STRAIGHT LINE MOTION. 1 Equations of Straight Line Motion (Constant Acceleration)

Size: px
Start display at page:

Download "STRAIGHT LINE MOTION. 1 Equations of Straight Line Motion (Constant Acceleration)"

Transcription

1 1 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 1 INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW STRAIGHT LINE MOTION By definition, mechanics is the study of bodies at rest and in motion and the effect of forces on them. The subject of mechanics is subdivided into statics, which specifically focuses on bodies at rest, and dynamics, which focuses on bodies in motion. Because of its relevance to game development we are primarily concerned with the subject of dynamics which itself is divided into two specific areas, namely, kinematics, which focuses on the motion of bodies without regard to the forces that act on the body, and kinetics, which consider both the motion of bodies and the forces that act on or otherwise affect bodies in motion. 1 Equations of Straight Line Motion (Constant Acceleration) We define the following quantities which are needed to describe the motion of a body: Distance is the length of a given path. The unit of distance is the metre (m). Displacement defines the position of one point relative to another point: displacement includes both the distance between two points and the direction of the first point from the second point. Speed is the rate at which a moving body covers its path, no account being taken of the direction of motion. The unit of distance is the metre and the unit of time is the second, hence the unit of speed is the metre per second (ms 1 ). Velocity v is the rate of change of position with time when the direction of motion is specified. Velocity v is thus a vector quantity; its magnitude is its speed. Velocity is expressed in metre per second (ms 1 ). Acceleration a is the rate of change of velocity with respect to time, expressed in metres per second per second (ms ). The rate of decrease of velocity with time, i.e., negative acceleration is called deceleration.

2 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) Consider a particle moving in a straight line with a constant acceleration a and has an initial velocity u and a final velocity v after an interval of time t. V elocity C v v u u θ B A t D T ime In a velocity-time graph the acceleration is represented by the gradient of BC Therefore Hence a = v u t v = u + at Let the increase in displacement (position of one point relative to another) in time t be denoted by s. This is represented by the area of ABCD. Therefore Eliminating v from and yields s = ut + 1 t(v u) = ut + 1 vt 1 ut = 1 ut + 1 vt s = 1 (u + u + at)t = 1 (ut + at ) = 1 (u + v)t Therefore s = ut + 1 at

3 3 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 3 Eliminating u from and yields s = 1 ((v at) + v)t = 1 (vt at ) Therefore s = vt 1 at Finally, eliminating t from and yields s = 1 (u + v)(v u) a = 1 a (uv u + v uv) Therefore v = u + as In summary, we have that when a particle moves in a straight line its displacement, velocity and acceleration can have one of only two possible directions. Motion in a straight line with constant acceleration occur frequently enough to justify obtaining general equations which can be applied to particular problems. ** Let P be a particle moving in a straight line. In general for motion in a straight line we have v = u + at s = ut + 1 at s = vt 1 at v = u + as where v is velocity, u initial velocity, s distance, a acceleration and t time.

4 4 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 4 Example A particle is moving along a straight line with a constant acceleration (deceleration) of 3ms. If initially it has a velocity of 10ms 1, to find the time when the velocity is zero we have u = 10, v = 0, a = 3 We require t so using the appropriate equation of motion we have v = u + at 0 = 10 + ( 3)t t = seconds. Example A train traveling along a straight line with a constant acceleration is observed to travel consecutive distances of 1km in times of 30 seconds and 60 seconds respectively. To find the initial velocity of the train we have V elocity u T ime At s = 1000m, t = 30 seconds. Also at s = 000m, t = 90 seconds. Substituting this information into the equation of motion s = ut + 1 at yields 1000 = 30u + 450a 000 = 90u a Solving for u yields u = 38 9 ms 1.

5 5 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 5 Example A particle starts from a point O with a velocity of ms 1 and travels along a straight line with a constant acceleration of ms. Two seconds later a second particle starts from rest at O and travels along the same line with an acceleration of 6ms. We wish to find how far from O the second particle overtakes the first. V elocity 0 T ime When the second particle overtakes the first they will both have the same displacement from 0. Let displacement = d metres. 1 st particle takes T seconds to reach this point. nd particle takes (T-) seconds to reach this point. For the 1 st particle For the nd particle s = ut + 1 at d = T + T s = ut + 1 at d = 3(T ) Eliminating d from both equations yields T + T = 3(T ) T 7T + 6 = 0 (T 6)(T 1) = 0

6 6 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 6 Therefore T = 6, since T = 1 is before the second particle starts. Finally, at T = 6 we have d = 48. The second particle overtakes the first 48m from 0. Example A particle moving in a straight line with a constant velocity of 5ms 1, at one instant and 4 seconds later it has a velocity of 15ms 1. Find the acceleration and the distance covered by the particle in 4 seconds. v = 5ms 1 v = 15ms 1 t = 0 t = 4 Let u = 5 ms 1, t = 4 seconds, v = 15 ms 1. v = u + at 15 = 5 + 4a a =.5 ms Also v = u + as 5 = 5 + 5s s = 40 m Exercise At the same instant two children, who are standing 4m apart, begin to cycle directly towards each other. James starts from rest at a point A, riding with a constant acceleration of ms and William rides with a constant speed of ms 1. Find how long it is before they meet. [Solution: They meet after 4 seconds]. Exercise A particle A starts from rest at a point O and moves on a straight line with constant acceleration ms. At the same instant another particle B, 1m behind O, is moving with velocity 5ms 1 and has constant acceleration of 3ms. How far from O are the particles when B overtakes A? [Solution: B overtakes A at a distance 4m from O].

7 7 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 7 Exercise The driver of a truck travelling at 30ms 1, sees an obstacle 50m ahead. He decelerates at a constant rate and comes to a halt just in time. Find the deceleration and the breaking time. 7 50m 1.1 Vertical Motion under Gravity Before the time of Galileo it was thought that if two objects of different masses were dropped the heavier object would fall faster than the light one. In a famous series of experiments Galileo showed that this was not true. (He allegedly dropped objects from the top of the leaning tower of Pisa and timed their descent from the Cathedral clock opposite). The result that Galileo observed are that if air resistance is ignored all bodies (whatever their mass) have the same constant acceleration towards the center of the earth when they are moving under the action of their weight only. This acceleration is denoted by the letter g, and a good approximation to its value is 9.81 ms. When a body is thrown vertically upwards or is dropped it will move in a straight line. The only force acting on it will be its weight causing a constant acceleration g along the line, so the equations for motion in a straight line with constant acceleration will apply. In some problems it is convenient to take the downward direction as positive, in which case the acceleration is +g, but in other problems it is convenient to take the upward direction as positive, in which case the acceleration is g. Example A stone is thrown vertically downwards from the top of a tower and hits the ground 10 seconds later with a speed of 51 ms 1. Find the height of the tower. Taking the downward direction as positive i.e., g = ms

8 8 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 8 s Now v = 51ms 1, t = 10 seconds and a = 9 81ms. The tower is 19 5 m high. s = vt 1 at = 51(10) 1 (9 81)(10) s = 19 5 m Example A ball is thrown vertically upwards from a point 0 5m above ground level with a speed of 7ms 1. Find the height above this point reached by the ball and the speed with which it hits the ground. Taking the upward direction as positive i.e., g = 9 81 ms 7ms 1 0.5m s = 0 Ground Level

9 9 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 9 Now u = 7ms 1, v = 0ms 1 and a = 9 81ms. v = u + as 0 = 49 + ( 9 81)s s = 5 m Therefore the ball reaches a height of 5m above its initial position. When ball hits the ground it is 0 5m below its initial position. Given u = 7ms 1, s = 0 5m and a = 9 81ms v = u + as v = 49 + ( 9 81)( 0 5) v = ±7 66ms 1 Therefore the ball hits the ground with a speed of 7 66ms 1. Example A youth playing with a ball in a garden surrounded by a wall 5m high and kicks the ball vertically up from a height of 0 4m with a speed of 14ms 1. For how long is the ball above the height of the wall? Give your answer corrected to significant figures. Taking the upward direction as positive i.e., g = 9 81 ms 1m 0 4m 14ms 1 s = 0 Ground Level

10 10 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 10 Now u = 14ms 1, s = 1m and a = 9 81ms. s = ut + 1 at 1 = 14t 4 9t 0 3 = t 0 7t Now we have 7t 0t + 3 = 0. Using the quadratic formula we get t = 0 ± = 698 or The ball is at the height of the top of the wall at two different times. Therefore it takes seconds to reach the top of the wall when going up, and returns to that height 698 seconds from the start. So the ball is above the wall for 5 seconds, correct to two significant figures. Example An object is thrown vertically upwards with a speed of 14ms 1. Two seconds later a second similar object is dropped from the same point. Find where the two objects meet. 14ms 1 s = 0 (initial position) d m The two objects will meet when they have the same displacement (d metres) from the starting point. If the time taken by the first object to reach this displacement is T seconds, the time taken by the second object is (T ) seconds. Taking the upward direction as positive i.e., g = 9 81 ms

11 11 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 11 For the 1 st object For the nd object s = ut + 1 at d = 14T 4 9T s = ut + 1 at d = 4 9(T ) Eliminating d from both equations yields T 0 7T = 0 7(T ) 0.8T =.8 T = 3 5 seconds Finally, at T = 3 5 seconds d = 11m. Therefore the objects meet 11m below their initial position. Example A stone is dropped from the top of a building and at the same time a second stone is thrown vertically upwards from the bottom of the building with a speed of 0ms 1. They pass each other 3 seconds later. Find the height of the building. Second Object s d F irst Object d 1 t = 3 seconds s = 0 (initial position) Taking the upward direction as positive i.e., g = 9 81 ms

12 1 CHAPTER. STRAIGHT LINE MOTION (CONSTANT ACCELERATION) 1 We wish to determine d 1 and d at t = 3 seconds. Let height of building be denoted by s where s = d 1 + d For the 1 st object For the nd object s = ut + 1 at d 1 = 0(3) + 1 ( 9 81)(9) d 1 = Therefore the building is 60m high. s = ut + 1 at d = ( 9 81)(9) d = Exercise A missile is fired vertically upwards with speed 47ms 1. Find, to 3 significant figures, the time that elapses before the missile returns to the firing position. Exercise A particle is projected vertically upwards from ground level with a speed of 50ms 1. For how long will it be more than 70m above the ground? Exercise A particle A is fired directly upward with a speed of 40ms 1 and one second later another one, B, is projected directly upward from the same point with the same velocity. Find the time it takes for the particles to collide and the height above the point of projection at which they meet. [Solution: t = 3 5sec, s = 78 8m].

2After completing this chapter you should be able to

2After completing this chapter you should be able to After completing this chapter you should be able to solve problems involving motion in a straight line with constant acceleration model an object moving vertically under gravity understand distance time

More information

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE 1 P a g e Motion Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE If an object changes its position with respect to its surroundings with time, then it is called in motion. Rest If an object

More information

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to : Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

More information

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

More information

To define concepts such as distance, displacement, speed, velocity, and acceleration.

To define concepts such as distance, displacement, speed, velocity, and acceleration. Chapter 7 Kinematics of a particle Overview In kinematics we are concerned with describing a particle s motion without analysing what causes or changes that motion (forces). In this chapter we look at

More information

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight 1. What is the average speed of an object that travels 6.00 meters north in 2.00 seconds and then travels 3.00 meters east in 1.00 second? 9.00 m/s 3.00 m/s 0.333 m/s 4.24 m/s 2. What is the distance traveled

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

More information

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v = Scalar versus Vector Quantities Scalar Quantities Magnitude (size) 55 mph Speed Average Speed = distance (in meters) time (in seconds) Vector Quantities Magnitude (size) Direction 55 mph, North v = Dx

More information

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa. Newton s Laws Physics 1425 lecture 6 Michael Fowler, UVa. Newton Extended Galileo s Picture of Galileo said: Motion to Include Forces Natural horizontal motion is at constant velocity unless a force acts:

More information

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( ) Week 3 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Physics Kinematics Model

Physics Kinematics Model Physics Kinematics Model I. Overview Active Physics introduces the concept of average velocity and average acceleration. This unit supplements Active Physics by addressing the concept of instantaneous

More information

Speed, velocity and acceleration

Speed, velocity and acceleration Chapter Speed, velocity and acceleration Figure.1 What determines the maximum height that a pole-vaulter can reach? 1 In this chapter we look at moving bodies, how their speeds can be measured and how

More information

Chapter 3 Falling Objects and Projectile Motion

Chapter 3 Falling Objects and Projectile Motion Chapter 3 Falling Objects and Projectile Motion Gravity influences motion in a particular way. How does a dropped object behave?!does the object accelerate, or is the speed constant?!do two objects behave

More information

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

More information

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make

More information

2 ONE- DIMENSIONAL MOTION

2 ONE- DIMENSIONAL MOTION 2 ONE- DIMENSIONAL MOTION Chapter 2 One-Dimensional Motion Objectives After studying this chapter you should be able to derive and use formulae involving constant acceleration; be able to understand the

More information

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2.

Problem 12.33. s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2. ENPH 131 Assignment # Solutions Tutorial Problem (Rocket Height) A rocket, initially at rest on the ground, accelerates straight upward with a constant acceleration of 3. m s. The rocket accelerates for

More information

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4.

5. Unable to determine. 6. 4 m correct. 7. None of these. 8. 1 m. 9. 1 m. 10. 2 m. 1. 1 m/s. 2. None of these. 3. Unable to determine. 4. Version PREVIEW B One D Kine REVIEW burke (1111) 1 This print-out should have 34 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Jogging

More information

Freely Falling Objects

Freely Falling Objects Freely Falling Objects Physics 1425 Lecture 3 Michael Fowler, UVa. Today s Topics In the previous lecture, we analyzed onedimensional motion, defining displacement, velocity, and acceleration and finding

More information

Physics Section 3.2 Free Fall

Physics Section 3.2 Free Fall Physics Section 3.2 Free Fall Aristotle Aristotle taught that the substances making up the Earth were different from the substance making up the heavens. He also taught that dynamics (the branch of physics

More information

1 of 7 9/5/2009 6:12 PM

1 of 7 9/5/2009 6:12 PM 1 of 7 9/5/2009 6:12 PM Chapter 2 Homework Due: 9:00am on Tuesday, September 8, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

More information

Supplemental Questions

Supplemental Questions Supplemental Questions The fastest of all fishes is the sailfish. If a sailfish accelerates at a rate of 14 (km/hr)/sec [fwd] for 4.7 s from its initial velocity of 42 km/h [fwd], what is its final velocity?

More information

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

More information

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Calculus: Module 17. Motion in a straight line

Supporting Australian Mathematics Project. A guide for teachers Years 11 and 12. Calculus: Module 17. Motion in a straight line 1 Supporting Australian Mathematics Project 3 4 5 6 7 8 9 10 11 1 A guide for teachers Years 11 and 1 Calculus: Module 17 Motion in a straight line Motion in a straight line A guide for teachers (Years

More information

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo

MOTION DIAGRAMS. Revised 9/05-1 - LC, tlo MOTION DIAGRAMS When first applying kinematics (motion) principles, there is a tendency to use the wrong kinematics quantity - to inappropriately interchange quantities such as position, velocity, and

More information

1.3.1 Position, Distance and Displacement

1.3.1 Position, Distance and Displacement In the previous section, you have come across many examples of motion. You have learnt that to describe the motion of an object we must know its position at different points of time. The position of an

More information

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014

Lecture 07: Work and Kinetic Energy. Physics 2210 Fall Semester 2014 Lecture 07: Work and Kinetic Energy Physics 2210 Fall Semester 2014 Announcements Schedule next few weeks: 9/08 Unit 3 9/10 Unit 4 9/15 Unit 5 (guest lecturer) 9/17 Unit 6 (guest lecturer) 9/22 Unit 7,

More information

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion Conceptual Questions 1) Which of Newton's laws best explains why motorists should buckle-up? A) the first law

More information

Mechanics 1: Conservation of Energy and Momentum

Mechanics 1: Conservation of Energy and Momentum Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

More information

Review Chapters 2, 3, 4, 5

Review Chapters 2, 3, 4, 5 Review Chapters 2, 3, 4, 5 4) The gain in speed each second for a freely-falling object is about A) 0. B) 5 m/s. C) 10 m/s. D) 20 m/s. E) depends on the initial speed 9) Whirl a rock at the end of a string

More information

Acceleration Introduction: Objectives: Methods:

Acceleration Introduction: Objectives: Methods: Acceleration Introduction: Acceleration is defined as the rate of change of velocity with respect to time, thus the concepts of velocity also apply to acceleration. In the velocity-time graph, acceleration

More information

In order to describe motion you need to describe the following properties.

In order to describe motion you need to describe the following properties. Chapter 2 One Dimensional Kinematics How would you describe the following motion? Ex: random 1-D path speeding up and slowing down In order to describe motion you need to describe the following properties.

More information

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION

ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION ENGINEERING COUNCIL DYNAMICS OF MECHANICAL SYSTEMS D225 TUTORIAL 1 LINEAR AND ANGULAR DISPLACEMENT, VELOCITY AND ACCELERATION This tutorial covers pre-requisite material and should be skipped if you are

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Vector A has length 4 units and directed to the north. Vector B has length 9 units and is directed

More information

Gravitational Potential Energy

Gravitational Potential Energy Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

More information

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

More information

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam INSTRUCTIONS: Use a pencil #2 to fill your scantron. Write your code number and bubble it in under "EXAM NUMBER;" an entry

More information

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008

Catapult Engineering Pilot Workshop. LA Tech STEP 2007-2008 Catapult Engineering Pilot Workshop LA Tech STEP 2007-2008 Some Background Info Galileo Galilei (1564-1642) did experiments regarding Acceleration. He realized that the change in velocity of balls rolling

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

More information

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

Physics 11 Assignment KEY Dynamics Chapters 4 & 5 Physics Assignment KEY Dynamics Chapters 4 & 5 ote: for all dynamics problem-solving questions, draw appropriate free body diagrams and use the aforementioned problem-solving method.. Define the following

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM

http://www.webassign.net/v4cgikchowdary@evergreen/assignments/prev... 1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM HW1 due 6 pm Day 3 (Wed. Jul. 30) 2. Question Details OSColPhys1 2.P.042.Tutorial.WA. [2707433] Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 (a) The graph below plots the position versus time

More information

Tennessee State University

Tennessee State University Tennessee State University Dept. of Physics & Mathematics PHYS 2010 CF SU 2009 Name 30% Time is 2 hours. Cheating will give you an F-grade. Other instructions will be given in the Hall. MULTIPLE CHOICE.

More information

SQA CfE Higher Physics Unit 1: Our Dynamic Universe

SQA CfE Higher Physics Unit 1: Our Dynamic Universe SCHOLAR Study Guide SQA CfE Higher Physics Unit 1: Our Dynamic Universe Authored by: Ian Holton Previously authored by: Douglas Gavin John McCabe Andrew Tookey Campbell White Reviewed by: Grant McAllister

More information

GCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations

GCE. Physics A. Mark Scheme for January 2013. Advanced Subsidiary GCE Unit G481/01: Mechanics. Oxford Cambridge and RSA Examinations GCE Physics A Advanced Subsidiary GCE Unit G481/01: Mechanics Mark Scheme for January 2013 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing

More information

AP Physics C Fall Final Web Review

AP Physics C Fall Final Web Review Name: Class: _ Date: _ AP Physics C Fall Final Web Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. On a position versus time graph, the slope of

More information

WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

More information

B) 286 m C) 325 m D) 367 m Answer: B

B) 286 m C) 325 m D) 367 m Answer: B Practice Midterm 1 1) When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal velocity. This means that A) the acceleration is equal to g. B) the force of

More information

Experiment 2 Free Fall and Projectile Motion

Experiment 2 Free Fall and Projectile Motion Name Partner(s): Experiment 2 Free Fall and Projectile Motion Objectives Preparation Pre-Lab Learn how to solve projectile motion problems. Understand that the acceleration due to gravity is constant (9.8

More information

Practice TEST 2. Explain your reasoning

Practice TEST 2. Explain your reasoning Practice TEST 2 1. Imagine taking an elevator ride from the1 st floor to the 10 th floor of a building. While moving between the 1 st and 2 nd floors the elevator speeds up, but then moves at a constant

More information

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives

EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives EXPERIMENT 3 Analysis of a freely falling body Dependence of speed and position on time Objectives to verify how the distance of a freely-falling body varies with time to investigate whether the velocity

More information

Exam Three Momentum Concept Questions

Exam Three Momentum Concept Questions Exam Three Momentum Concept Questions Isolated Systems 4. A car accelerates from rest. In doing so the absolute value of the car's momentum changes by a certain amount and that of the Earth changes by:

More information

Uniformly Accelerated Motion

Uniformly Accelerated Motion Uniformly Accelerated Motion Under special circumstances, we can use a series of three equations to describe or predict movement V f = V i + at d = V i t + 1/2at 2 V f2 = V i2 + 2ad Most often, these equations

More information

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

More information

Chapter 7: Momentum and Impulse

Chapter 7: Momentum and Impulse Chapter 7: Momentum and Impulse 1. When a baseball bat hits the ball, the impulse delivered to the ball is increased by A. follow through on the swing. B. rapidly stopping the bat after impact. C. letting

More information

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20. Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving

More information

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. PHYS 117- Exam I Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Car A travels from milepost 343 to milepost 349 in 5 minutes. Car B travels

More information

Determination of Acceleration due to Gravity

Determination of Acceleration due to Gravity Experiment 2 24 Kuwait University Physics 105 Physics Department Determination of Acceleration due to Gravity Introduction In this experiment the acceleration due to gravity (g) is determined using two

More information

Chapter 10: Linear Kinematics of Human Movement

Chapter 10: Linear Kinematics of Human Movement Chapter 10: Linear Kinematics of Human Movement Basic Biomechanics, 4 th edition Susan J. Hall Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Objectives Discuss the interrelationship

More information

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions

Conceptual: 1, 3, 5, 6, 8, 16, 18, 19. Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65. Conceptual Questions Conceptual: 1, 3, 5, 6, 8, 16, 18, 19 Problems: 4, 6, 8, 11, 16, 20, 23, 27, 34, 41, 45, 56, 60, 65 Conceptual Questions 1. The magnetic field cannot be described as the magnetic force per unit charge

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

More information

Speed (a scalar quantity) is the distance travelled every second.

Speed (a scalar quantity) is the distance travelled every second. SCALAR and VECTOR QUANTITIES The following are some of the quantities you will meet in the Intermediate Physics course: DISTANCE, DISPLACEMENT, SPEED, VELOCITY, TIME, FORCE. Quantities can be divided into

More information

Web review - Ch 3 motion in two dimensions practice test

Web review - Ch 3 motion in two dimensions practice test Name: Class: _ Date: _ Web review - Ch 3 motion in two dimensions practice test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which type of quantity

More information

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion Objective In the experiment you will determine the cart acceleration, a, and the friction force, f, experimentally for

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 1 15 Reference Frames Relative and Velocities 1 151 Center of Mass Reference Frame 15 Relative Velocities 3 153 Characterizing Collisions 5 154 One-Dimensional

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

All About Motion - Displacement, Velocity and Acceleration

All About Motion - Displacement, Velocity and Acceleration All About Motion - Displacement, Velocity and Acceleration Program Synopsis 2008 20 minutes Teacher Notes: Ian Walter Dip App Chem; GDipEd Admin; TTTC This program explores vector and scalar quantities

More information

Chapter 3 Practice Test

Chapter 3 Practice Test Chapter 3 Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is a physical quantity that has both magnitude and direction?

More information

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces. Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion Physics is about forces and how the world around us reacts to these forces. Whats a force? Contact and non-contact forces. Whats a

More information

Newton s Laws Quiz Review

Newton s Laws Quiz Review Newton s Laws Quiz Review Name Hour To be properly prepared for this quiz you should be able to do the following: 1) state each of Newton s three laws of motion 2) pick out examples of the three laws from

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

More information

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph. Motion Graphs It is said that a picture is worth a thousand words. The same can be said for a graph. Once you learn to read the graphs of the motion of objects, you can tell at a glance if the object in

More information

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26 Physics 23 Exam 2 Spring 2010 Dr. Alward Page 1 1. A 250-N force is directed horizontally as shown to push a 29-kg box up an inclined plane at a constant speed. Determine the magnitude of the normal force,

More information

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide) 2012 WARD S Science v.11/12 OVERVIEW Students will measure

More information

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work. PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

More information

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

More information

Downloaded from www.studiestoday.com

Downloaded from www.studiestoday.com Class XI Physics Ch. 4: Motion in a Plane NCERT Solutions Page 85 Question 4.1: State, for each of the following physical quantities, if it is a scalar or a vector: Volume, mass, speed, acceleration, density,

More information

Acceleration due to Gravity

Acceleration due to Gravity Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

More information

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

More information

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables.

Vectors. Objectives. Assessment. Assessment. Equations. Physics terms 5/15/14. State the definition and give examples of vector and scalar variables. Vectors Objectives State the definition and give examples of vector and scalar variables. Analyze and describe position and movement in two dimensions using graphs and Cartesian coordinates. Organize and

More information

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other. PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

More information

Projectile Motion 1:Horizontally Launched Projectiles

Projectile Motion 1:Horizontally Launched Projectiles A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched Projectiles Two

More information

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm

Projectile motion simulator. http://www.walter-fendt.de/ph11e/projectile.htm More Chapter 3 Projectile motion simulator http://www.walter-fendt.de/ph11e/projectile.htm The equations of motion for constant acceleration from chapter 2 are valid separately for both motion in the x

More information

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Introduction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. Eighth E CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental

More information

Calculating average acceleration from velocity change and time

Calculating average acceleration from velocity change and time Calculating average acceleration from velocity change and time Acceleration is a measure of how rapidly the velocity is changing. Since we define average acceleration, a av or a av, as the change in velocity

More information

Answer the questions in this problem using words from the following list:

Answer the questions in this problem using words from the following list: Chapter Solutions Kinematic Vocabulary One of the difficulties in studying mechanics is that many common words are used with highly specific technical meanings, among them velocity, acceleratio n, position,

More information

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003

TEACHER ANSWER KEY November 12, 2003. Phys - Vectors 11-13-2003 Phys - Vectors 11-13-2003 TEACHER ANSWER KEY November 12, 2003 5 1. A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 28] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs

Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Worksheet for Exploration 2.1: Compare Position vs. Time and Velocity vs. Time Graphs Shown are three different animations, each with three toy monster trucks moving to the right. Two ways to describe

More information

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points) Physics 248 Test 1 Solution (solutions to problems 25 are from student papers) Problem 1 (Short Answer: 2 points) An object's motion is restricted to one dimension along the distance axis. Answer each

More information

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N) Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

More information

1. Mass, Force and Gravity

1. Mass, Force and Gravity STE Physics Intro Name 1. Mass, Force and Gravity Before attempting to understand force, we need to look at mass and acceleration. a) What does mass measure? The quantity of matter(atoms) b) What is the

More information

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion

Lecture L2 - Degrees of Freedom and Constraints, Rectilinear Motion S. Widnall 6.07 Dynamics Fall 009 Version.0 Lecture L - Degrees of Freedom and Constraints, Rectilinear Motion Degrees of Freedom Degrees of freedom refers to the number of independent spatial coordinates

More information

3600 s 1 h. 24 h 1 day. 1 day

3600 s 1 h. 24 h 1 day. 1 day Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

Graphing Motion. Every Picture Tells A Story

Graphing Motion. Every Picture Tells A Story Graphing Motion Every Picture Tells A Story Read and interpret motion graphs Construct and draw motion graphs Determine speed, velocity and accleration from motion graphs If you make a graph by hand it

More information

PHY121 #8 Midterm I 3.06.2013

PHY121 #8 Midterm I 3.06.2013 PHY11 #8 Midterm I 3.06.013 AP Physics- Newton s Laws AP Exam Multiple Choice Questions #1 #4 1. When the frictionless system shown above is accelerated by an applied force of magnitude F, the tension

More information

Review Assessment: Lec 02 Quiz

Review Assessment: Lec 02 Quiz COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

More information