Inference in Regression Analysis. Dr. Frank Wood


 Gordon Burke
 1 years ago
 Views:
Transcription
1 Inference in Regression Analysis Dr. Frank Wood
2 Inference in the Normal Error Regression Model Y i = β 0 + β 1 X i + ɛ i Y i value of the response variable in the i th trial β 0 and β 1 are parameters X i is a known constant, the value of the predictor variable in the i th trial ɛ i iid N(0, σ 2 ) i = 1,..., n
3 Inference concerning β 1 Tests concerning β 1 (the slope) are often of interest, particularly H 0 : β 1 = 0 H a : β1 0 the null hypothesis model Y i = β 0 + (0)X i + ɛ i implies that there is no relationship between Y and X. Note the means of all the Y i s are equal at all levels of X i.
4 Quick Review : Hypothesis Testing Elements of a statistical test Null hypothesis, H 0 Alternative hypothesis, Ha Test statistic Rejection region
5 Quick Review : Hypothesis Testing  Errors Errors A type I error is made if H 0 is rejected when H 0 is true. The probability of a type I error is denoted by α. The value of α is called the level of the test. A type II error is made if H0 is accepted when H a is true. The probability of a type II error is denoted by β.
6 Pvalue The pvalue, or attained significance level, is the smallest level of significance α for which the observed data indicate that the null hypothesis should be rejected.
7 Null Hypothesis If the null hypothesis is that β 1 = 0 then b 1 should fall in the range around zero. The further it is from 0 the less likely the null hypothesis is to hold.
8 Alternative Hypothesis : Least Squares Fit If we find that our estimated value of b 1 deviates from 0 then we have to determine whether or not that deviation would be surprising given the model and the sampling distribution of the estimator. If it is sufficiently (where we define what sufficient is by a confidence level) different then we reject the null hypothesis.
9 Testing This Hypothesis Only have a finite sample Different finite set of samples (from the same population / source) will (almost always) produce different point estimates of β 0 and β 1 (b 0, b 1 ) given the same estimation procedure Key point: b 0 and b 1 are random variables whose sampling distributions can be statistically characterized Hypothesis tests about β 0 and β 1 can be constructed using these distributions. The same techniques for deriving the sampling distribution of b = [b 0, b 1 ] are used in multiple regression.
10 Sampling Dist. Of b 1 The point estimator for b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 The sampling distribution for b 1 is the distribution of b 1 that arises from the variability of b 1 when the predictor variables X i are held fixed and the errors are repeatedly sampled Note that the sampling distribution we derive for b 1 will be highly dependent on our modeling assumptions.
11 Sampling Dist. Of b 1 In Normal Regr. Model For a normal error regression model the sampling distribution of b 1 is normal, with mean and variance given by E{b 1 } = β 1 σ 2 {b 1 } = σ 2 (Xi X ) 2 To show this we need to go through a number of algebraic steps.
12 (Xi X )(Y i Ȳ ) = (X i X )Y i First step To show we observe (Xi X )(Y i Ȳ ) = (X i X )Y i (X i X )Ȳ = (X i X )Y i Ȳ (X i X ) = (X i X )Y i Ȳ (X i ) + Ȳ n = (X i X )Y i Xi This will be useful because the sampling distribution of the estimators will be expressed in terms of the distribution of the Y i s which are assumed to be equal to the regression function plus a random error term. n
13 b 1 as convex combination of Y i s b 1 can be expressed as a linear combination of the Y i s b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 = (Xi X )Y i (Xi X ) 2 from previous slide = k i Y i where k i = (X i X ) (Xi X ) 2 Now the estimator is simply a convex combination of the Y i s which makes computing its analytic sampling distribution simple.
14 Properties of the k i s It can be shown (using simple algebraic operations) that ki = 0 ki X i = 1 k 2 i = 1 (Xi X ) 2 (possible homework). We will use these properties to prove various properties of the sampling distributions of b 1 and b 0.
15 Normality of b 1 s Sampling Distribution Reminder: useful fact: A linear combination of independent normal random variables is normally distributed More formally: when Y1,..., Y n are independent normal random variables, the linear combination a 1 Y 1 + a 2 Y a n Y n is normally distributed, with mean ai E{Y i } and variance ai 2 σ 2 {Y i }
16 Normality of b 1 s Sampling Distribution Since b 1 is a linear combination of the Y i s and each Y i = β 1 X i + β 0 + e i is (conditioned on X i, β 1, and β 0 ) an independent normal random variable, then then distribution of b 1 under sampling of the errors is normal as well b 1 = k i Y i, k i = (X i X ) (Xi X ) 2 From previous slide E{b 1 } = k i E{Y i }, σ 2 {b 1 } = ki 2 σ 2 {Y i } This means b 1 N(E{b 1 }, σ 2 {b 1 }). To use this we must know E{b 1 } and σ 2 {b 1 }.
17 b 1 is an unbiased estimator This can be seen using two of the properties E{b 1 } = E{ k i Y i } = k i E{Y i } = k i (β 0 + β 1 X i ) = β 0 ki + β 1 ki X i = β 0 (0) + β 1 (1) = β 1 So now we know the mean of the sampling distribution of b 1 and conveniently (importantly) it s centered on the true value of the unknown quantity β 1 (the slope of the linear relationship).
18 Variance of b 1 Since the Y i are independent random variables with variance σ 2 and the k i s are constants we get σ 2 {b 1 } = σ 2 { k i Y i } = k 2 i σ 2 {Y i } = ki 2 σ 2 = σ 2 ki 2 = σ 2 1 (Xi X ) 2 and now we know the variance of the sampling distribution of b 1. This means that we can write b 1 N(β 1, σ 2 (Xi X ) 2 ) How does this behave as a function of σ 2 and the spread of the X i s? Is this intuitive? Note: this assumes that we know σ 2. Can we?
19 Estimated variance of b 1 When we don t know σ 2 then one thing that we can do is to replace it with the MSE estimate of the same Let where s 2 = MSE = SSE n 2 SSE = e 2 i and e i = Y i Ŷi plugging in we get σ 2 {b 1 } = s 2 {b 1 } = σ 2 (Xi X ) 2 s 2 (Xi X ) 2
20 Recap We now have an expression for the sampling distribution of b 1 when σ 2 is known b 1 N (β 1, σ 2 (Xi X ) 2 ) (1) When σ 2 is unknown we have an unbiased point estimator of σ 2 s 2 s 2 {b 1 } = (Xi X ) 2 As n (i.e. the number of observations grows large) s 2 {b 1 } σ 2 {b 1 } and we can use Eqn. 1. Questions When is n big enough? What if n isn t big enough?
21 Sampling Distribution of (b 1 β 1 )/s{b 1 }? b 1 is normally distributed so (b 1 β 1 )/( σ 2 {b 1 }) is a standard normal variable. Why? We don t know σ 2 {b 1 } because we don t know σ 2 so it must be estimated from data. We have already denoted it s estimate s 2 {b 1 } If using the estimate s 2 {b 1 } we will show that b 1 β 1 s{b 1 } t(n 2) where s{b 1 } = s 2 {b 1 }
22 Where does this come from? For now we need to rely upon the following theorem: Cochran s Theorem For the normal error regression model and is independent of b 0 and b 1 SSE (Yi Ŷ i ) 2 σ 2 = σ 2 χ 2 (n 2) Intuitively this follows the standard result for the sum of squared normal random variables Here there are two linear constraints imposed by the regression parameter estimation that each reduce the number of degrees of freedom by one. We will revisit this subject soon.
23 Another useful fact : Studentt distribution A definition: Let z and χ 2 (ν) be independent random variables (standard normal and χ 2 respectively). The following random variable is defined to be a tdistributed random variable: t(ν) = z χ 2 (ν) ν This version of the t distribution has one parameter, the degrees of freedom ν
24 Distribution of the studentized statistic b 1 β 1 s{b 1 } Is a socalled studentized statistic. t(n 2) To derive the distribution of this statistic, first we do the following rewrite b 1 β 1 s{b 1 } = where b 1 β 1 σ{b 1 } s{b 1 } σ{b 1 } s{b 1 } σ{b 1 } = s 2 {b 1 } σ 2 {b 1 }
25 Studentized statistic cont. And note the following s 2 {b 1 } σ 2 {b 1 } = MSE P (Xi X ) 2 σ 2 P (Xi X ) 2 = MSE σ 2 = SSE σ 2 (n 2) where we know (by the given simple version of Cochran s theorem) that the distribution of the last term is χ 2 and indep. of b 1 and b 0 SSE σ 2 (n 2) χ2 (n 2) n 2
26 Studentized statistic final But by the given definition of the t distribution we have our result b 1 β 1 s{b 1 } t(n 2) because putting everything together we can see that b 1 β 1 s{b 1 } z χ 2 (n 2) n 2
27 Confidence Intervals and Hypothesis Tests Now that we know the sampling distribution of b 1 (t with n2 degrees of freedom) we can construct confidence intervals and hypothesis tests easily Things to think about What does the tdistribution look like? Why is the estimator distributed according to a tdistribution rather than a normal distribution? When performing tests why does this matter? When is it safe to cheat and use a normal approximation?
Outline. Correlation & Regression, III. Review. Relationship between r and regression
Outline Correlation & Regression, III 9.07 4/6/004 Relationship between correlation and regression, along with notes on the correlation coefficient Effect size, and the meaning of r Other kinds of correlation
More informationStatistics  Written Examination MEC Students  BOVISA
Statistics  Written Examination MEC Students  BOVISA Prof.ssa A. Guglielmi 26.0.2 All rights reserved. Legal action will be taken against infringement. Reproduction is prohibited without prior consent.
More informationStatistics 112 Regression Cheatsheet Section 1B  Ryan Rosario
Statistics 112 Regression Cheatsheet Section 1B  Ryan Rosario I have found that the best way to practice regression is by brute force That is, given nothing but a dataset and your mind, compute everything
More informationStatistiek (WISB361)
Statistiek (WISB361) Final exam June 29, 2015 Schrijf uw naam op elk in te leveren vel. Schrijf ook uw studentnummer op blad 1. The maximum number of points is 100. Points distribution: 23 20 20 20 17
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationHypothesis Testing Level I Quantitative Methods. IFT Notes for the CFA exam
Hypothesis Testing 2014 Level I Quantitative Methods IFT Notes for the CFA exam Contents 1. Introduction... 3 2. Hypothesis Testing... 3 3. Hypothesis Tests Concerning the Mean... 10 4. Hypothesis Tests
More informationOutline. Topic 4  Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4  Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test  Fall 2013 R 2 and the coefficient of correlation
More informationWooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares
Wooldridge, Introductory Econometrics, 4th ed. Chapter 15: Instrumental variables and two stage least squares Many economic models involve endogeneity: that is, a theoretical relationship does not fit
More informationQuadratic forms Cochran s theorem, degrees of freedom, and all that
Quadratic forms Cochran s theorem, degrees of freedom, and all that Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 1, Slide 1 Why We Care Cochran s theorem tells us
More informationInferences About Differences Between Means Edpsy 580
Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Inferences About Differences Between Means Slide
More informationEstimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
More informationLecture 5 Hypothesis Testing in Multiple Linear Regression
Lecture 5 Hypothesis Testing in Multiple Linear Regression BIOST 515 January 20, 2004 Types of tests 1 Overall test Test for addition of a single variable Test for addition of a group of variables Overall
More informationRegression, least squares
Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen
More informationSIMPLE REGRESSION ANALYSIS
SIMPLE REGRESSION ANALYSIS Introduction. Regression analysis is used when two or more variables are thought to be systematically connected by a linear relationship. In simple regression, we have only two
More informationUnit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
More informationMultiple Hypothesis Testing: The Ftest
Multiple Hypothesis Testing: The Ftest Matt Blackwell December 3, 2008 1 A bit of review When moving into the matrix version of linear regression, it is easy to lose sight of the big picture and get lost
More informationHypothesis Testing or How to Decide to Decide Edpsy 580
Hypothesis Testing or How to Decide to Decide Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Hypothesis Testing or How to Decide to Decide
More informationPower and Sample Size Determination
Power and Sample Size Determination Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison November 3 8, 2011 Power 1 / 31 Experimental Design To this point in the semester,
More informationInstrumental Variables & 2SLS
Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20  Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental
More informationInvariance and optimality Linear rank statistics Permutation tests in R. Rank Tests. Patrick Breheny. October 7. STA 621: Nonparametric Statistics
Rank Tests October 7 Power Invariance and optimality Permutation testing allows great freedom to use a wide variety of test statistics, all of which lead to exact levelα tests regardless of the distribution
More informationConfidence level. Most common choices are 90%, 95%, or 99%. (α = 10%), (α = 5%), (α = 1%)
Confidence Interval A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated
More informationElements of statistics (MATH04871)
Elements of statistics (MATH04871) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis 
More informationFixed vs. Random Effects
Statistics 203: Introduction to Regression and Analysis of Variance Fixed vs. Random Effects Jonathan Taylor  p. 1/19 Today s class Implications for Random effects. Oneway random effects ANOVA. Twoway
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationLecture 2: Simple Linear Regression
DMBA: Statistics Lecture 2: Simple Linear Regression Least Squares, SLR properties, Inference, and Forecasting Carlos Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching
More informationChapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3 Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
More informationExample: Boats and Manatees
Figure 96 Example: Boats and Manatees Slide 1 Given the sample data in Table 91, find the value of the linear correlation coefficient r, then refer to Table A6 to determine whether there is a significant
More informationDEPARTMENT OF ECONOMICS. Unit ECON 12122 Introduction to Econometrics. Notes 4 2. R and F tests
DEPARTMENT OF ECONOMICS Unit ECON 11 Introduction to Econometrics Notes 4 R and F tests These notes provide a summary of the lectures. They are not a complete account of the unit material. You should also
More information4. Introduction to Statistics
Statistics for Engineers 41 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation
More informationRegression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationProbability and Statistics Lecture 9: 1 and 2Sample Estimation
Probability and Statistics Lecture 9: 1 and Sample Estimation to accompany Probability and Statistics for Engineers and Scientists Fatih Cavdur Introduction A statistic θ is said to be an unbiased estimator
More informationLecture 19: Chapter 8, Section 1 Sampling Distributions: Proportions
Lecture 19: Chapter 8, Section 1 Sampling Distributions: Proportions Typical Inference Problem Definition of Sampling Distribution 3 Approaches to Understanding Sampling Dist. Applying 689599.7 Rule
More informationSimple Regression and Correlation
Simple Regression and Correlation Today, we are going to discuss a powerful statistical technique for examining whether or not two variables are related. Specifically, we are going to talk about the ideas
More information1.5 Oneway Analysis of Variance
Statistics: Rosie Cornish. 200. 1.5 Oneway Analysis of Variance 1 Introduction Oneway analysis of variance (ANOVA) is used to compare several means. This method is often used in scientific or medical experiments
More informationHow to Conduct a Hypothesis Test
How to Conduct a Hypothesis Test The idea of hypothesis testing is relatively straightforward. In various studies we observe certain events. We must ask, is the event due to chance alone, or is there some
More information2. Linear regression with multiple regressors
2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measuresoffit in multiple regression Assumptions
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationttests and Ftests in regression
ttests and Ftests in regression Johan A. Elkink University College Dublin 5 April 2012 Johan A. Elkink (UCD) t and Ftests 5 April 2012 1 / 25 Outline 1 Simple linear regression Model Variance and R
More informationPart 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
More informationOneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups
OneWay Analysis of Variance: A Guide to Testing Differences Between Multiple Groups In analysis of variance, the main research question is whether the sample means are from different populations. The
More informationNotes on Applied Linear Regression
Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 4448935 email:
More informationSimple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
More informationExperimental Designs (revisited)
Introduction to ANOVA Copyright 2000, 2011, J. Toby Mordkoff Probably, the best way to start thinking about ANOVA is in terms of factors with levels. (I say this because this is how they are described
More informationEconometrics Simple Linear Regression
Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight
More informationChapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
More informationEcon 371 Problem Set #3 Answer Sheet
Econ 371 Problem Set #3 Answer Sheet 4.3 In this question, you are told that a OLS regression analysis of average weekly earnings yields the following estimated model. AW E = 696.7 + 9.6 Age, R 2 = 0.023,
More informationRegression. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.
Class: Date: Regression Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given the least squares regression line y8 = 5 2x: a. the relationship between
More informationNotes for STA 437/1005 Methods for Multivariate Data
Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.
More informationELECE8104 Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems
Stochastics models and estimation, Lecture 3b: Linear Estimation in Static Systems Minimum Mean Square Error (MMSE) MMSE estimation of Gaussian random vectors Linear MMSE estimator for arbitrarily distributed
More informationChapter 9. Section Correlation
Chapter 9 Section 9.1  Correlation Objectives: Introduce linear correlation, independent and dependent variables, and the types of correlation Find a correlation coefficient Test a population correlation
More informationChapter 14: 16, 9, 12; Chapter 15: 8 Solutions When is it appropriate to use the normal approximation to the binomial distribution?
Chapter 14: 16, 9, 1; Chapter 15: 8 Solutions 141 When is it appropriate to use the normal approximation to the binomial distribution? The usual recommendation is that the approximation is good if np
More informationSampling and Hypothesis Testing
Population and sample Sampling and Hypothesis Testing Allin Cottrell Population : an entire set of objects or units of observation of one sort or another. Sample : subset of a population. Parameter versus
More informationIntroduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models  part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK2800 Kgs. Lyngby
More information1 Another method of estimation: least squares
1 Another method of estimation: least squares erm: estim.tex, Dec8, 009: 6 p.m. (draft  typos/writos likely exist) Corrections, comments, suggestions welcome. 1.1 Least squares in general Assume Y i
More informationLAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING
LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationIntroduction to Stata
Introduction to Stata September 23, 2014 Stata is one of a few statistical analysis programs that social scientists use. Stata is in the midrange of how easy it is to use. Other options include SPSS,
More informationThe Delta Method and Applications
Chapter 5 The Delta Method and Applications 5.1 Linear approximations of functions In the simplest form of the central limit theorem, Theorem 4.18, we consider a sequence X 1, X,... of independent and
More informationPractice Exam. 1. What is the median of this data? A) 64 B) 63.5 C) 67.5 D) 59 E) 35
Practice Exam Use the following to answer questions 12: A census is done in a given region. Following are the populations of the towns in that particular region (in thousands): 35, 46, 52, 63, 64, 71,
More informationPopulation Mean (Known Variance)
Confidence Intervals Solutions STATUB.0103 Statistics for Business Control and Regression Models Population Mean (Known Variance) 1. A random sample of n measurements was selected from a population with
More informationMultiple Linear Regression. Multiple linear regression is the extension of simple linear regression to the case of two or more independent variables.
1 Multiple Linear Regression Basic Concepts Multiple linear regression is the extension of simple linear regression to the case of two or more independent variables. In simple linear regression, we had
More informationSupplement on the KruskalWallis test. So what do you do if you don t meet the assumptions of an ANOVA?
Supplement on the KruskalWallis test So what do you do if you don t meet the assumptions of an ANOVA? {There are other ways of dealing with things like unequal variances and nonnormal data, but we won
More informationStat 704 Data Analysis I Probability Review
1 / 30 Stat 704 Data Analysis I Probability Review Timothy Hanson Department of Statistics, University of South Carolina Course information 2 / 30 Logistics: Tuesday/Thursday 11:40am to 12:55pm in LeConte
More informationHeteroskedasticity and Weighted Least Squares
Econ 507. Econometric Analysis. Spring 2009 April 14, 2009 The Classical Linear Model: 1 Linearity: Y = Xβ + u. 2 Strict exogeneity: E(u) = 0 3 No Multicollinearity: ρ(x) = K. 4 No heteroskedasticity/
More informationMultivariate normal distribution and testing for means (see MKB Ch 3)
Multivariate normal distribution and testing for means (see MKB Ch 3) Where are we going? 2 Onesample ttest (univariate).................................................. 3 Twosample ttest (univariate).................................................
More information3.4 Statistical inference for 2 populations based on two samples
3.4 Statistical inference for 2 populations based on two samples Tests for a difference between two population means The first sample will be denoted as X 1, X 2,..., X m. The second sample will be denoted
More informationChapter 10. Key Ideas Correlation, Correlation Coefficient (r),
Chapter 0 Key Ideas Correlation, Correlation Coefficient (r), Section 0: Overview We have already explored the basics of describing single variable data sets. However, when two quantitative variables
More informationHypothesis Testing I
ypothesis Testing I The testing process:. Assumption about population(s) parameter(s) is made, called null hypothesis, denoted. 2. Then the alternative is chosen (often just a negation of the null hypothesis),
More information1 Simple Linear Regression I Least Squares Estimation
Simple Linear Regression I Least Squares Estimation Textbook Sections: 8. 8.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and
More informationCONTENTS OF DAY 2. II. Why Random Sampling is Important 9 A myth, an urban legend, and the real reason NOTES FOR SUMMER STATISTICS INSTITUTE COURSE
1 2 CONTENTS OF DAY 2 I. More Precise Definition of Simple Random Sample 3 Connection with independent random variables 3 Problems with small populations 8 II. Why Random Sampling is Important 9 A myth,
More informationREGRESSION LINES IN STATA
REGRESSION LINES IN STATA THOMAS ELLIOTT 1. Introduction to Regression Regression analysis is about eploring linear relationships between a dependent variable and one or more independent variables. Regression
More informationCHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationNull Hypothesis H 0. The null hypothesis (denoted by H 0
Hypothesis test In statistics, a hypothesis is a claim or statement about a property of a population. A hypothesis test (or test of significance) is a standard procedure for testing a claim about a property
More informationStatistical Inference
Statistical Inference Idea: Estimate parameters of the population distribution using data. How: Use the sampling distribution of sample statistics and methods based on what would happen if we used this
More informationNull Hypothesis Significance Testing Signifcance Level, Power, ttests Spring 2014 Jeremy Orloff and Jonathan Bloom
Null Hypothesis Significance Testing Signifcance Level, Power, ttests 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom Simple and composite hypotheses Simple hypothesis: the sampling distribution is
More informationFinal Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
More informationInstrumental Variables & 2SLS
Instrumental Variables & 2SLS y 1 = β 0 + β 1 y 2 + β 2 z 1 +... β k z k + u y 2 = π 0 + π 1 z k+1 + π 2 z 1 +... π k z k + v Economics 20  Prof. Schuetze 1 Why Use Instrumental Variables? Instrumental
More informationRegression Analysis. Data Calculations Output
Regression Analysis In an attempt to find answers to questions such as those posed above, empirical labour economists use a useful tool called regression analysis. Regression analysis is essentially a
More informationMultivariate Normal Distribution
Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #47/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues
More informationVariance of OLS Estimators and Hypothesis Testing. Randomness in the model. GM assumptions. Notes. Notes. Notes. Charlie Gibbons ARE 212.
Variance of OLS Estimators and Hypothesis Testing Charlie Gibbons ARE 212 Spring 2011 Randomness in the model Considering the model what is random? Y = X β + ɛ, β is a parameter and not random, X may be
More informationFE670 Algorithmic Trading Strategies. Stevens Institute of Technology
FE670 Algorithmic Trading Strategies Lecture 6. Portfolio Optimization: Basic Theory and Practice Steve Yang Stevens Institute of Technology 10/03/2013 Outline 1 MeanVariance Analysis: Overview 2 Classical
More informationBivariate Regression Analysis. The beginning of many types of regression
Bivariate Regression Analysis The beginning of many types of regression TOPICS Beyond Correlation Forecasting Two points to estimate the slope Meeting the BLUE criterion The OLS method Purpose of Regression
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationStatistics 641  EXAM II  1999 through 2003
Statistics 641  EXAM II  1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the
More informationHypothesis Testing for Beginners
Hypothesis Testing for Beginners Michele Piffer LSE August, 2011 Michele Piffer (LSE) Hypothesis Testing for Beginners August, 2011 1 / 53 One year ago a friend asked me to put down some easytoread notes
More informationHypothesis Testing COMP 245 STATISTICS. Dr N A Heard. 1 Hypothesis Testing 2 1.1 Introduction... 2 1.2 Error Rates and Power of a Test...
Hypothesis Testing COMP 45 STATISTICS Dr N A Heard Contents 1 Hypothesis Testing 1.1 Introduction........................................ 1. Error Rates and Power of a Test.............................
More information17. SIMPLE LINEAR REGRESSION II
17. SIMPLE LINEAR REGRESSION II The Model In linear regression analysis, we assume that the relationship between X and Y is linear. This does not mean, however, that Y can be perfectly predicted from X.
More informationReview of Bivariate Regression
Review of Bivariate Regression A.Colin Cameron Department of Economics University of California  Davis accameron@ucdavis.edu October 27, 2006 Abstract This provides a review of material covered in an
More informationChapter 9, Part A Hypothesis Tests. Learning objectives
Chapter 9, Part A Hypothesis Tests Slide 1 Learning objectives 1. Understand how to develop Null and Alternative Hypotheses 2. Understand Type I and Type II Errors 3. Able to do hypothesis test about population
More informationOneWay Analysis of Variance (ANOVA) Example Problem
OneWay Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesistesting technique used to test the equality of two or more population (or treatment) means
More informationSTA 4163 Lecture 10: Practice Problems
STA 463 Lecture 0: Practice Problems Problem.0: A study was conducted to determine whether a student's final grade in STA406 is linearly related to his or her performance on the MATH ability test before
More informationData Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments  Introduction
Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments  Introduction
More informationMultiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
More informationUsing JMP with a Specific
1 Using JMP with a Specific Example of Regression Ying Liu 10/21/ 2009 Objectives 2 Exploratory data analysis Simple liner regression Polynomial regression How to fit a multiple regression model How to
More informationConfindence Intervals and Probability Testing
Confindence Intervals and Probability Testing PO7001: Quantitative Methods I Kenneth Benoit 3 November 2010 Using probability distributions to assess sample likelihoods Recall that using the µ and σ from
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationPrediction and Confidence Intervals in Regression
Fall Semester, 2001 Statistics 621 Lecture 3 Robert Stine 1 Prediction and Confidence Intervals in Regression Preliminaries Teaching assistants See them in Room 3009 SHDH. Hours are detailed in the syllabus.
More information