# Unit 9 Describing Relationships in Scatter Plots and Line Graphs

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Unit 9 Describing Relationships in Scatter Plots and Line Graphs Objectives: To construct and interpret a scatter plot or line graph for two quantitative variables To recognize linear relationships, non-linear relationships, or independence between two quantitative variables To decide whether a linear relationship is negative or positive and whether the linear relationship appears strong or weak To construct and interpret a line graph for displaying changes over time of a quantitative variable To describe changes over time of a quantitative variable with an index number We have considered how a stacked bar chart displays the relationship between two qualitative variables; we now want to consider how a scatter plot displays the relationship between two quantitative variables. If we think of one variable as being predicted from another, it is customary to label the vertical axis with the variable being predicted and label the horizontal axis with the variable from which predictions are made; otherwise, which axis is labeled with which variable is just a matter of personal preference. Recall that Figure 7-3 is a scatter plot for the variables "Weekly TV Hours" and "Weekly Radio Hours". Since we did not choose to think of one variable as being predicted from the other, the choice of which variable to label on which axis was arbitrary. When we looked at this scatter plot previously, we described the relationship by saying that weekly TV hours appears to decrease as weekly radio hours increases. When a relationship exists between two quantitative variables, one of our first goals is to decide whether the relationship is linear or nonlinear. Roughly speaking, a linear relationship is said to exist between two quantitative variables when a straight line on a graph can be used with at least some reasonable degree of accuracy to predict the values of one quantitative variable from the values of the other quantitative variable. A nonlinear relationship is said to exist between two quantitative variables when a curve can be used to predict the values of one quantitative variable from the values of the other quantitative variable with considerably more accuracy than a straight line. To illustrate some of the many different aspects of a relationship between two quantitative variables, we shall consider Figures 9-1a to 9-1j. Figures 9-1a and 9-1b are each a scatter plot illustrating a perfect linear relationship between two quantitative variables. In both figures, the data points all lie exactly on a straight line; that is, we can predict perfectly the value of one variable from the other. In Figure 9-1a, we observe that as one variable increases in value, the other variable increases in value; in Figure 9-1b, we observe that as one variable increases in value, the other variable decreases in value. When two variables tend to increase together, we say the variables have a positive relationship; when one variable tends to decrease as another variable increases, we say the variables have a negative relationship. Consequently, Figure 9-1a has been labeled as illustrating a perfect positive linear relationship, and Figure 9-1b has been labeled as illustrating a perfect negative linear relationship. Very rarely, if ever, do we observe in real data a relationship where one variable can perfectly be predicted from another. With real data, some component of random variation is always present. Figures 9-1c and 9-1d illustrate scatter plots of a type more likely to be observed with real data than scatter plots of the type in Figures 9-1a and 9-1b. In Figures 9-1c and 9-1d, the data points lie relatively close to, but not exactly on, a straight line. We see that one variable cannot be predicted perfectly from the other variable, but it does look as if one variable can be predicted from the other with a relatively strong degree of accuracy. In Figure 9-1c, we observe that as one variable increases in value, the other variable tends to increase in value; in Figure 9-1d, we observe that as one variable increases in value, the other variable tends to decrease in value. Consequently, Figure 9-1c has been labeled as illustrating a strong, positive, linear relationship, and Figure 9-1d has been labeled as illustrating a strong, negative, linear relationship. 56

2 In Figures 9-1e and 9-1f, we find that the data points seem widely scattered around a straight line. In both scatter plots, it looks as if one variable can be predicted from the other with some degree of accuracy, but not with as much accuracy as in the case of Figures 9-1c and 9-1d. In Figure 9-1e, we observe that as one variable increases in value, the other variable tends to increase in value; in Figure 9-1f, we observe that as one variable increases in value, the other variable tends to decrease in value. Consequently, Figure 9-1e has been labeled as illustrating a weak, positive, linear relationship, and Figure 9-1f has been labeled as illustrating a weak, negative, linear relationship. The scatter plots of Figures 9-1g and 9-1h illustrate data where as one variable increases there does not seem to be any discernable change in the behavior of the other variable. In Figure 9-1g, it appears that as the variable on the horizontal scale changes, the variable on the vertical scale seems to vary randomly within a relatively small range without tending to increase or decrease significantly. In Figure 9-1h, it appears that as the variable on the horizontal scale changes, the variable on the vertical scale seems to vary randomly within a relatively large range without tending to increase or decrease significantly. In both scatter plots, we find no evidence that the value of one variable is significantly influenced by changes in the value of the other variable; in other words, there appears to be no relationship between the two variables in each of these scatter plots. We have previously stated that when two variables show no relationship, we say that the variables are independent. We have already seen that when two qualitative variables are independent, the distribution for one qualitative variable is the same for each of the categories of the other qualitative variable; this can also be said for two quantitative variables or for one qualitative variable and one quantitative variable. Consequently, we can say that Figures 9-1g and 9-1h are scatter plots illustrating independence between two quantitative variables. In Figures 9-1a to 9-1h, we have seen scatter plots illustrating linear relationships of varying degrees of strength as well as scatter plots illustrating independence. Figures 9-1i and 9-1j are scatter plots which illustrate 57

3 nonlinear relationships. The scatter plot of Figure 9-1i illustrates a situation where as one variable increases in value, the other variable tends to decrease; this can also be said about Figure 9-1d, but the relationship we see in Figure 9-1d can be described with a straight line, whereas the relationship we see in Figure 9-1i is better described by a curve than by a straight line. Consequently, we can call the relationship we see in Figure 9-1d linear, but we would have to call the relationship we see in Figure 9-1i nonlinear. Linear relationships are of only two types: positive and negative. However, many different types of nonlinear relationships are possible, but there is no easy way to classify all of them. Figure 9-1j illustrates a nonlinear relationship which is quite different from the nonlinear relationship illustrated by Figure 9-1i. In Figure 9-1j, we see that as the variable on the horizontal axis increases in value, the other variable will sometimes tend to increase and sometimes tend to decrease. The scatter plot of Figure 7-3 seems to suggest that there is a roughly negative linear relationship between weekly TV hours and weekly radio hours. Making decisions about whether or not the relationship we see in any graphical display should be considered significant is a subject we shall address in a future unit. We are not yet prepared to discuss exactly how to make this decision; for now, we simply use our best judgment in deciding whether or not a relationship appears to exist. Self-Test Problem 9-1. For each pair of quantitative variables, describe the type of scatter plot likely to be observed if data were taken. (a) For each of several school children in grades 1 through 6, the variable "height" is measured in inches, and the variable "spelling ability" is measured as a score from 0 to 100 on a particular spelling test. (b) For each of several undergraduate college students, the variable "height" is measured in inches, and the variable "spelling ability" is measured as a score from 0 to 100 on a particular spelling test. (c) For each of several adults, the variable "time to go through a particular maze" is measured in minutes, and the variable "practice time" is measured in hours ranging from 0 to 10. (d) For each of several adults, the variable "time to go through a particular maze" is measured in minutes, and the variable "practice time" is measured in hours ranging from 0 to 90. (e) Each day at 3:00 pm in a certain city, the variable "temperature" is measured in degrees Fahrenheit, and the variable "temperature" is measured in degrees Centigrade; this is done for several days. One noteworthy situation when describing and displaying the relationship between two quantitative variables is when one of the two quantitative variables is time. The study of how one or more variables change with time occurs often. The data of Table 9-1 provide an illustration. The three leftmost columns of Table 9-1 contain (imaginary) prices and quantities sold for an Econo color printer over a five-year period. Let us consider how we might graphically display this data. If we wanted to focus a possible relationship between price and quantity sold, a scatter plot would be appropriate, since the variable "price" and the variable "quantity" are each quantitative. Complete the scatter plot in Figure 9-2 and underneath the scatter plot describe the type of relationship, if any, that appears to exist between price and quantity; you may choose either variable for the horizontal axis and the other variable for the vertical axis, but be sure to label each axis completely. (You should see a negative relationship which looks nonlinear.) Suppose we wanted to focus on how the prices change over time. We might consider a scatter plot to display how the prices have changed over time, since the variable "time" and the variable "price" are each 58

4 quantitative; also, it is natural to think of predicting how price might change over time, which implies we should put time on the horizontal axis. In order to help visualize how time influences price, we could connect consecutive points over time on the scatter plot with line segments. In general, whenever we want to display how a quantitative variable changes over time, time is always scaled on the horizontal axis, and with only one measurement for each time period, we can sequentially connect the points on a scatter plot to create a line graph. The line graph is popular as a visual display to trace how the value of a variable changes through time. Figure 9-3 is a line graph displaying the change over time in the prices of Table 9-1, and Figure 9-4 is a line graph displaying the change over time in the quantity of printers sold of Table 9-1. Often when studying how a variable changes over time, the percentage of change is of interest. In the past, we have used percentage as a way to express relative frequency (i.e., percentage found from the ratio of a raw frequency to a total frequency). A percentage representing a relative frequency must always be between 0% and 100%, but a percentage representing change over time may exceed 100%. A percentage representing change is the ratio of one value of a quantitative variable to another value of the same variable at a different time. Let us return to the prices of Table 9-1. We see that the price for the printer in 2010 is \$300 and that the price for the printer in 2011 is \$200. Since 200/300 = 2/3 = 66.7%, one way to look at this change is to say that the 2011 price is two thirds of the 2010 price, or using a percentage, we would say that the 2011 price is 66.7% of the 2010 price. Looking at the quantities of printers sold Table 9-1, we see that the quantity sold in 2010 is 1.50 million and that the quantity sold in 2011 is 2.30 million. Since 2.30/1.50 = = 153.3%, one way to look at this change is to say that the 2011 quantity is 153.3% of the 2010 quantity. A percentage representing change is called an index number; the time period corresponding to the denominator of the ratio is called the base time period. Since it is understood that an index number is a percentage, often the percent sign (%) is not included. For instance, we could say that the price index number for 2011 with 2010 as the base year is 66.7; we could also say that the quantity index number for 2011 with 2010 as the base year is

5 When an index number is smaller than 100, then the change is a decrease; when an index number is greater than 100, then the change is a increase. Of course, the index number 100 implies no change at all. Since the 2011 price index with 2010 as the base year is 66.7, the price decreased from 2010 to Since the 2011 quantity index with 2010 as the base year is 153.3, the quantity increased from 2010 to The percentage of an increase or a decrease is the ratio of the amount of change to the value in the base time period. For instance, the price decreased by \$100 from 2010 to 2011, or in other words, we would say that the price decreased by 100/300 = = 33.3% from 2010 to 2011; note that the percent of decrease is the amount that the index number 66.7 is below 100. Similarly, the quantity increased by 0.8 million from 2010 to 2011, or in other words, we would say that the quantity increased by 0.8/1.50 = = 53.3% from 2010 to 2011; note that the percent of increase is the amount that the index number is above 100. By selecting one specific base time period, we can generate a sequence of index numbers for future time periods, which allows us to observe how a variable changes over time relative to a common standard; this is useful when we want to compare changes over time for more than one quantitative variable not measured on the same scales. In Table 9-1, find each price index with 2007 as the base year, and find each quantity index with 2007 as the base year. Check that your results are exactly as those displayed in the two rightmost columns of Table 9-1. Self-Test Problem 9-2. Use the prices and quantities sold for the color printer of Table 9-1 to (a) find and interpret the price index number for 2011, with 2009 as the base year. (b) find and interpret the quantity index number for 2011, with 2009 as the base year. Self-Test Problem 9-3. Table 9-2 contains the prices and quantities sold for three different alloys over a period of three years. (a) With alloy C, find and interpret the price index number for 2009, with 2007 as the base year. (b) With alloy B, find and interpret the quantity index number for 2009, with 2008 as the base year. 60

6 Answers to Self-Test Problems 9-1 (a) Since the older children in the higher grades are more likely to be better at spelling and are also more likely to be taller, then we would expect to observe a scatter plot similar to that of either Figure 9-1c or Figure 9-1e. (b) Since we believe there is no relationship between a college student's spelling ability and height, then we would expect to observe a scatter plot similar to that of either Figure 9-1g or Figure 9-1h. (c) Since it is likely that the time to go through the maze will decrease as practice time increases, then we would expect to observe a scatter plot similar to that of either Figure 9-1d or Figure 9-1f. (d) Although it is likely that the time to go through the maze will decrease as practice time increases, there will be for each person a point at which more practice will not decrease the time to go through the maze; as a result, we would expect to observe a scatter plot exhibiting decreasing curve which levels off at some point. (e) Since degrees Fahrenheit and degrees Centigrade are just different units of measurement for exactly the same quantity, we would expect to observe a scatterplot similar to that of Figure 9-1a. 9-2 (a) The 2011 price is 40.0% of the 2009 price; in other words, the price decreased by 60.0% from 2009 to (b) The 2011 quantity is 191.7% of the 2009 quantity; in other words, the quantity increased by 91.7% from 2009 to (a) The 2009 price for alloy C is 107.3% of the 2007 price; in other words, the price for alloy C increased by 7.3% from 2007 to (b) The 2009 quantity for alloy B is 103.3% of the 2008 quantity; in other words, the quantity for alloy B increased by 3.3% from 2008 to Summary A scatter plot is a natural way to display visually the relationship between two quantitative variables and is constructed by first labeling a horizontal axis with possible values of one quantitative variable and labeling a vertical axis with possible values of the other quantitative variable. Dots are then used to represent each pair of observations. If we think of one variable as being predicted from the other, then it is customary to label the vertical axis with the variable being predicted, and to label the horizontal axis with the variable from which predictions are made; otherwise, which axis is labeled with which variable is just a matter of personal preference. A linear relationship is said to exist when a straight line on a graph can be used with at least some reasonable degree of accuracy to predict the values of one quantitative variable from another quantitative variable. A nonlinear relationship is said to exist when a curve can be used with considerably more accuracy than a straight line to predict the values of one quantitative variable from another quantitative variable. When two variables tend to increase together, we say the variables have a positive relationship; when one variable tends to decrease as another variable increases, we say the variables have a negative relationship. When considering the changes in a quantitative variable over time, we can sequentially connect the points on a scatter plot to create a line graph, with time always scaled on the horizontal axis. A percentage representing change is the ratio of one value of a quantitative variable to another value of the same variable at a different time; such a percentage is called an index number; the time period corresponding to the denominator is called the base time period. Since it is understood that an index number is a percentage, we often omit the percent sign (%), and the percentage of increase or decrease can be determined by how much the index number lies above or below

### Unit 16 Normal Distributions

Unit 16 Normal Distributions Objectives: To obtain relative frequencies (probabilities) and percentiles with a population having a normal distribution While there are many different types of distributions

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### Chapter 2 - Graphical Summaries of Data

Chapter 2 - Graphical Summaries of Data Data recorded in the sequence in which they are collected and before they are processed or ranked are called raw data. Raw data is often difficult to make sense

### Linear functions Increasing Linear Functions. Decreasing Linear Functions

3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described

### Other useful guides from Student Learning Development: Histograms, Pie charts, Presenting numerical data

Student Learning Development Bar charts This guide explains what bar charts are and outlines the different ways in which they can be used to present data. It also provides some design tips to ensure that

### Chapter 2 Summarizing and Graphing Data

Chapter 2 Summarizing and Graphing Data 2-1 Review and Preview 2-2 Frequency Distributions 2-3 Histograms 2-4 Graphs that Enlighten and Graphs that Deceive Preview Characteristics of Data 1. Center: A

### Correlation key concepts:

CORRELATION Correlation key concepts: Types of correlation Methods of studying correlation a) Scatter diagram b) Karl pearson s coefficient of correlation c) Spearman s Rank correlation coefficient d)

### Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2

Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables

### Unit 24 Hypothesis Tests about Means

Unit 24 Hypothesis Tests about Means Objectives: To recognize the difference between a paired t test and a two-sample t test To perform a paired t test To perform a two-sample t test A measure of the amount

### Lesson 4 Part 1. Relationships between. two numerical variables. Correlation Coefficient. Relationship between two

Lesson Part Relationships between two numerical variables Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear between two numerical variables Relationship

### Unit 29 Chi-Square Goodness-of-Fit Test

Unit 29 Chi-Square Goodness-of-Fit Test Objectives: To perform the chi-square hypothesis test concerning proportions corresponding to more than two categories of a qualitative variable To perform the Bonferroni

### Unit 12: Correlation. Summary of Video

Unit 12: Correlation Summary of Video How much are identical twins alike and are these similarities due to genetics or to the environment in which the twins were raised? The Minnesota Twin Study, a classic

### Relationships Between Two Variables: Scatterplots and Correlation

Relationships Between Two Variables: Scatterplots and Correlation Example: Consider the population of cars manufactured in the U.S. What is the relationship (1) between engine size and horsepower? (2)

### Section 3 Part 1. Relationships between two numerical variables

Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.

### Chapter 2: Looking at Data Relationships (Part 1)

Chapter 2: Looking at Data Relationships (Part 1) Dr. Nahid Sultana Chapter 2: Looking at Data Relationships 2.1: Scatterplots 2.2: Correlation 2.3: Least-Squares Regression 2.5: Data Analysis for Two-Way

### Eating and Sleeping Habits of Different Countries

9.2 Analyzing Scatter Plots Now that we know how to draw scatter plots, we need to know how to interpret them. A scatter plot graph can give us lots of important information about how data sets are related

### 909 responses responded via telephone survey in U.S. Results were shown by political affiliations (show graph on the board)

1 2-1 Overview Chapter 2: Learn the methods of organizing, summarizing, and graphing sets of data, ultimately, to understand the data characteristics: Center, Variation, Distribution, Outliers, Time. (Computer

### Consultation paper Presenting data in graphs, charts and tables science subjects

Consultation paper Presenting data in graphs, charts and tables science subjects This edition: November 2015 (version 1.0) Scottish Qualifications Authority 2015 Contents Presenting data in graphs, charts

### Lesson 18 Student Outcomes Lesson Notes

Lesson 18 Analyzing Residuals Student Outcomes Students use a graphing calculator to construct the residual plot for a given data set. Students use a residual plot as an indication of whether or not the

### Chapter 2: Exploring Data with Graphs and Numerical Summaries. Graphical Measures- Graphs are used to describe the shape of a data set.

Page 1 of 16 Chapter 2: Exploring Data with Graphs and Numerical Summaries Graphical Measures- Graphs are used to describe the shape of a data set. Section 1: Types of Variables In general, variable can

### and Relativity Frequency Polygons for Discrete Quantitative Data We can use class boundaries to represent a class of data

Section - A: Frequency Polygons and Relativity Frequency Polygons for Discrete Quantitative Data We can use class boundaries to represent a class of data In the past section we created Frequency Histograms.

### with functions, expressions and equations which follow in units 3 and 4.

Grade 8 Overview View unit yearlong overview here The unit design was created in line with the areas of focus for grade 8 Mathematics as identified by the Common Core State Standards and the PARCC Model

### Unit 21 Student s t Distribution in Hypotheses Testing

Unit 21 Student s t Distribution in Hypotheses Testing Objectives: To understand the difference between the standard normal distribution and the Student's t distributions To understand the difference between

### Glossary of numeracy terms

Glossary of numeracy terms These terms are used in numeracy. You can use them as part of your preparation for the numeracy professional skills test. You will not be assessed on definitions of terms during

### What Does the Normal Distribution Sound Like?

What Does the Normal Distribution Sound Like? Ananda Jayawardhana Pittsburg State University ananda@pittstate.edu Published: June 2013 Overview of Lesson In this activity, students conduct an investigation

### Study Resources For Algebra I. Unit 1C Analyzing Data Sets for Two Quantitative Variables

Study Resources For Algebra I Unit 1C Analyzing Data Sets for Two Quantitative Variables This unit explores linear functions as they apply to data analysis of scatter plots. Information compiled and written

### Examples of Data Representation using Tables, Graphs and Charts

Examples of Data Representation using Tables, Graphs and Charts This document discusses how to properly display numerical data. It discusses the differences between tables and graphs and it discusses various

### Presentation of data

2 Presentation of data Using various types of graph and chart to illustrate data visually In this chapter we are going to investigate some basic elements of data presentation. We shall look at ways in

### San Jose State University Engineering 10 1

KY San Jose State University Engineering 10 1 Select Insert from the main menu Plotting in Excel Select All Chart Types San Jose State University Engineering 10 2 Definition: A chart that consists of multiple

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Appendix E: Graphing Data

You will often make scatter diagrams and line graphs to illustrate the data that you collect. Scatter diagrams are often used to show the relationship between two variables. For example, in an absorbance

### 4. Describing Bivariate Data

4. Describing Bivariate Data A. Introduction to Bivariate Data B. Values of the Pearson Correlation C. Properties of Pearson's r D. Computing Pearson's r E. Variance Sum Law II F. Exercises A dataset with

### Years after 2000. US Student to Teacher Ratio 0 16.048 1 15.893 2 15.900 3 15.900 4 15.800 5 15.657 6 15.540

To complete this technology assignment, you should already have created a scatter plot for your data on your calculator and/or in Excel. You could do this with any two columns of data, but for demonstration

### Chapter 10. Key Ideas Correlation, Correlation Coefficient (r),

Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0-: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables

### Graphical methods for presenting data

Chapter 2 Graphical methods for presenting data 2.1 Introduction We have looked at ways of collecting data and then collating them into tables. Frequency tables are useful methods of presenting data; they

### The Correlation Coefficient

The Correlation Coefficient Lelys Bravo de Guenni April 22nd, 2015 Outline The Correlation coefficient Positive Correlation Negative Correlation Properties of the Correlation Coefficient Non-linear association

### Describing Relationships between Two Variables

Describing Relationships between Two Variables Up until now, we have dealt, for the most part, with just one variable at a time. This variable, when measured on many different subjects or objects, took

### III. GRAPHICAL METHODS

Pie Charts and Bar Charts: III. GRAPHICAL METHODS Pie charts and bar charts are used for depicting frequencies or relative frequencies. We compare examples of each using the same data. Sources: AT&T (1961)

### Mathematics Common Core Cluster. Mathematics Common Core Standard. Domain

Mathematics Common Core Domain Mathematics Common Core Cluster Mathematics Common Core Standard Number System Know that there are numbers that are not rational, and approximate them by rational numbers.

### Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1: THE NORMAL CURVE AND "Z" SCORES: The Normal Curve: The "Normal" curve is a mathematical abstraction which conveniently

### Chapter 1: Using Graphs to Describe Data

Department of Mathematics Izmir University of Economics Week 1 2014-2015 Introduction In this chapter we will focus on the definitions of population, sample, parameter, and statistic, the classification

### Unit 22 One-Sided and Two-Sided Hypotheses Tests

Unit 22 One-Sided and Two-Sided Hypotheses Tests Objectives: To differentiate between a one-sided hypothesis test and a two-sided hypothesis test about a population proportion or a population mean To understand

### Graphical and Tabular. Summarization of Data OPRE 6301

Graphical and Tabular Summarization of Data OPRE 6301 Introduction and Re-cap... Descriptive statistics involves arranging, summarizing, and presenting a set of data in such a way that useful information

### There are some general common sense recommendations to follow when presenting

Presentation of Data The presentation of data in the form of tables, graphs and charts is an important part of the process of data analysis and report writing. Although results can be expressed within

### Session 7 Bivariate Data and Analysis

Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table co-variation least squares

### Algebra I: Lesson 5-4 (5074) SAS Curriculum Pathways

Two-Variable Quantitative Data: Lesson Summary with Examples Bivariate data involves two quantitative variables and deals with relationships between those variables. By plotting bivariate data as ordered

### Correlation of Common Core Content Standards to CMP3 Content. Number Standard for Mathematical Content CMP3 Unit: Investigation

Correlation of Common Core Content Standards to CMP3 Content GRADE 8 8.NS.A Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1 8.NS.A.2 Understand informally

### Chapter 14: Production Possibility Frontiers

Chapter 14: Production Possibility Frontiers 14.1: Introduction In chapter 8 we considered the allocation of a given amount of goods in society. We saw that the final allocation depends upon the initial

### How Do You Read a Grade Rule? By Elizabeth White, [TC] 2

How Do You Read a Grade Rule? By Elizabeth White, [TC] 2 Whenever someone is first exposed to grade rule tables, there is some confusion on how to read the grade rules. Most of that confusion can be easily

### How to interpret scientific & statistical graphs

How to interpret scientific & statistical graphs Theresa A Scott, MS Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott 1 A brief introduction Graphics:

### Students will understand 1. use numerical bases and the laws of exponents

Grade 8 Expressions and Equations Essential Questions: 1. How do you use patterns to understand mathematics and model situations? 2. What is algebra? 3. How are the horizontal and vertical axes related?

### Homework 11. Part 1. Name: Score: / null

Name: Score: / Homework 11 Part 1 null 1 For which of the following correlations would the data points be clustered most closely around a straight line? A. r = 0.50 B. r = -0.80 C. r = 0.10 D. There is

### Data Chart Types From Jet Reports

Data Chart Types From Jet Reports Variable Width Column Chart Bar Chart Column Chart Circular Area Chart Line Chart Column Chart Line Chart Two Variables Per Item Many Items Few Items Cyclical Data Non-Cyclical

### Chapter 2: Frequency Distributions and Graphs

Chapter 2: Frequency Distributions and Graphs Learning Objectives Upon completion of Chapter 2, you will be able to: Organize the data into a table or chart (called a frequency distribution) Construct

### 10-3 Measures of Central Tendency and Variation

10-3 Measures of Central Tendency and Variation So far, we have discussed some graphical methods of data description. Now, we will investigate how statements of central tendency and variation can be used.

### 1 Lesson 3: Presenting Data Graphically

1 Lesson 3: Presenting Data Graphically 1.1 Types of graphs Once data is organized and arranged, it can be presented. Graphic representations of data are called graphs, plots or charts. There are an untold

### MATH CHAPTER 2 EXAMPLES & DEFINITIONS

MATH 10043 CHAPTER 2 EXAMPLES & DEFINITIONS Section 2.2 Definition: Frequency distribution a chart or table giving the values of a variable together with their corresponding frequencies. A frequency distribution

### Scatter Plots with Error Bars

Chapter 165 Scatter Plots with Error Bars Introduction The procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each

### Lesson Plan. Vocabulary

S.ID.6c: Use Residuals to Assess Fit of a Function S.ID.6c: Use Residuals to Assess Fit of a Function Summarize, represent, and interpret data on two categorical and quantitative variables 6. Represent

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### Interactive Math Glossary Terms and Definitions

Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Additive Property of Area the process of finding an the area of a shape by totaling the areas

### ANSWER: TO GIVE YOU A QUICK VISUAL SUMMARY OF THE DATA THAT IS MORE INFORMATIVE THAN LOOKING AT A COLLECTION OF NUMBERS.

CHAPTER 9 Quiz Name: 1. What is the purpose of a plot, graph, or picture of data? ANSWER: TO GIVE YOU A QUICK VISUAL SUMMARY OF THE DATA THAT IS MORE INFORMATIVE THAN LOOKING AT A COLLECTION OF NUMBERS.

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### Chapter 6. Non-competitive Markets 6.1 SIMPLE MONOPOLY IN THE COMMODITY MARKET

Chapter 6 We recall that perfect competition was theorised as a market structure where both consumers and firms were price takers. The behaviour of the firm in such circumstances was described in the Chapter

### Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS

Biostatistics: A QUICK GUIDE TO THE USE AND CHOICE OF GRAPHS AND CHARTS 1. Introduction, and choosing a graph or chart Graphs and charts provide a powerful way of summarising data and presenting them in

### UNDERSTANDING MULTIPLE REGRESSION

UNDERSTANDING Multiple regression analysis (MRA) is any of several related statistical methods for evaluating the effects of more than one independent (or predictor) variable on a dependent (or outcome)

### Common Core State Standard I Can Statements 8 th Grade Mathematics. The Number System (NS)

CCSS Key: The Number System (NS) Expressions & Equations (EE) Functions (F) Geometry (G) Statistics & Probability (SP) Common Core State Standard I Can Statements 8 th Grade Mathematics 8.NS.1. Understand

### Report of for Chapter 2 pretest

Report of for Chapter 2 pretest Exam: Chapter 2 pretest Category: Organizing and Graphing Data 1. "For our study of driving habits, we recorded the speed of every fifth vehicle on Drury Lane. Nearly every

### Graphical Presentation of Data

Graphical Presentation of Data Guidelines for Making Graphs Titles should tell the reader exactly what is graphed Remove stray lines, legends, points, and any other unintended additions by the computer

### Investigation in Learning and Teaching of Graphs of Linear Equations in Two Unknowns

Investigation in Learning and Teaching of Graphs of Linear Equations in Two Unknowns Arthur Man Sang Lee The University of Hong Kong Anthony Chi Ming Or Education Infrastructure Division, Education Bureau

### Elementary Statistics. Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination

Scatter Plot, Regression Line, Linear Correlation Coefficient, and Coefficient of Determination What is a Scatter Plot? A Scatter Plot is a plot of ordered pairs (x, y) where the horizontal axis is used

### Technology Step-by-Step Using StatCrunch

Technology Step-by-Step Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate

### WHICH TYPE OF GRAPH SHOULD YOU CHOOSE?

PRESENTING GRAPHS WHICH TYPE OF GRAPH SHOULD YOU CHOOSE? CHOOSING THE RIGHT TYPE OF GRAPH You will usually choose one of four very common graph types: Line graph Bar graph Pie chart Histograms LINE GRAPHS

### Quantitative & Symbolic Reasoning Center Hamilton College

Quantitative & Symbolic Reasoning Center Hamilton College Mathematical Review: Graphs and Charts Graphing One Variable: Time-Series Graphs and Bar Charts Graphing is a visual means to represent events

### Mind on Statistics. Chapter 3

Mind on Statistics Chapter 3 Section 3.1 1. Which one of the following is not appropriate for studying the relationship between two quantitative variables? A. Scatterplot B. Bar chart C. Correlation D.

### TYPES OF DATA TYPES OF VARIABLES

TYPES OF DATA Univariate data Examines the distribution features of one variable. Bivariate data Explores the relationship between two variables. Univariate and bivariate analysis will be revised separately.

### Charts, Tables, and Graphs

Charts, Tables, and Graphs The Mathematics sections of the SAT also include some questions about charts, tables, and graphs. You should know how to (1) read and understand information that is given; (2)

### Rigorous Curriculum Design Authentic Performance Tasks

Rigorous Curriculum Design Authentic Performance Tasks 1 of 14 Subject Grade/Course Unit of Study Duration of Unit Math 8 th Grade/ Math Unit 6 Scatter plots and statistics 3-4 Weeks Engaging Scenario

### REVISED GCSE Scheme of Work Mathematics Higher Unit T3. For First Teaching September 2010 For First Examination Summer 2011

REVISED GCSE Scheme of Work Mathematics Higher Unit T3 For First Teaching September 2010 For First Examination Summer 2011 Version 1: 28 April 10 Version 1: 28 April 10 Unit T3 Unit T3 This is a working

### Pennsylvania System of School Assessment

Pennsylvania System of School Assessment The Assessment Anchors, as defined by the Eligible Content, are organized into cohesive blueprints, each structured with a common labeling system that can be read

### Bullet Graph Design Specification Last Revision: October 10, 2013

Bullet Graph Design Specification Last Revision: October 10, 2013 Overview The bullet graph was developed to replace the meters and gauges that are often used on dashboards. Its linear and no-frills design

### Lecture I. Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions.

Lecture 1 1 Lecture I Definition 1. Statistics is the science of collecting, organizing, summarizing and analyzing the information in order to draw conclusions. It is a process consisting of 3 parts. Lecture

### 2) The three categories of forecasting models are time series, quantitative, and qualitative. 2)

Exam Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Regression is always a superior forecasting method to exponential smoothing, so regression should be used

### Exponentials. 1. Motivating Example

1 Exponentials 1. Motivating Example Suppose the population of monkeys on an island increases by 6% annually. Beginning with 455 animals in 2008, estimate the population for 2011 and for 2025. Each year

### CHAPTER 22 COST-VOLUME-PROFIT ANALYSIS

CHAPTER 22 COST-VOLUME-PROFIT ANALYSIS Related Assignment Materials Student Learning Objectives Conceptual objectives: C1. Describe different types of cost behavior in relation to production and sales

### Part 1: Background - Graphing

Department of Physics and Geology Graphing Astronomy 1401 Equipment Needed Qty Computer with Data Studio Software 1 1.1 Graphing Part 1: Background - Graphing In science it is very important to find and

### . 58 58 60 62 64 66 68 70 72 74 76 78 Father s height (inches)

PEARSON S FATHER-SON DATA The following scatter diagram shows the heights of 1,0 fathers and their full-grown sons, in England, circa 1900 There is one dot for each father-son pair Heights of fathers and

### 13.2 Measures of Central Tendency

13.2 Measures of Central Tendency Measures of Central Tendency For a given set of numbers, it may be desirable to have a single number to serve as a kind of representative value around which all the numbers

### 1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number

1) Write the following as an algebraic expression using x as the variable: Triple a number subtracted from the number A. 3(x - x) B. x 3 x C. 3x - x D. x - 3x 2) Write the following as an algebraic expression

### 9.1 Constructing Scatter Plots

9.1 Constructing Scatter Plots A scatter plot is a plot on the coordinate plane used to compare two sets of data and look for a correlation between those data sets. An association is a relationship or

### Chapter 10 - Practice Problems 1

Chapter 10 - Practice Problems 1 1. A researcher is interested in determining if one could predict the score on a statistics exam from the amount of time spent studying for the exam. In this study, the

1.3 LINEAR EQUATIONS IN TWO VARIABLES Copyright Cengage Learning. All rights reserved. What You Should Learn Use slope to graph linear equations in two variables. Find the slope of a line given two points

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Math 181 Spring 2007 HW 1 Corrected

Math 181 Spring 2007 HW 1 Corrected February 1, 2007 Sec. 1.1 # 2 The graphs of f and g are given (see the graph in the book). (a) State the values of f( 4) and g(3). Find 4 on the x-axis (horizontal axis)

### FCAT Math Vocabulary

FCAT Math Vocabulary The terms defined in this glossary pertain to the Sunshine State Standards in mathematics for grades 3 5 and the content assessed on FCAT in mathematics. acute angle an angle that

### GRAPHS IN ECONOMICS. Appendix. Graphing Data

Appendix 1 GRAPHS IN ECONOMICS Graphing Data Topic: Graphing Data 1) The horizontal axis in a graph A) measures time on a scatter diagram. B) measures the quality of a variable. C) is named the y-axis.

### Reflection and Refraction

Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

### Column Charts. Line Charts

1 of 1 There are a vast number of different types of charts that you can create in Excel. This document with the help of Microsoft Help will outline the different categories of charts and the different