum. Note that, with these constraints, z has no maximum. Problem (Page 201 #28). x = # of armchairs to produce. y = # of benches to produce. P = profit. Maximize P = 181x + 57y 8 (1) 2x + y apple 200 (cutting) >< (2) 4x + 3y apple 480 (finishing) subject to (3) x + y apple 150 (packaging) x 0 >: y 0 Intercepts for (1) are 100 and 200, for (2) are 120 and 160, and for (3) are 150 and 150. Since (0, 0) makes all of (1) (3) true, we choose the regions below each line.

17 76 4. LINEAR PROGRAMMING Corner points of the feasible region are (0, 0), (100, 0), (60, 80) the intersection of lines (1) and (2), (30, 120) the intersection of lines (2) and (3), and (0, 150). Notice that (50, 100) the intersection of lines (1) and (2) is not a corner point of the feasible region. CP P (0, 0) 0 (100, 0) 18,100 (60, 80) 15,420 (30, 120) 12,270 (0, 150) 8,550 You can obtain a maximum profit of \$18,100 by making 100 armchairs and 0 benches. Problem (Page 202 #30). x = # of 10-passenger vehicles. y = # of 57-passenger vehicles. C = cost. Minimize C = 625x y 8 (1) 9x + 51y 153 (students) >< (2) x + 6y apple 24 (chaperones) subject to x 0 >: y 0 Intercepts for (1) are 17 and 3 and for (2) are 24 and 4. Since (0, 0) makes (1) false and (2) true, we take the points above line (1) and below line (2).

18 2. SOLVING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY 77 The four corner points of the feasible region are the four intercepts. CP C (0, 3) 5,985 (0, 4) 7,980 (17, 0) 10,625 (24, 0) 15,000 The minimum cost of \$5985 can be achievd by renting three 57-passenger vehicles and no 10-passenger vehicles.

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### Question 2: How do you solve a linear programming problem with a graph?

Question 2: How do you solve a linear programming problem with a graph? Now that we have several linear programming problems, let s look at how we can solve them using the graph of the system of inequalities.

### EQUATIONS and INEQUALITIES

EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line

### 3. Evaluate the objective function at each vertex. Put the vertices into a table: Vertex P=3x+2y (0, 0) 0 min (0, 5) 10 (15, 0) 45 (12, 2) 40 Max

SOLUTION OF LINEAR PROGRAMMING PROBLEMS THEOREM 1 If a linear programming problem has a solution, then it must occur at a vertex, or corner point, of the feasible set, S, associated with the problem. Furthermore,

### Graphing Linear Equations

Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### 1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

### Warm Up. Write an equation given the slope and y-intercept. Write an equation of the line shown.

Warm Up Write an equation given the slope and y-intercept Write an equation of the line shown. EXAMPLE 1 Write an equation given the slope and y-intercept From the graph, you can see that the slope is

### Slope-Intercept Form of a Linear Equation Examples

Slope-Intercept Form of a Linear Equation Examples. In the figure at the right, AB passes through points A(0, b) and B(x, y). Notice that b is the y-intercept of AB. Suppose you want to find an equation

### Chapter 5. Linear Inequalities and Linear Programming. Linear Programming in Two Dimensions: A Geometric Approach

Chapter 5 Linear Programming in Two Dimensions: A Geometric Approach Linear Inequalities and Linear Programming Section 3 Linear Programming gin Two Dimensions: A Geometric Approach In this section, we

### Graphing Linear Equations in Two Variables

Math 123 Section 3.2 - Graphing Linear Equations Using Intercepts - Page 1 Graphing Linear Equations in Two Variables I. Graphing Lines A. The graph of a line is just the set of solution points of the

### Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

### Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### 5 Systems of Equations

Systems of Equations Concepts: Solutions to Systems of Equations-Graphically and Algebraically Solving Systems - Substitution Method Solving Systems - Elimination Method Using -Dimensional Graphs to Approximate

### Write the Equation of the Line Review

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Objective: Students will be assessed on their ability to write the equation of a line in multiple methods. Connections

### Florida Algebra 1 End-of-Course Assessment Item Bank, Polk County School District

Benchmark: MA.912.A.2.3; Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions. Also assesses MA.912.A.2.13; Solve

### What are the place values to the left of the decimal point and their associated powers of ten?

The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything

### Vocabulary Words and Definitions for Algebra

Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

### Chapter 3: Section 3-3 Solutions of Linear Programming Problems

Chapter 3: Section 3-3 Solutions of Linear Programming Problems D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 3: Section 3-3 Solutions of Linear Programming

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### Study Guide 2 Solutions MATH 111

Study Guide 2 Solutions MATH 111 Having read through the sample test, I wanted to warn everyone, that I might consider asking questions involving inequalities, the absolute value function (as in the suggested

1.2 GRAPHS OF EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs

### Make sure you look at the reminders or examples before each set of problems to jog your memory! Solve

Name Date Make sure you look at the reminders or examples before each set of problems to jog your memory! I. Solving Linear Equations 1. Eliminate parentheses. Combine like terms 3. Eliminate terms by

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### Solving Systems of Two Equations Algebraically

8 MODULE 3. EQUATIONS 3b Solving Systems of Two Equations Algebraically Solving Systems by Substitution In this section we introduce an algebraic technique for solving systems of two equations in two unknowns

### PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71. Applications. F = mc + b.

PRIMARY CONTENT MODULE Algebra I -Linear Equations & Inequalities T-71 Applications The formula y = mx + b sometimes appears with different symbols. For example, instead of x, we could use the letter C.

### Unit 1: Integers and Fractions

Unit 1: Integers and Fractions No Calculators!!! Order Pages (All in CC7 Vol. 1) 3-1 Integers & Absolute Value 191-194, 203-206, 195-198, 207-210 3-2 Add Integers 3-3 Subtract Integers 215-222 3-4 Multiply

### CHAPTER 1 Linear Equations

CHAPTER 1 Linear Equations 1.1. Lines The rectangular coordinate system is also called the Cartesian plane. It is formed by two real number lines, the horizontal axis or x-axis, and the vertical axis or

### What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of y = mx + b.

PRIMARY CONTENT MODULE Algebra - Linear Equations & Inequalities T-37/H-37 What does the number m in y = mx + b measure? To find out, suppose (x 1, y 1 ) and (x 2, y 2 ) are two points on the graph of

### A synonym is a word that has the same or almost the same definition of

Slope-Intercept Form Determining the Rate of Change and y-intercept Learning Goals In this lesson, you will: Graph lines using the slope and y-intercept. Calculate the y-intercept of a line when given

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Example SECTION 13-1. X-AXIS - the horizontal number line. Y-AXIS - the vertical number line ORIGIN - the point where the x-axis and y-axis cross

CHAPTER 13 SECTION 13-1 Geometry and Algebra The Distance Formula COORDINATE PLANE consists of two perpendicular number lines, dividing the plane into four regions called quadrants X-AXIS - the horizontal

### Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.

Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students

### How To Understand And Solve A Linear Programming Problem

At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,

### (x- 3)3. (x- 3)3 =U. 3. Factor completely the given polynomial. ENHANCED

Student: Instructor: Vicky Kauffman Assignment: Final problems Date: Course: Kauffman's Math 12 1 1. A Norman window consists of a rectangle surmounted by a semicircle. Find the area of the Norman window

### Writing the Equation of a Line in Slope-Intercept Form

Writing the Equation of a Line in Slope-Intercept Form Slope-Intercept Form y = mx + b Example 1: Give the equation of the line in slope-intercept form a. With y-intercept (0, 2) and slope -9 b. Passing

1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal

### BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

### Slope-Intercept Equation. Example

1.4 Equations of Lines and Modeling Find the slope and the y intercept of a line given the equation y = mx + b, or f(x) = mx + b. Graph a linear equation using the slope and the y-intercept. Determine

### of surface, 569-571, 576-577, 578-581 of triangle, 548 Associative Property of addition, 12, 331 of multiplication, 18, 433

Absolute Value and arithmetic, 730-733 defined, 730 Acute angle, 477 Acute triangle, 497 Addend, 12 Addition associative property of, (see Commutative Property) carrying in, 11, 92 commutative property

### Mathematics Common Core Sample Questions

New York State Testing Program Mathematics Common Core Sample Questions Grade The materials contained herein are intended for use by New York State teachers. Permission is hereby granted to teachers and

### Understanding Basic Calculus

Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Solving Equations Involving Parallel and Perpendicular Lines Examples

Solving Equations Involving Parallel and Perpendicular Lines Examples. The graphs of y = x, y = x, and y = x + are lines that have the same slope. They are parallel lines. Definition of Parallel Lines

### Solution of the System of Linear Equations: any ordered pair in a system that makes all equations true.

Definitions: Sstem of Linear Equations: or more linear equations Sstem of Linear Inequalities: or more linear inequalities Solution of the Sstem of Linear Equations: an ordered pair in a sstem that makes

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### The degree of a polynomial function is equal to the highest exponent found on the independent variables.

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### { } Sec 3.1 Systems of Linear Equations in Two Variables

Sec.1 Sstems of Linear Equations in Two Variables Learning Objectives: 1. Deciding whether an ordered pair is a solution.. Solve a sstem of linear equations using the graphing, substitution, and elimination

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### LESSON OBJECTIVES. Mental Math. Skills Review. 344 Chapter 8 Systems of Equations and Inequalities

LESSON OBJECTIVES 8.1 Solving Systems of Equations by Graphing Identify systems of equations as dependent or independent. Solve systems of linear equations by graphing. 8.2 Solving Systems of Equations

### Linear Programming for Optimization. Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc.

1. Introduction Linear Programming for Optimization Mark A. Schulze, Ph.D. Perceptive Scientific Instruments, Inc. 1.1 Definition Linear programming is the name of a branch of applied mathematics that

### Students will use various media (computer, graphing calculator, paper and pencil) to graph/sketch linear equations.

Title: Lines, Lines, Everywhere!! A discovery/exploration lesson investigating equations of the form y = mx + b to see how the values of b and m affects the graph. Link to Outcomes: Communication/ Cooperation

### Lecture 8 : Coordinate Geometry. The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 20

Lecture 8 : Coordinate Geometry The coordinate plane The points on a line can be referenced if we choose an origin and a unit of 0 distance on the axis and give each point an identity on the corresponding

### LAKE ELSINORE UNIFIED SCHOOL DISTRICT

LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

### Answer Key Building Polynomial Functions

Answer Key Building Polynomial Functions 1. What is the equation of the linear function shown to the right? 2. How did you find it? y = ( 2/3)x + 2 or an equivalent form. Answers will vary. For example,

### 1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient

Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear

### Linear Programming Problems

Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number

### Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan

Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.

### Economics 2020a / HBS 4010 / HKS API-111 FALL 2010 Solutions to Practice Problems for Lectures 1 to 4

Economics 00a / HBS 4010 / HKS API-111 FALL 010 Solutions to Practice Problems for Lectures 1 to 4 1.1. Quantity Discounts and the Budget Constraint (a) The only distinction between the budget line with

### 6.2 Solving Nonlinear Equations

6.2. SOLVING NONLINEAR EQUATIONS 399 6.2 Solving Nonlinear Equations We begin by introducing a property that will be used extensively in this and future sections. The zero product property. If the product

### Module1. x 1000. y 800.

Module1 1 Welcome to the first module of the course. It is indeed an exciting event to share with you the subject that has lot to offer both from theoretical side and practical aspects. To begin with,

### Course Outlines. 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit)

Course Outlines 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit) This course will cover Algebra I concepts such as algebra as a language,

### MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

### The Graphical Method: An Example

The Graphical Method: An Example Consider the following linear program: Maximize 4x 1 +3x 2 Subject to: 2x 1 +3x 2 6 (1) 3x 1 +2x 2 3 (2) 2x 2 5 (3) 2x 1 +x 2 4 (4) x 1, x 2 0, where, for ease of reference,

### 7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

### The Point-Slope Form

7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope

### Blue Pelican Alg II First Semester

Blue Pelican Alg II First Semester Teacher Version 1.01 Copyright 2009 by Charles E. Cook; Refugio, Tx (All rights reserved) Alg II Syllabus (First Semester) Unit 1: Solving linear equations and inequalities

### Answer Key for California State Standards: Algebra I

Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

### For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

### Higher Education Math Placement

Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication

### Anchorage School District/Alaska Sr. High Math Performance Standards Algebra

Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### 3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

### GRADES 7, 8, AND 9 BIG IDEAS

Table 1: Strand A: BIG IDEAS: MATH: NUMBER Introduce perfect squares, square roots, and all applications Introduce rational numbers (positive and negative) Introduce the meaning of negative exponents for

### Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra

### Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

### 1) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-1) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = 7) (5)(-4) = 8) (-3)(-6) = 9) (-1)(2) =

Extra Practice for Lesson Add or subtract. ) (-3) + (-6) = 2) (2) + (-5) = 3) (-7) + (-) = 4) (-3) - (-6) = 5) (+2) - (+5) = 6) (-7) - (-4) = Multiply. 7) (5)(-4) = 8) (-3)(-6) = 9) (-)(2) = Division is

### Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)

### IOWA End-of-Course Assessment Programs. Released Items ALGEBRA I. Copyright 2010 by The University of Iowa.

IOWA End-of-Course Assessment Programs Released Items Copyright 2010 by The University of Iowa. ALGEBRA I 1 Sally works as a car salesperson and earns a monthly salary of \$2,000. She also earns \$500 for

### Overview. Observations. Activities. Chapter 3: Linear Functions Linear Functions: Slope-Intercept Form

Name Date Linear Functions: Slope-Intercept Form Student Worksheet Overview The Overview introduces the topics covered in Observations and Activities. Scroll through the Overview using " (! to review,

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Examples of Tasks from CCSS Edition Course 3, Unit 5

Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can

### ALGEBRA I (Created 2014) Amherst County Public Schools

ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies

### Algebra 2 PreAP. Name Period

Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### Successful completion of Math 7 or Algebra Readiness along with teacher recommendation.

MODESTO CITY SCHOOLS COURSE OUTLINE COURSE TITLE:... Basic Algebra COURSE NUMBER:... RECOMMENDED GRADE LEVEL:... 8-11 ABILITY LEVEL:... Basic DURATION:... 1 year CREDIT:... 5.0 per semester MEETS GRADUATION

### Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization

Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued

### Let s explore the content and skills assessed by Heart of Algebra questions.

Chapter 9 Heart of Algebra Heart of Algebra focuses on the mastery of linear equations, systems of linear equations, and linear functions. The ability to analyze and create linear equations, inequalities,

### Teacher: Maple So School: Herron High School. Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles

Teacher: Maple So School: Herron High School Name of Lesson: Comparing the Usage Cost of Electric Vehicles Versus Internal Combustion Vehicles Subject/ Course: Mathematics, Algebra I Grade Level: 9 th

### Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

### Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:

Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the

### Algebra I. In this technological age, mathematics is more important than ever. When students

In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,

### 2. System of linear equations can be solved by graphing, substitution, or eliminating a variable.

1 Subject: Algebra 1 Grade Level: 9 th Unit Plan #: 6 UNIT BACKGROUND Unit Title: Systems of Equations and Inequalities Grade Level: 9 Subject/Topic: Algebra 1 Key Words: Graphing, Substitution, Elimination