6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function

Size: px
Start display at page:

Download "6.1 Graphs of Normal Probability Distributions. Normal Curve aka Probability Density Function"

Transcription

1 Normal Distributions (Page 1 of 23) 6.1 Graphs of Normal Probability Distributions Normal Curve aka Probability Density Function Normal Probability Distribution TP TP µ! " µ µ +! x x-axis Important Properties of a Normal Curve 1. The curve is bell-shaped with the highest point over the mean µ. 2. It is symmetric about the vertical line through µ. 3. The curve approaches the horizontal axis but never crosses or touches it. 4. The transition points (TP) are where the graph changes from cupping upward to cupping downward (or visa versa). The transition points occur at x = µ +! and x = µ! ". 5. The total area under the curve is 1. Guided Exercise 2 a. Which point (A, B or C) corresponds to µ +!? b. Which point (A, B or C) corresponds to µ! 2"? A B C x c. What is the mean and standard deviation of the distribution?

2 Normal Distributions (Page 2 of 23) Example A The mean affects the location of the curve and the standard deviation affects the shape (spread) of the curve. Same Standard Deviation & Different Means A B Which curve has the larger mean? Same Mean & Different Standard Deviations C Which curve has the larger standard deviation? D

3 Normal Distributions (Page 3 of 23) Guided Exercise 1 Determine whether each curve is normal or not. If it is not, then state why. Empirical Rule for a Normal Distribution a. Approximately 68.2% of the data will lie within 1 standard deviation of the mean. b. Approximately 95.4% of the data will lie within 2 standard deviations of the mean. c. Approximately 99.7% of the data will lie within 3 standard deviations of the mean. d. The area under the curve represents the probability and the total area under the curve is 1. Empirical Rule 68.2% 0.15% 2.15% µ! 3" 13.6% µ! 2" µ! " 13.6% µ µ +! 2.15% µ + 2! µ + 3! 0.15% x-axis

4 Normal Distributions (Page 4 of 23) Example 1 The playing life of a Sunshine radio is normally distributed with a mean of 600 hours and a standard deviation of 100 hours. a. Sketch a normal curve showing the distribution of the playing life of the Sunshine radio. Scale and label the axis; include the transition points. Use the empirical rule to find the probability that a randomly selected radio will last b. between 600 and 700 hours? c. between 400 and 500 hours d. greater than 700 hours?

5 Normal Distributions (Page 5 of 23) Guided Exercise 4 The annual wheat yield per acre on a farm is normally distributed with a mean of 35 bushels and a standard deviation of 8 bushels. a. Sketch a normal curve and shadein the area that represents the probability that an acre will yield between 19 and 35 bushels. b. Is the shaded area the same as the area between µ! 2" and µ? Use the empirical rule to find the probability that the yield will be between 19 and 35 bushels per acre? Control Charts A control chart for a random variable x that is approximately normally distributed is a plot of observed x values in time sequence order. The construction is as follows: 1. Find the mean µ and standard deviation! of the x distribution in one of two ways: (i) Use past data from a period during which the process was in control or (ii) Use a specified target value of µ and!. 2. Create a graph where the vertical axis represents the x values and the horizontal axis represents time. 3. Draw a solid horizontal line at height µ and horizontal dashed control-limit lines at µ ± 2! and µ ± 3!. 4. Plot the variable x on the graph in time sequence order.

6 Normal Distributions (Page 6 of 23) Example 2 Susan is director of personnel at Antlers Lodge and hires many college students every summer. One of the biggest activities for the lodge staff is to make the rooms ready for the next guest. Although the rooms are supposed to be ready by 3:30 pm, there are always some rooms not finished because of high turn over. Every 15 days Susan has a control chart of the number of rooms not made up by 3:30 pm each day. From past experience, Susan knows that the distribution of rooms not made up by 3:30 pm is approximately normal, with µ = 19.3 rooms and! = 4.7 rooms. For the past 15 days the staff has reported the number of rooms not made up by 3:30 pm as: Day x a. Make a control chart for these data. Completely annotate. Control Chart for the Number of Rooms Not Made Up by 3:30 PM µ + 3! µ + 2! µ µ! 2" µ! 3" b. Is the housekeeping process out of control? Explain.

7 Normal Distributions (Page 7 of 23) Out-of-Control Warning Signals 1. Out-of-Control Signal I: One point falls beyond the 3! level. The probability that this is a false alarm is µ + 3! µ + 2! µ µ + 2! µ + 3! 2. Out-of-Control Signal II: A run of 9 consecutive points on one side of the center line. The probability that this is a false alarm is 2!(0.5) 9 = µ + 3! µ + 2! µ µ + 2! µ + 3! 3. Out-of-Control Signal III: At least 2 of 3 consecutive points lie beyond the 2! level on the same side of the center line. The probability that this is a false alarm is µ + 3! µ + 2! µ µ + 2! µ + 3!

8 Normal Distributions (Page 8 of 23) Example 3 Yellowstone Park Medical Services (YPMS) provides emergency medical care for park visitors. History has shown that the during the summer the mean number of visitors treated each day is 21.7 with a standard deviation of 4.2. For a 10-day summer period, the following numbers of people were treated: Day Number Treated a. Make a control chart and plot the data on the chart. µ + 3! µ + 2! µ µ! 2" µ! 3" b. Do the data indicate the number of visitors treated by YPMS is in control or out-of-control? Explain your answer in terms of the three out-ofcontrol signal types. c. If you were the park superintendent, do you think YPMS might need some extra help? Explain.

9 Normal Distributions (Page 9 of 23) 6.2 Standard Units and The Standard Normal Distribution Suppose Tina and Jack are in two different sections of the same course and they recently took midterms. Tina s class average was 64 and she got a 74. Jack s class average 72 and he got an 82. Who did better? z-score or Standardized Score To standardize test scores we use the z-value or (z-score). The z- value, or z-score, or standardized score is the number of standard deviations a data value lies away from the mean. The z-score can be positive, negative, or zero depending on whether the data value is above the mean, below the mean, or at the mean, respectively. For any x-value in a normal distribution the standardized score, z- value, or z-score is given by: z! score = x! µ " Note(s): 1. If x = µ, then z = 0 2. If x > µ, then z > 0 3. If x < µ, then z < 0 z-score negative x < µ µ z-score positive x > µ x Fact: Unless otherwise stated, for now on, the average will mean the arithmetic mean.

10 Normal Distributions (Page 10 of 23) Example 3 Suppose Tina and Jack are in two different sections of the same course and they recently took midterms. The distribution of scores in both classes is normal. Tina s class average was 64 with a standard deviation of 3; she earned a 74. Jack s class average was 72 with a standard deviation of 5; he earned an 82. a. What was Tina s z-score? Draw a distribution for Tina s class showing Tina s score within the distribution of scores for her class. b. What was Jack s z-score? Draw a distribution for Jack s class showing Jack s score within the distribution scores for his class. c. Who did better? Why?

11 Normal Distributions (Page 11 of 23) Example 4 A pizza parlor chain claims a large pizza has 8 oz of cheese with a standard deviation of 0.5 oz. An inspector ordered a pizza and found it only had 6.9 oz of cheese. Franchisee s can lose their store if they make pizzas with 3 standard deviations (or more) of cheese below the mean. Assume the distribution of weights is normally distributed. a. Graph the x-distribution. Label and scale the axis. b. Find the z-score for x = 6.9 oz of cheese. c. Is the franchise in danger of losing its store? Why? d. Find the minimum amount of cheese a franchise can put on a large pizza so it is not in danger of losing its store.

12 Normal Distributions (Page 12 of 23) Guided Exercise 6 The times it takes a student to get to class from home is normally distributed with a mean of 17 minutes and a standard deviation of 3 minutes. a. One day it took 21 minutes to get to class. How many standard deviations from the mean is that? Explain the sign. b. Another day it took 12 minutes to get to class. How many standard deviations from the mean is that? Explain the sign. c. On a third day it took 17 minutes to get to class. How many standard deviations from the mean is that? Explain the sign. z-score Formulae z = x! µ " or x = z! + µ

13 Normal Distributions (Page 13 of 23) Guided Exercise 7 Sam s z-score on an exam is 1.3. If the distribution of scores is normally distributed with a mean of 480 and a standard deviation of 70, what is Sam s raw score. Draw the distribution. Standard Normal Distribution / Curve The standard normal distribution is a normal distribution with mean µ = 0 and standard deviation! = 1. The standard normal curve is the graph of the standard normal distribution. The Standard Normal Curve µ = 0,! = 1 TP TP z

14 Normal Distributions (Page 14 of 23) The Normal Cumulative Density Function The area under the normal curve with mean µ and standard deviation! on the interval from a to b represents the probability that a randomly chosen value for x lies between a and b. It is given by the normal cumulative x a b density function (normalcdf): Access the DISTR menu (2nd > VARS) and Area = P(a < x < b) select 2:normalcdf(lower bound, = normalcdf (a,b,[µ,!]) upper bound, [µ,! ]). Example 6 Find the probability that z is between -1 and 1.!3!2! z Area = P(!1 < z < 1) = normalcdf (,,, ) = To show all work and receive full credit (a) (20-50% of the credit) Sketch the normal curve and shade in the area in question. Label and scale the axis. Put dots at the transition points and tick marks on the axis to 3 standard deviations on each side of the mean. (b) (50-70% of the credit) Compute the area under the curve, hence the probability, showing the probability notation, the TI- 83 function accessed along with its inputs and output. Round probabilities to 4 decimal places.

15 Normal Distributions (Page 15 of 23) Example 7 Find the probability that z is 1. between -3 and 3 2. greater than 1!3!2! z!3!2! z 3. between 0 and greater than 2.53!3!2! z!3!2! z 5. less than between -2 and 2!3!2! z!3!2! z

16 Normal Distributions (Page 16 of 23) 6.3 Area Under Any Normal Curve TI-84: The area under any normal curve between the values a and b is given by Area = P(a < x < b) = normalcdf (a,b,µ,! ) a b x To show all work and receive full credit (a) (20-50% of the credit) Sketch the normal curve and shade in the area in question. Label and scale the axis. Put dots at the transition points and tick marks on the axis to 3 standard deviations on each side of the mean. (b) (50-70% of the credit) Compute the area under the curve, hence the probability, showing the probability notation, the TI- 83 function accessed along with its inputs and output. State probabilities to the nearest ten-thousandth (4 decimal places). Example 7 Given that x has a normal distribution with a mean of 3 and standard deviation of 0.5, find the probability that an x selected at random will be between 2.1 and 3.7. Show your work and include a sketch of the normal curve relevant to this application.

17 Normal Distributions (Page 17 of 23) Example 8 Let x have a normal distribution with a mean of 10 and a standard deviation of 2. Find the probability that an x selected at random from the distribution is between 11 and 14. Show your work and include a sketch of the normal curve representing the probability. Example A A factory has a machine that puts corn flakes in boxes that are advertised as 20 ounces each. If the distribution of weights is normal with µ = 20 and! = 1.5, what is the probability that the weight of a randomly selected box of corn flakes will be between 19 and 21 oz? Show your work and include a sketch of the normal curve representing the probability. Guided Exercise 10 If the life of a Sunshine Stereo is normally distributed with a mean of 2.3 years and a standard deviation of 0.4 years, what is the probability that a randomly selected stereo will break down during the warranty period of 2 years? Show your work and include a sketch of the normal curve representing the probability.

18 Normal Distributions (Page 18 of 23) The Inverse-Normal Function: DISTR / 3:invNorm( P(x < a) a x a = invnorm(area to the left of a, µ,! ) Function Access the DISTR menu (2nd > VARS) and select 3:invNorm(area to the left of a, [ µ,! ]). Input Area to the left of a = P(x < a) Mean µ (default value is 0) Standard Deviation! (default value is 1) Output The value of a on the x-axis of the normal curve. Guided Exercise 11 Find the value of a on the z-axis so that 3% of the area under the standard normal curve lies to the left of a. Round to two decimal places.!3!2! z

19 Normal Distributions (Page 19 of 23) Example B a. Draw a standard normal curve. Then find the value of a > 0 so that 32% of curve lies between 0 and a.!3!2! z b. Draw a standard normal curve. Then find the value(s) of a on the z-axis so that 94% of the curve lies between -a and a.!3!2! z c. Draw a normal curve with a mean of 90 and a standard deviation of 7. Then find the values of b so that 41% of the curve lies between the mean and b. d. Draw a normal curve with a mean of 45 and a standard deviation of 5. Then find the value of b so that 88% of the curve lies between 45 - b and 45 + b.

20 Normal Distributions (Page 20 of 23) Example C Suppose a distribution is normal with a mean of 44 and a standard deviation of 6. Find the value of a (to the nearest hundredth) on the x-axis so that a. 66% of the data values lie below a. b. 15% of the data values lie above a. Example 9 Magic Video Games Inc. sells expensive computer games and wants to advertise an impressive, full-refund warranty period. It has found that the mean life for its computer games is 30 months with a standard deviation of 4 months. If the life spans of the computer games are normally distributed, how long of a warranty period (to the nearest month) can be offered so that the company will not have to refund the price of more than 7% of the computer games?

21 Normal Distributions (Page 21 of 23) Exercise 39 Suppose you eat lunch at a restaurant that does not take reservations. Let x represent the mean time waiting to be seated. It is known that the mean waiting time is 18 minutes with a standard deviation of 4 minutes, and the x distribution is normal. What is the probability that the waiting time will exceed 20 minutes given that it has exceeded 15 minutes? Let event A = x > 20 minutes event B = x > 15 minutes Answer by completing the following: a. In terms of events A and B, what is it we want to compute? b. Is the event B and A = event x > 20 (i.e. event A)? c. Show that P(B and A) = P(B)! P(A, given B) is the same as P(x > 20) = P(x > 15)! P(A, given B) d. Compute P(A), P(B) and P(A, given B)

22 Normal Distributions (Page 22 of 23) 6.4 Approximate a Binomial Distribution with a Normal Distribution Fact If np > 5 and nq > 5 in a binomial distribution, then the sample size n is large enough so that the binomial random variable r has a distribution that is approximately normal. The mean and standard deviation of the normal distribution are estimated by µ = np and! = npq. Furthermore, as the sample size gets larger the approximation gets better.

23 Normal Distributions (Page 23 of 23) Approximating a Binomial Distribution Using a Normal Distribution If np > 5 and nq > 5, then the binomial random variable r has a distribution that is approximately normal. The mean and standard deviation of the normal distribution are estimated by µ = np and! = npq. Example 12 The owner of a new apartment building needs to have 25 new water heaters installed. Assume the probability that a water heater will last 10 years is (a) What is the probability that 8 or more will last at least 10 years. (b) Can the binomial probability distribution be approximated by a normal distribution? Why / Why not? (c) Estimate part (a) with a normal distribution. Take note of the continuity correction. That is, remember to subtract 0.5 from the left endpoint of the interval and add 0.5 to the right endpoint.

The Normal Distribution

The Normal Distribution Chapter 6 The Normal Distribution 6.1 The Normal Distribution 1 6.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize the normal probability distribution

More information

6 3 The Standard Normal Distribution

6 3 The Standard Normal Distribution 290 Chapter 6 The Normal Distribution Figure 6 5 Areas Under a Normal Distribution Curve 34.13% 34.13% 2.28% 13.59% 13.59% 2.28% 3 2 1 + 1 + 2 + 3 About 68% About 95% About 99.7% 6 3 The Distribution Since

More information

AP Statistics Solutions to Packet 2

AP Statistics Solutions to Packet 2 AP Statistics Solutions to Packet 2 The Normal Distributions Density Curves and the Normal Distribution Standard Normal Calculations HW #9 1, 2, 4, 6-8 2.1 DENSITY CURVES (a) Sketch a density curve that

More information

Probability Distributions

Probability Distributions Learning Objectives Probability Distributions Section 1: How Can We Summarize Possible Outcomes and Their Probabilities? 1. Random variable 2. Probability distributions for discrete random variables 3.

More information

Normal Probability Distribution

Normal Probability Distribution Normal Probability Distribution The Normal Distribution functions: #1: normalpdf pdf = Probability Density Function This function returns the probability of a single value of the random variable x. Use

More information

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives.

5/31/2013. 6.1 Normal Distributions. Normal Distributions. Chapter 6. Distribution. The Normal Distribution. Outline. Objectives. The Normal Distribution C H 6A P T E R The Normal Distribution Outline 6 1 6 2 Applications of the Normal Distribution 6 3 The Central Limit Theorem 6 4 The Normal Approximation to the Binomial Distribution

More information

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

More information

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

Density Curve. A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: Density Curve A density curve is the graph of a continuous probability distribution. It must satisfy the following properties: 1. The total area under the curve must equal 1. 2. Every point on the curve

More information

Probability. Distribution. Outline

Probability. Distribution. Outline 7 The Normal Probability Distribution Outline 7.1 Properties of the Normal Distribution 7.2 The Standard Normal Distribution 7.3 Applications of the Normal Distribution 7.4 Assessing Normality 7.5 The

More information

Key Concept. Density Curve

Key Concept. Density Curve MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal

More information

Normal distribution. ) 2 /2σ. 2π σ

Normal distribution. ) 2 /2σ. 2π σ Normal distribution The normal distribution is the most widely known and used of all distributions. Because the normal distribution approximates many natural phenomena so well, it has developed into a

More information

3.4 The Normal Distribution

3.4 The Normal Distribution 3.4 The Normal Distribution All of the probability distributions we have found so far have been for finite random variables. (We could use rectangles in a histogram.) A probability distribution for a continuous

More information

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1.

Def: The standard normal distribution is a normal probability distribution that has a mean of 0 and a standard deviation of 1. Lecture 6: Chapter 6: Normal Probability Distributions A normal distribution is a continuous probability distribution for a random variable x. The graph of a normal distribution is called the normal curve.

More information

8. THE NORMAL DISTRIBUTION

8. THE NORMAL DISTRIBUTION 8. THE NORMAL DISTRIBUTION The normal distribution with mean μ and variance σ 2 has the following density function: The normal distribution is sometimes called a Gaussian Distribution, after its inventor,

More information

MEASURES OF VARIATION

MEASURES OF VARIATION NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are

More information

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 103/GRACEY PRACTICE EXAM/CHAPTERS 2-3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 3/GRACEY PRACTICE EXAM/CHAPTERS 2-3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) The frequency distribution

More information

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

16. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION 6. THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION It is sometimes difficult to directly compute probabilities for a binomial (n, p) random variable, X. We need a different table for each value of

More information

Probability Distributions

Probability Distributions CHAPTER 5 Probability Distributions CHAPTER OUTLINE 5.1 Probability Distribution of a Discrete Random Variable 5.2 Mean and Standard Deviation of a Probability Distribution 5.3 The Binomial Distribution

More information

Coins, Presidents, and Justices: Normal Distributions and z-scores

Coins, Presidents, and Justices: Normal Distributions and z-scores activity 17.1 Coins, Presidents, and Justices: Normal Distributions and z-scores In the first part of this activity, you will generate some data that should have an approximately normal (or bell-shaped)

More information

Chapter 6 Normal Distributions

Chapter 6 Normal Distributions Chapter 6 Normal Distributions (S) 1. Statistical Abstracts (117th edition) provides information about state per capita income taxes. The distribution is mound shaped with mean µ = $1,701 and standard

More information

6.4 Normal Distribution

6.4 Normal Distribution Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under

More information

Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1.

Normal Distribution. Definition A continuous random variable has a normal distribution if its probability density. f ( y ) = 1. Normal Distribution Definition A continuous random variable has a normal distribution if its probability density e -(y -µ Y ) 2 2 / 2 σ function can be written as for < y < as Y f ( y ) = 1 σ Y 2 π Notation:

More information

Getting Started with Statistics. Out of Control! ID: 10137

Getting Started with Statistics. Out of Control! ID: 10137 Out of Control! ID: 10137 By Michele Patrick Time required 35 minutes Activity Overview In this activity, students make XY Line Plots and scatter plots to create run charts and control charts (types of

More information

Normal Distribution as an Approximation to the Binomial Distribution

Normal Distribution as an Approximation to the Binomial Distribution Chapter 1 Student Lecture Notes 1-1 Normal Distribution as an Approximation to the Binomial Distribution : Goals ONE TWO THREE 2 Review Binomial Probability Distribution applies to a discrete random variable

More information

Chapter 5: Normal Probability Distributions - Solutions

Chapter 5: Normal Probability Distributions - Solutions Chapter 5: Normal Probability Distributions - Solutions Note: All areas and z-scores are approximate. Your answers may vary slightly. 5.2 Normal Distributions: Finding Probabilities If you are given that

More information

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.

REPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k. REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game

More information

The Normal Distribution

The Normal Distribution The Normal Distribution Continuous Distributions A continuous random variable is a variable whose possible values form some interval of numbers. Typically, a continuous variable involves a measurement

More information

Lesson 7 Z-Scores and Probability

Lesson 7 Z-Scores and Probability Lesson 7 Z-Scores and Probability Outline Introduction Areas Under the Normal Curve Using the Z-table Converting Z-score to area -area less than z/area greater than z/area between two z-values Converting

More information

Continuous Random Variables

Continuous Random Variables Chapter 5 Continuous Random Variables 5.1 Continuous Random Variables 1 5.1.1 Student Learning Objectives By the end of this chapter, the student should be able to: Recognize and understand continuous

More information

4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions 4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

More information

Interpreting Data in Normal Distributions

Interpreting Data in Normal Distributions Interpreting Data in Normal Distributions This curve is kind of a big deal. It shows the distribution of a set of test scores, the results of rolling a die a million times, the heights of people on Earth,

More information

Exercise 1.12 (Pg. 22-23)

Exercise 1.12 (Pg. 22-23) Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Stats on the TI 83 and TI 84 Calculator

Stats on the TI 83 and TI 84 Calculator Stats on the TI 83 and TI 84 Calculator Entering the sample values STAT button Left bracket { Right bracket } Store (STO) List L1 Comma Enter Example: Sample data are {5, 10, 15, 20} 1. Press 2 ND and

More information

Their point of intersection is the break-even point. The graph. Loss at right represents a break-even situation.

Their point of intersection is the break-even point. The graph. Loss at right represents a break-even situation. Chapter Financial arithmetic 17 Break-even analysis The success or failure of any business enterprise can be expressed mathematically as follows: P = R C or L = C R where: P = profit made by a business

More information

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

More information

Unit 7: Normal Curves

Unit 7: Normal Curves Unit 7: Normal Curves Summary of Video Histograms of completely unrelated data often exhibit similar shapes. To focus on the overall shape of a distribution and to avoid being distracted by the irregularities

More information

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs

Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Types of Variables Chapter 1: Looking at Data Section 1.1: Displaying Distributions with Graphs Quantitative (numerical)variables: take numerical values for which arithmetic operations make sense (addition/averaging)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. STATISTICS/GRACEY PRACTICE TEST/EXAM 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Identify the given random variable as being discrete or continuous.

More information

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck!

EXAM #1 (Example) Instructor: Ela Jackiewicz. Relax and good luck! STP 231 EXAM #1 (Example) Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture

Chapter 4. iclicker Question 4.4 Pre-lecture. Part 2. Binomial Distribution. J.C. Wang. iclicker Question 4.4 Pre-lecture Chapter 4 Part 2. Binomial Distribution J.C. Wang iclicker Question 4.4 Pre-lecture iclicker Question 4.4 Pre-lecture Outline Computing Binomial Probabilities Properties of a Binomial Distribution Computing

More information

4.3 Areas under a Normal Curve

4.3 Areas under a Normal Curve 4.3 Areas under a Normal Curve Like the density curve in Section 3.4, we can use the normal curve to approximate areas (probabilities) between different values of Y that follow a normal distribution Y

More information

Descriptive Statistics

Descriptive Statistics Y520 Robert S Michael Goal: Learn to calculate indicators and construct graphs that summarize and describe a large quantity of values. Using the textbook readings and other resources listed on the web

More information

Probability Distributions

Probability Distributions CHAPTER 6 Probability Distributions Calculator Note 6A: Computing Expected Value, Variance, and Standard Deviation from a Probability Distribution Table Using Lists to Compute Expected Value, Variance,

More information

ch12 practice test SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

ch12 practice test SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ch12 practice test 1) The null hypothesis that x and y are is H0: = 0. 1) 2) When a two-sided significance test about a population slope has a P-value below 0.05, the 95% confidence interval for A) does

More information

Math 202-0 Quizzes Winter 2009

Math 202-0 Quizzes Winter 2009 Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile

More information

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS Mathematics Revision Guides Histograms, Cumulative Frequency and Box Plots Page 1 of 25 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier HISTOGRAMS, CUMULATIVE FREQUENCY AND BOX PLOTS

More information

Unit 9 Describing Relationships in Scatter Plots and Line Graphs

Unit 9 Describing Relationships in Scatter Plots and Line Graphs Unit 9 Describing Relationships in Scatter Plots and Line Graphs Objectives: To construct and interpret a scatter plot or line graph for two quantitative variables To recognize linear relationships, non-linear

More information

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

More information

What Does the Normal Distribution Sound Like?

What Does the Normal Distribution Sound Like? What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation

More information

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4)

Summary of Formulas and Concepts. Descriptive Statistics (Ch. 1-4) Summary of Formulas and Concepts Descriptive Statistics (Ch. 1-4) Definitions Population: The complete set of numerical information on a particular quantity in which an investigator is interested. We assume

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 0.4987 B) 0.9987 C) 0.0010 D) 0. Ch. 5 Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution 1 Find Areas Under the Standard Normal Curve 1) Find the area under the standard normal

More information

Lesson 17: Margin of Error When Estimating a Population Proportion

Lesson 17: Margin of Error When Estimating a Population Proportion Margin of Error When Estimating a Population Proportion Classwork In this lesson, you will find and interpret the standard deviation of a simulated distribution for a sample proportion and use this information

More information

6.2 Solving Nonlinear Equations

6.2 Solving Nonlinear Equations 6.2. SOLVING NONLINEAR EQUATIONS 399 6.2 Solving Nonlinear Equations We begin by introducing a property that will be used extensively in this and future sections. The zero product property. If the product

More information

Elements of a graph. Click on the links below to jump directly to the relevant section

Elements of a graph. Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section Elements of a graph Linear equations and their graphs What is slope? Slope and y-intercept in the equation of a line Comparing lines on

More information

TImath.com. Statistics. Areas in Intervals

TImath.com. Statistics. Areas in Intervals Areas in Intervals ID: 9472 TImath.com Time required 30 minutes Activity Overview In this activity, students use several methods to determine the probability of a given normally distributed value being

More information

Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734

Ch. 6.1 #7-49 odd. The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 Ch. 6.1 #7-49 odd The area is found by looking up z= 0.75 in Table E and subtracting 0.5. Area = 0.7734-0.5= 0.2734 The area is found by looking up z= 2.07 in Table E and subtracting from 0.5. Area = 0.5-0.0192

More information

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20

Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20 SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will understand that normal distributions can be used to approximate binomial distributions whenever both np and n(1 p) are sufficiently large. Students will understand that when

More information

Lesson 20. Probability and Cumulative Distribution Functions

Lesson 20. Probability and Cumulative Distribution Functions Lesson 20 Probability and Cumulative Distribution Functions Recall If p(x) is a density function for some characteristic of a population, then Recall If p(x) is a density function for some characteristic

More information

Mathematics (Project Maths Phase 1)

Mathematics (Project Maths Phase 1) 2012. M128 S Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination, 2012 Sample Paper Mathematics (Project Maths Phase 1) Paper 2 Ordinary Level Time: 2 hours, 30

More information

The Central Idea CHAPTER 1 CHAPTER OVERVIEW CHAPTER REVIEW

The Central Idea CHAPTER 1 CHAPTER OVERVIEW CHAPTER REVIEW CHAPTER 1 The Central Idea CHAPTER OVERVIEW Economic interactions involve scarcity and choice. Time and income are limited, and people choose among alternatives every day. In this chapter, we study the

More information

Normal and Binomial. Distributions

Normal and Binomial. Distributions Normal and Binomial Distributions Library, Teaching and Learning 14 By now, you know about averages means in particular and are familiar with words like data, standard deviation, variance, probability,

More information

7.1 Graphs of Quadratic Functions in Vertex Form

7.1 Graphs of Quadratic Functions in Vertex Form 7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called

More information

AP Physics 1 and 2 Lab Investigations

AP Physics 1 and 2 Lab Investigations AP Physics 1 and 2 Lab Investigations Student Guide to Data Analysis New York, NY. College Board, Advanced Placement, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics Suppose following data have been collected (heights of 99 five-year-old boys) 117.9 11.2 112.9 115.9 18. 14.6 17.1 117.9 111.8 16.3 111. 1.4 112.1 19.2 11. 15.4 99.4 11.1 13.3 16.9

More information

Statistics Revision Sheet Question 6 of Paper 2

Statistics Revision Sheet Question 6 of Paper 2 Statistics Revision Sheet Question 6 of Paper The Statistics question is concerned mainly with the following terms. The Mean and the Median and are two ways of measuring the average. sumof values no. of

More information

List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated

List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible

More information

AP STATISTICS 2010 SCORING GUIDELINES

AP STATISTICS 2010 SCORING GUIDELINES 2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A researcher for an airline interviews all of the passengers on five randomly

More information

Math 1526 Consumer and Producer Surplus

Math 1526 Consumer and Producer Surplus Math 156 Consumer and Producer Surplus Scenario: In the grocery store, I find that two-liter sodas are on sale for 89. This is good news for me, because I was prepared to pay $1.9 for them. The store manager

More information

You flip a fair coin four times, what is the probability that you obtain three heads.

You flip a fair coin four times, what is the probability that you obtain three heads. Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

More information

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests

Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Content Sheet 7-1: Overview of Quality Control for Quantitative Tests Role in quality management system Quality Control (QC) is a component of process control, and is a major element of the quality management

More information

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

More information

Solving Quadratic Equations

Solving Quadratic Equations 9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

More information

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is.

CHAPTER 6: Continuous Uniform Distribution: 6.1. Definition: The density function of the continuous random variable X on the interval [A, B] is. Some Continuous Probability Distributions CHAPTER 6: Continuous Uniform Distribution: 6. Definition: The density function of the continuous random variable X on the interval [A, B] is B A A x B f(x; A,

More information

Section 1.3 Exercises (Solutions)

Section 1.3 Exercises (Solutions) Section 1.3 Exercises (s) 1.109, 1.110, 1.111, 1.114*, 1.115, 1.119*, 1.122, 1.125, 1.127*, 1.128*, 1.131*, 1.133*, 1.135*, 1.137*, 1.139*, 1.145*, 1.146-148. 1.109 Sketch some normal curves. (a) Sketch

More information

Characteristics of Binomial Distributions

Characteristics of Binomial Distributions Lesson2 Characteristics of Binomial Distributions In the last lesson, you constructed several binomial distributions, observed their shapes, and estimated their means and standard deviations. In Investigation

More information

Mathematics (Project Maths Phase 3)

Mathematics (Project Maths Phase 3) 2014. M329 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 1 Higher Level Friday 6 June Afternoon 2:00 4:30 300

More information

MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem

MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem MATH 10: Elementary Statistics and Probability Chapter 7: The Central Limit Theorem Tony Pourmohamad Department of Mathematics De Anza College Spring 2015 Objectives By the end of this set of slides, you

More information

Common Tools for Displaying and Communicating Data for Process Improvement

Common Tools for Displaying and Communicating Data for Process Improvement Common Tools for Displaying and Communicating Data for Process Improvement Packet includes: Tool Use Page # Box and Whisker Plot Check Sheet Control Chart Histogram Pareto Diagram Run Chart Scatter Plot

More information

Chapter 04 Firm Production, Cost, and Revenue

Chapter 04 Firm Production, Cost, and Revenue Chapter 04 Firm Production, Cost, and Revenue Multiple Choice Questions 1. A key assumption about the way firms behave is that they a. Minimize costs B. Maximize profit c. Maximize market share d. Maximize

More information

chapter >> Making Decisions Section 2: Making How Much Decisions: The Role of Marginal Analysis

chapter >> Making Decisions Section 2: Making How Much Decisions: The Role of Marginal Analysis chapter 7 >> Making Decisions Section : Making How Much Decisions: The Role of Marginal Analysis As the story of the two wars at the beginning of this chapter demonstrated, there are two types of decisions:

More information

Unit 1 Equations, Inequalities, Functions

Unit 1 Equations, Inequalities, Functions Unit 1 Equations, Inequalities, Functions Algebra 2, Pages 1-100 Overview: This unit models real-world situations by using one- and two-variable linear equations. This unit will further expand upon pervious

More information

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering

Engineering Problem Solving and Excel. EGN 1006 Introduction to Engineering Engineering Problem Solving and Excel EGN 1006 Introduction to Engineering Mathematical Solution Procedures Commonly Used in Engineering Analysis Data Analysis Techniques (Statistics) Curve Fitting techniques

More information

Part 1 will be selected response. Each selected response item will have 3 or 4 choices.

Part 1 will be selected response. Each selected response item will have 3 or 4 choices. Items on this review are grouped by Unit and Topic. A calculator is permitted on the Algebra 1 A Semester Exam The Algebra 1 A Semester Exam will consist of two parts. Part 1 will be selected response.

More information

The Math. P (x) = 5! = 1 2 3 4 5 = 120.

The Math. P (x) = 5! = 1 2 3 4 5 = 120. The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct

More information

2 Applications to Business and Economics

2 Applications to Business and Economics 2 Applications to Business and Economics APPLYING THE DEFINITE INTEGRAL 442 Chapter 6 Further Topics in Integration In Section 6.1, you saw that area can be expressed as the limit of a sum, then evaluated

More information

Answer Key for California State Standards: Algebra I

Answer Key for California State Standards: Algebra I Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.

More information

Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools. Tools for Summarizing Data Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

More information

Academic Support Center. Using the TI-83/84+ Graphing Calculator PART II

Academic Support Center. Using the TI-83/84+ Graphing Calculator PART II Academic Support Center Using the TI-83/84+ Graphing Calculator PART II Designed and Prepared by The Academic Support Center Revised June 2012 1 Using the Graphing Calculator (TI-83+ or TI-84+) Table of

More information

Updates to Graphing with Excel

Updates to Graphing with Excel Updates to Graphing with Excel NCC has recently upgraded to a new version of the Microsoft Office suite of programs. As such, many of the directions in the Biology Student Handbook for how to graph with

More information

AP * Statistics Review. Descriptive Statistics

AP * Statistics Review. Descriptive Statistics AP * Statistics Review Descriptive Statistics Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production

More information

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

More information

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4

Example: Find the expected value of the random variable X. X 2 4 6 7 P(X) 0.3 0.2 0.1 0.4 MATH 110 Test Three Outline of Test Material EXPECTED VALUE (8.5) Super easy ones (when the PDF is already given to you as a table and all you need to do is multiply down the columns and add across) Example:

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

More information

consider the number of math classes taken by math 150 students. how can we represent the results in one number?

consider the number of math classes taken by math 150 students. how can we represent the results in one number? ch 3: numerically summarizing data - center, spread, shape 3.1 measure of central tendency or, give me one number that represents all the data consider the number of math classes taken by math 150 students.

More information

Section 3-3 Approximating Real Zeros of Polynomials

Section 3-3 Approximating Real Zeros of Polynomials - Approimating Real Zeros of Polynomials 9 Section - Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

More information

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

More information