New power semiconductor technologies challenge assembly and system setups

Size: px
Start display at page:

Download "New power semiconductor technologies challenge assembly and system setups"

Transcription

1 New power semiconductor technologies challenge assembly and system setups Rich Pell - April 16, 2012 The increase of power density and performance at simultaneously decreasing cost is a constant trend in the power semiconductors world. It is widely accepted that this trend will continue into the foreseeable future, especially with new semiconductor materials. Silicon (Si), and such new materials as silicon carbide (SiC) and gallium nitride (GaN) devices aim for higher current densities that require higher operating temperatures of up to 200 C and above. Today's assembly technologies, however, cannot cope with the much higher load and temperature cycling capabilities. Another trend common to all of the materials is to switch faster to reduce losses and increase current capability. A tremendous potential of achieving approximately 7x lower switching losses lies in this direction. This article will look at the challenges to assembly and system setups with respect to low inductive interconnect technology. Basic power principles The driving force behind increased power density and performance at a lower cost originated from the semiconductor side of the equation, with the challenge of further innovation posed to, and a respective response from, package and assembly technologies. New system setups resulted, delivering new capabilities at ever shrinking volume and power losses. This looks similar to a basic principle, which has its correspondence in the universe entropy. There is only the way of growing entropy in a closed system: E. (1) In a not very strong scientific sense, this is also true for power semiconductors: Where: p/c (2) p = performance (with respect to advantage in terms of money) c = device cost At each step in performance there is an application where the step represents an advantage in a system and also in terms of money. If this performance improvement implicates higher cost, then the advantage has to compensate for the expense. Another alternative is only to reduce cost at everconstant performance this, however, results in stagnation and can be sustained only for a time.

2 The power devices shrink path Following this principle the power semiconductors experienced a very strong reduction in size and volume at ever-invariant current and voltage capabilities per device (See Figure 1.) Figure 1. On-state losses of 1200V-75A IGBT generations at constant switched power [1] Today, insulated gate bipolar transistors (IGBTs) are working for the same 1200V/75A and switching 100kW just as the first generation IGBT did, but doing so on two-fifths of the area previously required. A much greater shrink was possible with unipolar devices (See Figure 2.). Since 1993, 600V MOSFETs experienced a reduction by a factor of 10 in specific R on *A, which means that for the same R on a tenth of the previously used active area is used today. Figure 2. Active area-specific R on *A of 600 V MOSFET generations [2] This performance improvement was possible with silicon by applying increasingly better compensation technologies, and was true for unipolar and bipolar devices as well. This will be shown in the next section.

3 PHYSICAL MATERIAL CHALLENGES AND SOLUTIONS The compensation principle--mosfet bipolar devices In a normal power MOSFET with vertical current flow, on resistance is primarily determined by the MOSFET's blocking voltage and the doping and thickness of its drain region. From this dependency a simple relation with R on can be deduced [3]: R on ~ Vbr 2,5 (3) This means that for a given blocking voltage, a limit in R on naturally occurs. This limit is true for all materials at material-inherent levels. As long as there is homogenous doping in the material this relation describes the reality that for many years has not been overcome. However, as soon as there are doping concentrations distributed in columns of alternating n and p doping, which are close enough to each other to compensate by the respective depletion layer at increasing voltages below the critical breakdown field, then the relation changes to a pure proportionality: R on ~ Vbr. (4) The compensation principle is shown in Figure 3 for a CoolMOS device [4]. Figure 3. Compensation principle in CoolMOS device: On-state, the higher doped columns act as a 'short' across the drift region; Off-state, with applied VDS, the space charge region extends across the entire epi-layer => no free carriers => high breakdown voltage. In the on state the highly doped n-columns act as a very low-ohmic conductor, in the off state the paralleled n- and p-doped columns are fully depleted and the volume acts as an intrinsic (when p- and n-charges are equal) region with a rectangular field curve. The two relations (3) and (4) are shown as the solid and dotted border lines in Figure 4, together with real existing devices for Si-, SiC-, GaN-MOSFETs, and bipolar IGBTs (at rated current).

4 Figure 4. R on *A relation with designed blocking voltage of Si-, SiC- and GaN-MOSFET and JFET devices as well as for bipolar IGBT device (at rated current). What can be observed is that the relation (4) is roughly valid for all compensation devices. In that sense, the bipolar IGBT is also counted as a compensation device, as shown in the on state, holes and electrons are ideally compensated in the plasma. The solid (red) limit line for Si devices in Figure 4 is clearly overcome by CoolMOS and low-voltage MOSFETs (SFET devices), but also by IGBTs that follow straight to the dashed (red) limit line of 16µm pitch devices. Given SiC devices, the green limit line represents a shift by a constant factor of the Si line. Existing SiC JFET devices are still a factor of 5 from the limit, showing their potential even without compensation, and newly reported (lateral) GaN devices are even further away from the ideal computed limit of lateral devices (solid blue line). New materials challenges Using Figures 1 and 2 combined with the above discussion, it can easily be deduced that the shrink path of semiconductor power devices has been in place for a long time and, even with Si-devices, this path will continue be followed (Nakagawa line [6], and solid brown in Figure 4). With increasingly higher current densities in Si and even more in SiC or GaN devices, 200 A/cm 2 for 1200V Si, double or 3x with SiC, and even higher with GaN, problems are growing faster than they can be handled with existing assembly and interconnect technologies. These problems include: Low impedance interconnects (ohmic and inductive) Higher thermal resistance and lower thermal capacitance per chip demanding higher chiptemperature and better thermal interconnects

5 The need to handle higher current densities per package The same heat flow coming from smaller footprints to be removed into the ambient environment Improved semiconductor capabilities could be used for lower dissipated power to the ambient, however this path is, was, and will be followed given that Formula (2) is valid in this world. SHRINKING DEVICES PACKAGES Shrink path of packages During the past 25 years, several package standards for high-power bipolar switches were created, most importantly the 34-mm and 62-mm standards. The first attempts were with 2x 50A switches within the 34-mm standard and 2x150A for 62mm. Next steps with new chip generations involved the increase of current in existing packages. This path is shown in Figure 5, with questions shown as to future prospects. Figure 5. Possible power Output of an Inverter using V 62 mm half-bridge modules over the years. Another way of shrinking is to reduce package size and implement the same current into the smaller footprint as shown in Figure 6.

6 Figure 6. Shrink path of modules with same current (power output) in a smaller footprints. Thermal conditions improvement Given the chip and package miniaturization, an improvement in the thermal conditions was always an active guideline when using the smallest possible footprint. The higher current capability of the semiconductors connected with lower losses (on-state and switching) does not fully compensate for this. Several attempts were made in the past to create packages to ensure the full current capability of the chips, including: The use of isolation materials with better TCs, Using thinner isolation materials (fulfilling the save isolation needs) Fluid cooling (water, water shower, heat pipe) Connecting a cooler directly to DBC Using 2-side cooling Employing better interconnect technology Exploiting current at higher chip operating temperatures All of these methods are already in use today, however all of them have constraints and cannot be implemented in all applications. Several can be developed to ensure better performance in the future. The higher chip operating temperature Tjop is a promising path to achieve higher output power with smaller chips. This concept was discussed in a keynote presentation at PCIM'08 [7]. The capability in an air-cooled system for an existing package is shown in Figure 7. Without any change in interconnect technologies, an increase in Tjop from 150 C to 200 C enables a 40% increase in power dissipation and thus in output power.

7 Figure 7. Potential of higher-power density with higher Tjop in an air-cooled system (EconoPACK). This higher Tjop can be reached with Si Chips already and it is even easier with new SiC material, however a restriction is the power cycle lifetime of interconnects [7]. The earlier in the process the temperature swing takes place, bond wires interrupt the connection. A Tjop increase from 150 to 200 C would mean an improvement in cycling capability of the system by a factor of 10. New interconnect technology on the top and back of chips is required to reach this improvement [7]. Low-impedance connections The higher the current density in chips, the higher the current per bond wire and the greater the problems with cycling capability and with di/dt in the resulting parasitic inductance. Of course one can use more wires as long if there is sufficient room to place them, however this limit is easily reached, especially at lower voltage classes. In higher voltage classes, the problem with high inductive connections and especially high stray inductance in the system, is that they lead to severe voltage overshoot and oscillations such as those shown in Figure 8. Figure 8. IGBT turn-on and the impact of parasitic inductance on reverse recovery in a 1200A/3 3kV module using a diode with low tail charge.

8 High inductance drives higher overshoot voltage with a deeper reach into the plasma zone of the diode and removing charge too early, which is missing afterwards in the tail phase leading to high voltage overshoot and strong oscillations. Using a diode with higher tail charge helps, but this will increase losses, as shown in Figure 9 where losses are doubling. Figure 9. IGBT turn-on: Compensating high stray inductance with high diode tail charge whereby the losses are doubling (lower pink line). Of course, it is always possible to reduce oscillations by having slower switching devices with high tail charge, high Miller capacitance, and large gate resistors, etc. All of these measures lead to higher losses in the device, making the problem of removing heat from the semiconductor even more difficult. During turn-off the stray-inductance provides a high voltage overshoot along the switching device as shown in Figure 10. Figure 10. IGBT turn-off under different parasitic inductance (3.3kV/1200A-module). Overshoot voltage limits usable voltage region and increases losses. Overshoot voltage limits the usable operating voltage, which is normally compensated for by using a higher voltage class of devices, which leads to higher cost and higher losses. Using a negative

9 feedback loop helps to keep better control of oscillations and overshoot, however in most cases it also accounts for increased loss. The only and best way to reduce losses and oscillations under all operating conditions is to reduce stray inductance on much lower levels as in today's common modules and system setups. Switching improvements The need for modules and system setups with substantially lower impedance is a result of new generations of Si devices spanning all voltage classes. Of course, the combination of low voltage and high current requirements creates even greater pressure for low inductive module and system setups. This is especially true in such applications as hybrid and full electric car inverter setups with DC-link voltages up to 450 V and max currents in the region of 600 Amperes. In this case, the blocking voltage of a 600 V device is rapidly reached if the module and system setup is not designed so that stray inductance is below 25 nh (switching 600A in 100ns still produces a 150V peak). Again, a solution is to use higher-blocking devices and/or slower switching with a resulting price tag of increased stationary and dynamic losses. Tremendous improvement in turn-on losses and voltage overshoot may be achieved by using SiC diodes in the place of bipolar diodes. The reverse recovery charge is reduced to only a very small capacitive charge of the depletion layer of the diode, resulting in a reduction of turn-on losses (in the IGBT and diode) as shown in Figure 11. Figure 11. Comparison of simulated total switching losses of 1200V / 150A IGBTs with varied stray inductance for standard IGBT with Si-pn-diode (left group, blue bar), standard IGBT with SiC Diode (left group, purple) and with a future fast switching hypothetical IGBT with SiC diode (left group, light yellow). In this figure a switching loss comparison (Eon+Eoff) is simulated for a standard device combination of IGBT + bipolar diode, shown in the left group, blue bar), with a pair of IGBT + SiC diode, left group, purple bar, based on a 1200V/150A device with a 100 nh total stray inductance (corresponding to the 25 nh for current in a region of 600 A). The 20% reduction in total loss comes

10 from lower turn-on losses given the missing reverse recovery charge in a SiC diode (Also see [8]). In the Figure 11 configuration, the IGBT can be optimized much better for fast switching (at constant Vcesat) turn-on and turn-off, which is shown for a hypothetic device by the light yellow bar in the left group of Figure 11, resulting in 40% of total loss of the standard. These losses can be further reduced with smaller stray inductances in conjunction with a surplus vertical device optimization (OVS), resulting in less stored charge with another 40% loss reduction. At such low stray inductances of 50 nh for 150A, which corresponds to 7.5 nh for 1000A, it is no longer necessary to use a 1200V-blocking device for an application with a max DC-link voltage of 800V. If the device is constructed for a blocking voltage of only 1000V, losses can be reduced again by a surplus 40%, with a potential of reducing the switching losses by a factor of more than seven. Figure 12. Turn-off waveforms of simulated IGBT diode combination of Figure 11 showing the potential of optimization for fast switching with very low stray inductance. All of these optimizations can fully exploit the potential of such SiC active switches as JFET or MOSFET, or eventually GaN devices, always keeping in mind Formula (2). Outlook As previously discussed, the potential of such new semiconductor materials as SiC or GaN provide faster switching and very low R on *A capability with no threshold for IGBT and bipolar diodes. While they also provide an advantage in higher temperature capabilities, this is unfortunately still unusable, as there is no assembly technology available to fully exploit a 200 C capability of Si or a higher temperature capability of SiC or GaN.

11 To take full advantage of the improved electrical properties requires thermal and electrical assembly technologies that feature very low stray inductances with a 10x to 20x better load-cycling capability at a higher temperature swing. This same improvement path is also necessary for future Si devices. A great advantage can be gained using an integrated diode in a SiC JFET configuration with same performance as a SiC Schottky diode. This configuration would allows SiC to soon penetrate applications where Formula (2) pays off earlier, whereby higher usable current density can be used for a smaller module footprint, leading to higher power output in special applications. Acknowledgements This work took advantage of many measurements and simulations run in industrial and multimarket groups within Infineon Technologies. Especially I would like to gratefully acknowledge many enlightening discussions with F. Pfirsch and T. Raker on their simulations, and with R. Bayerer on the future prospects of assembly and packaging technology. About the Author: Dr. Gerhard Miller has been Head of Technology & Innovations Power in the Industrial and Multimarket Division at Infineon since 2008 and is responsible for SiC and IGBT/Diode technologies. Miller studied electrical engineering, specializing in electrical and semiconductor physics at the TU Munich. Dr. Miller is also involved in several fundamental patents and publications. References: [1] T.Laska, G.Miller et al: Short Circuit Properties of Trench-/Field-Stop-IGBTs - Design Aspects for a Superior Robustness, IEDM'03, Cambridge; and internal communication [2] G. Miller: Future Trends in High Power Semiconductors, ECPE workshop on "Research Challenges and Visions on Megawatt Power Electronics and Smart Grids', March 5th-6th, 2009, Zu rich, Switzerland [3] B.J. Baliga: Power Semiconductor Devices, PWS Publishing Company, 1995, p. 373 [4] A. Schlögl, G. Deboy et.al.: Properties of the New Compensation Devices (CoolMOS) between 420K and 80K the Ideal Device for Cryogenic Applications; ISPSD'99 [5] G. Miller: Panel discussion on future of power devices, ISPSD'05 Santa Barbara, USA [6] Nakagawa : Theoretical investigation of silicon limit characteristics of IGBT, ISPSD'06, Naples, s. 1-2 [7] R. Bayerer: Higher Junction Temperature in Power Modules a demand from hybrid cars, a potential for the next step increase in power density for various Variable Speed Drives, PCIM'08 Nuremberg [8] F. Pfirsch: Idealer Leistungsschalter unter dem Aspekt beliebig verkleinerbarer Streuinduktivitäten; 35. Kolloquium Halbleiter-Leistungs-Bauelemente und ihre systemtechnische Anwendung, Freiburg Okt 2006

3.3 kv IGBT Modules. Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi. 1. Introduction. 2. Specifications of 3.3 kv IGBT Module

3.3 kv IGBT Modules. Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi. 1. Introduction. 2. Specifications of 3.3 kv IGBT Module 3.3 kv IGBT Modules Takeharu Koga Yasuhiko Arita Takatoshi Kobayashi A B S T R A C T Fuji Electric has developed a 3.3 kv-1.2 ka IGBT module in response to market needs for inverters suitable for industrial

More information

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology

1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology 1700V Bi-Mode Insulated Gate Transistor (BIGT) on Thin Wafer Technology Munaf Rahimo, Jan Vobecky, Chiara Corvasce ISPS, September 2010, Prague, Czech Republic Copyright [2010] IEEE. Reprinted from the

More information

ST SiC MOSFET Evolution in Power Electronics

ST SiC MOSFET Evolution in Power Electronics ST SiC MOSFET Evolution in Power Electronics Simone Buonomo Market & Application Development Manager Power Transistor Division simone.buonomo@st.com Power Transistor Division Agenda 2 SiC MOSFET Time Speaker

More information

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family

1ED Compact A new high performance, cost efficient, high voltage gate driver IC family 1ED Compact A new high performance, cost efficient, high voltage gate driver IC family Heiko Rettinger, Infineon Technologies AG, Am Campeon 1-12, 85579 Neubiberg, Germany, heiko.rettinger@infineon.com

More information

A new SOI Single Chip Inverter IC implemented into a newly designed SMD package

A new SOI Single Chip Inverter IC implemented into a newly designed SMD package A new SOI Single Chip Inverter IC implemented into a newly designed SMD package Kiyoto Watabe**, Marco Honsberg*, Hatade Kazunari** and Toru Araki** **Mitsubishi Electric Corp., Power Device Works, 1-1-1,

More information

I. INTRODUCTION II. MOSFET FAILURE MODES IN ZVS OPERATION

I. INTRODUCTION II. MOSFET FAILURE MODES IN ZVS OPERATION MOSFET Failure Modes in the Zero-Voltage-Switched Full-Bridge Switching Mode Power Supply Applications Alexander Fiel and Thomas Wu International Rectifier Applications Department El Segundo, CA 9045,

More information

Application Note AN-1070

Application Note AN-1070 Application Note AN-1070 Class D Audio Amplifier Performance Relationship to MOSFET Parameters By Jorge Cerezo, International Rectifier Table of Contents Page Abstract... 2 Introduction... 2 Key MOSFET

More information

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications White paper High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications Written by: C. R. Swartz Principal Engineer, Picor Semiconductor

More information

Eliminating Parasitic Oscillation between Parallel MOSFETs

Eliminating Parasitic Oscillation between Parallel MOSFETs Eliminating Parasitic Oscillation between Parallel MOSFETs Based in part on a paper presented at Power Electronics Technology 2003 conference titled Issues with Paralleling MOSFETs and IGBTs by Jonathan

More information

Application Note AN-983

Application Note AN-983 Application Note AN-983 IGBT Characteristics Table of Contents 1. How the IGBT complements the power MOSFET... 2 Page 2. Silicon structure and equivalent circuit... 2 3. Conduction characteristics... 4

More information

CAR IGNITION WITH IGBTS

CAR IGNITION WITH IGBTS APPLICATION NOTE CAR IGNITION WITH IGBTS by M. Melito ABSTRACT IGBTs are used in a variety of switching applications thanks to their attractive characteristics, particularly their peak current capability,

More information

Application Note, V1.0, 2008 AN2008-03. Thermal equivalent circuit models. replaces AN2001-05. Industrial Power

Application Note, V1.0, 2008 AN2008-03. Thermal equivalent circuit models. replaces AN2001-05. Industrial Power Application Note, V1.0, 2008 AN2008-03 Thermal equivalent circuit models replaces AN2001-05 Industrial Power Edition 2008-06-16 Published by Infineon Technologies AG 59568 Warstein, Germany Infineon Technologies

More information

Power MOSFET Basics Abdus Sattar, IXYS Corporation

Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFET Basics Abdus Sattar, IXYS Corporation Power MOSFETs have become the standard choice for the main switching devices in a broad range of power conversion applications. They are majority carrier

More information

Features. Symbol JEDEC TO-220AB

Features. Symbol JEDEC TO-220AB Data Sheet June 1999 File Number 2253.2 3A, 5V,.4 Ohm, N-Channel Power MOSFET This is an N-Channel enhancement mode silicon gate power field effect transistor designed for applications such as switching

More information

New High Current MOSFET Module Offers 177 µω R DS(on)

New High Current MOSFET Module Offers 177 µω R DS(on) ew High Current Offers 177 µω R D(on) By William C. Kephart, Eric R. Motto Application Engineering owerex Incorporated Abstract This paper describes a new family of high current modules optimized for industrial

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,

More information

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings PD - 90337G REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) Product Summary Part Number BVDSS RDS(on) ID IRF150 100V 0.055Ω 38A IRF150 JANTX2N6764 JANTXV2N6764 [REF:MIL-PRF-19500/543]

More information

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs by B. Maurice, L. Wuidart 1. INTRODUCTION Unlike the bipolar transistor, which is current driven, Power MOSFETs, with their insulated gates, are voltage driven.

More information

Current Limiting Power Resistors for High-Power LED Module Lighting Applications

Current Limiting Power Resistors for High-Power LED Module Lighting Applications Current Limiting Power Resistors for High-Power LED Module Lighting Applications PWR263 An ongoing trend toward miniaturization of virtually all electronics is accompanied by the demand for a reduction

More information

Yrd. Doç. Dr. Aytaç Gören

Yrd. Doç. Dr. Aytaç Gören H2 - AC to DC Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits W04 Transistors and Applications (H-Bridge) W05 Op Amps

More information

Zero voltage drop synthetic rectifier

Zero voltage drop synthetic rectifier Zero voltage drop synthetic rectifier Vratislav Michal Brno University of Technology, Dpt of Theoretical and Experimental Electrical Engineering Kolejní 4/2904, 612 00 Brno Czech Republic vratislav.michal@gmail.com,

More information

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet

GS66516T Top-side cooled 650 V E-mode GaN transistor Preliminary Datasheet Features 650 V enhancement mode power switch Top-side cooled configuration R DS(on) = 25 mω I DS(max) = 60 A Ultra-low FOM Island Technology die Low inductance GaNPX package Easy gate drive requirements

More information

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters. Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters. Alexander Isurin ( sashai@vanner.com ) Alexander Cook (alecc@vanner.com ) Vanner inc. USA Abstract- This

More information

O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n

O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n V2.4. May 2012 O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n IFAT PMM APS SE DS Mößlacher Christian Guillemant Olivier Edition 2011-02-02 Published by

More information

Understanding Diode Reverse Recovery and its Effect on Switching Losses

Understanding Diode Reverse Recovery and its Effect on Switching Losses Understanding Diode Reverse Recovery and its Effect on Switching Losses Peter Haaf, Senior Field Applications Engineer, and Jon Harper, Market Development Manager, Fairchild Semiconductor Europe Abstract

More information

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers

Design and Applications of HCPL-3020 and HCPL-0302 Gate Drive Optocouplers Design and Applications of HCPL-00 and HCPL-00 Gate Drive Optocouplers Application Note 00 Introduction The HCPL-00 (DIP-) and HCPL-00 (SO-) consist of GaAsP LED optically coupled to an integrated circuit

More information

Diodes and Transistors

Diodes and Transistors Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)

More information

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor Type IPD36N4L G OptiMOS 3 Power-Transistor Features Fast switching MOSFET for SMPS Optimized technology for DC/DC converters Qualified according to JEDEC ) for target applications Product Summary V DS

More information

Advantages of SiC MOSFETs in Power Applications

Advantages of SiC MOSFETs in Power Applications Advantages of SiC MOSFETs in Power Applications Power Forum, Bologna September 18 th, 2014 Pascal Ducluzeau Product Marketing Director Microsemi Power Module Products pducluzeau@microsemi.com Topics Advantages

More information

Influence of Short Circuit conditions on IGBT Short circuit current in motor drives

Influence of Short Circuit conditions on IGBT Short circuit current in motor drives Influence of Short Circuit conditions on IGBT Short circuit current in motor drives Vijay Bolloju, IGBT Applications Manager, International Rectifier, El Segundo, CA USA Jun Yang IGBT Applications Engineer,

More information

Application Note AN-11001

Application Note AN-11001 Application ote A-00 Revision: Issue Date: repared by: 04 0-09-03 Ingo Staudt Key Words: 3L, C, TC, C, MC, Multilevel, Loss Calculation, SemiSel 3L C & TC Topology General... Difference L 3L... Switching

More information

J. S c h o i s wo h l

J. S c h o i s wo h l Linear Mode Operation and Safe Operating Diagram of Power-MOSFETs J. S c h o i s wo h l Application Note V0.92 June 2010 IFNA IMM SMD PMD Published by Infineon Technologies AG 81726 Munich, Germany 2011

More information

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager

Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Transformerless UPS systems and the 9900 By: John Steele, EIT Engineering Manager Introduction There is a growing trend in the UPS industry to create a highly efficient, more lightweight and smaller UPS

More information

Design Considerations to Increase Power Density in Welding Machines Converters Using TRENCHSTOP 5 IGBT

Design Considerations to Increase Power Density in Welding Machines Converters Using TRENCHSTOP 5 IGBT Design Considerations to Increase Power Density in Welding Machines Converters Using TRENCHSTOP 5 IGBT Fabio Brucchi (*), Forrest Zheng (**) (*) Infineon Technologies Austria AG, Siemensstrasse 2, 9500

More information

Power MOSFET Tutorial

Power MOSFET Tutorial Power MOSFET Tutorial Jonathan Dodge, P.E. Applications Engineering Manager Advanced Power Technology 405 S.W. Columbia Street Bend, OR 97702 Introduction Power MOSFETs are well known for superior switching

More information

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET. IRF510PbF SiHF510-E3 IRF510 SiHF510. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) () = 0.54 Q g max. (nc) 8.3 Q gs (nc) 2.3 Q gd (nc) 3.8 Configuration Single D TO220AB G FEATURES Dynamic dv/dt rating Available Repetitive avalanche rated

More information

Line Reactors and AC Drives

Line Reactors and AC Drives Line Reactors and AC Drives Rockwell Automation Mequon Wisconsin Quite often, line and load reactors are installed on AC drives without a solid understanding of why or what the positive and negative consequences

More information

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light generation from a semiconductor material, LED chip technology,

More information

High Voltage Silicon Carbide Power Devices

High Voltage Silicon Carbide Power Devices High Voltage Silicon Carbide Power Devices ARPA-E Power Technologies Workshop February 9, 2010 John W. Palmour Cree, Inc. 4600 Silicon Drive Durham, NC 27703; USA Tel:: 919-313-5646 Email: john_palmour@cree.com

More information

EMI in Electric Vehicles

EMI in Electric Vehicles EMI in Electric Vehicles S. Guttowski, S. Weber, E. Hoene, W. John, H. Reichl Fraunhofer Institute for Reliability and Microintegration Gustav-Meyer-Allee 25, 13355 Berlin, Germany Phone: ++49(0)3046403144,

More information

2SD315AI Dual SCALE Driver Core for IGBTs and Power MOSFETs

2SD315AI Dual SCALE Driver Core for IGBTs and Power MOSFETs 2SD315AI Dual SCALE Driver Core for IGBTs and Power MOSFETs Description The SCALE drivers from CONCEPT are based on a chip set that was developed specifically for the reliable driving and safe operation

More information

Insulated Gate Bipolar Transistor (IGBT) Basics Abdus Sattar, IXYS Corporation 1 IXAN0063

Insulated Gate Bipolar Transistor (IGBT) Basics Abdus Sattar, IXYS Corporation 1 IXAN0063 Abdus Sattar, IXYS Corporation 1 This application note describes the basic characteristics and operating performance of IGBTs. It is intended to give the reader a thorough background on the device technology

More information

IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays

IEC 1000-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays IEC 00-4-2 ESD Immunity and Transient Current Capability for the SP72X Series Protection Arrays Application Note July 1999 AN9612.2 Author: Wayne Austin The SP720, SP721, SP723, and SP724 are protection

More information

New Low Loss High-Power Thyristors for Industrial Applications

New Low Loss High-Power Thyristors for Industrial Applications New Low Loss High-Power Thyristors for Industrial Applications Though one of the oldest semiconductor devices ever, the thyristor maintains a significant market share. This is because of its attractive

More information

Chapter 4. LLC Resonant Converter

Chapter 4. LLC Resonant Converter Chapter 4 LLC Resonant Converter 4.1 Introduction In previous chapters, the trends and technical challenges for front end DC/DC converter were discussed. High power density, high efficiency and high power

More information

IXAN0052 IXAN0052. New Power Electronic Components for Materials Handling Drive. Systems. Andreas Lindemann. IXYS Semiconductor GmbH

IXAN0052 IXAN0052. New Power Electronic Components for Materials Handling Drive. Systems. Andreas Lindemann. IXYS Semiconductor GmbH New Power Electronic Components for Materials Handling Drive Systems Andreas Lindemann IXYS Semiconductor GmbH Postfach 1180, D { 68619 Lampertheim www.ixys.net There is a variety of drives in lift trucks

More information

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY)

Application Notes FREQUENCY LINEAR TUNING VARACTORS FREQUENCY LINEAR TUNING VARACTORS THE DEFINITION OF S (RELATIVE SENSITIVITY) FREQUENY LINEAR TUNING VARATORS FREQUENY LINEAR TUNING VARATORS For several decades variable capacitance diodes (varactors) have been used as tuning capacitors in high frequency circuits. Most of these

More information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information

BUZ11. 30A, 50V, 0.040 Ohm, N-Channel Power MOSFET. Features. [ /Title (BUZ1 1) /Subject. (30A, 50V, 0.040 Ohm, N- Channel. Ordering Information Data Sheet June 1999 File Number 2253.2 [ /Title (BUZ1 1) /Subject (3A, 5V,.4 Ohm, N- Channel Power MOS- FET) /Autho r () /Keywords (Intersil Corporation, N- Channel Power MOS- FET, TO- 22AB ) /Creator

More information

OptiMOS Power-Transistor Product Summary

OptiMOS Power-Transistor Product Summary OptiMOS Power-Transistor Product Summary V DS 55 V R DS(on),max 4) 35 mω Features Dual N-channel Logic Level - Enhancement mode AEC Q11 qualified I D 2 A PG-TDSON-8-4 MSL1 up to 26 C peak reflow 175 C

More information

STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT

STGW40NC60V N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT N-CHANNEL 50A - 600V - TO-247 Very Fast PowerMESH IGBT Table 1: General Features STGW40NC60V 600 V < 2.5 V 50 A HIGH CURRENT CAPABILITY HIGH FREQUENCY OPERATION UP TO 50 KHz LOSSES INCLUDE DIODE RECOVERY

More information

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C

Power MOSFET FEATURES. IRFZ44PbF SiHFZ44-E3 IRFZ44 SiHFZ44 T C = 25 C Power MOSFET PRODUCT SUMMARY (V) 60 R DS(on) (Ω) V GS = 10 V 0.028 Q g (Max.) (nc) 67 Q gs (nc) 18 Q gd (nc) 25 Configuration Single FEATURES Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching

More information

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF610PbF SiHF610-E3 IRF610 SiHF610. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 200 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 00 R DS(on) ( ) = 1.5 Q g (Max.) (nc) 8. Q gs (nc) 1.8 Q gd (nc) 4.5 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

More information

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540

Power MOSFET FEATURES. IRL540PbF SiHL540-E3 IRL540 SiHL540 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) (Ω) = 5.0 V 0.077 Q g (Max.) (nc) 64 Q gs (nc) 9.4 Q gd (nc) 27 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel

More information

N-channel enhancement mode TrenchMOS transistor

N-channel enhancement mode TrenchMOS transistor FEATURES SYMBOL QUICK REFERENCE DATA Trench technology d V DSS = V Low on-state resistance Fast switching I D = A High thermal cycling performance Low thermal resistance R DS(ON) mω (V GS = V) g s R DS(ON)

More information

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF740PbF SiHF740-E3 IRF740 SiHF740. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 400 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 400 R DS(on) (Ω) = 0.55 Q g (Max.) (nc) 63 Q gs (nc) 9.0 Q gd (nc) 3 Configuration Single FEATURES Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of

More information

200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370

200V, N-CHANNEL. Absolute Maximum Ratings. Features: www.irf.com 1 PD - 90370 PD - 90370 REPETITIVE AVALANCHE AND dv/dt RATED HEXFET TRANSISTORS THRU-HOLE (TO-204AA/AE) IRF240 200V, N-CHANNEL Product Summary Part Number BVDSS RDS(on) ID IRF240 200V 0.18Ω 18A The HEXFET technology

More information

IRF510. 5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002

IRF510. 5.6A, 100V, 0.540 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002 IRF5 Data Sheet January 22 5.6A, V,.5 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed

More information

Introduction to Power Supplies

Introduction to Power Supplies Introduction to Power Supplies INTRODUCTION Virtually every piece of electronic equipment e g computers and their peripherals calculators TV and hi-fi equipment and instruments is powered from a DC power

More information

Objectives 200 CHAPTER 4 RESISTANCE

Objectives 200 CHAPTER 4 RESISTANCE Objectives Explain the differences among conductors, insulators, and semiconductors. Define electrical resistance. Solve problems using resistance, voltage, and current. Describe a material that obeys

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) l Advanced Process Technology l Ultra Low On-Resistance l Dynamic dv/dt Rating l 75 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Optimized for SMPS Applications Description Advanced

More information

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs

AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs APPLICATION NOTE AN ISOLATED GATE DRIVE FOR POWER MOSFETs AND IGBTs by J.M. Bourgeois ABSTRACT Power MOSFET and IGBT gate drives often face isolation and high voltage constraints. The gate drive described

More information

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009

Impedance Matching and Matching Networks. Valentin Todorow, December, 2009 Impedance Matching and Matching Networks Valentin Todorow, December, 2009 RF for Plasma Processing - Definition of RF What is RF? The IEEE Standard Dictionary of Electrical and Electronics Terms defines

More information

Bridgeless PFC Implementation Using One Cycle Control Technique

Bridgeless PFC Implementation Using One Cycle Control Technique Bridgeless PFC Implementation Using One Cycle Control Technique Bing Lu Center for Power Electronics Systems Virginia Polytechnic Institute and State University 674 Whittemore Hall Blacksburg, VA 24061

More information

APPLICATION NOTE TESTING PV MICRO INVERTERS USING A FOUR QUADRANT CAPABLE PROGRAMMABLE AC POWER SOURCE FOR GRID SIMULATION. Abstract.

APPLICATION NOTE TESTING PV MICRO INVERTERS USING A FOUR QUADRANT CAPABLE PROGRAMMABLE AC POWER SOURCE FOR GRID SIMULATION. Abstract. TESTING PV MICRO INVERTERS USING A FOUR QUADRANT CAPABLE PROGRAMMABLE AC POWER SOURCE FOR GRID SIMULATION Abstract This application note describes the four quadrant mode of operation of a linear AC Power

More information

Silicon Carbide market update: From discrete devices to modules

Silicon Carbide market update: From discrete devices to modules PCIM EUROPE 2014 20th 22nd May 2014 Nuremberg Silicon Carbide market update: From discrete devices to modules Dr. Kamel Madjour, Technology & Market Analyst, Yole Développement 2014 www.yole.fr May 21th

More information

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies

Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies Soonwook Hong, Ph. D. Michael Zuercher Martinson Harmonics and Noise in Photovoltaic (PV) Inverter and the Mitigation Strategies 1. Introduction PV inverters use semiconductor devices to transform the

More information

Semiconductor Technology

Semiconductor Technology May 4 th, 2011 Semiconductor Technology Evolution to optimize inverter efficiency Andrea Merello Field Applications Engineer Page 1 More than 70% of the energy gets lost on its way to the target application

More information

Power Dissipation Considerations in High Precision Vishay Sfernice Thin Film Chips Resistors and Arrays (P, PRA etc.) (High Temperature Applications)

Power Dissipation Considerations in High Precision Vishay Sfernice Thin Film Chips Resistors and Arrays (P, PRA etc.) (High Temperature Applications) VISHAY SFERNICE Resistive Products Application Note ABSTRACT On our thin film chips resistors and arrays the main path for the heat, more than 90 %, is conduction through the body of the component, the

More information

Varactor Diodes. Introduction. Key Electrical Parameters. Reverse Breakdown Voltage and Reverse Leakage Current APPLICATION NOTE

Varactor Diodes. Introduction. Key Electrical Parameters. Reverse Breakdown Voltage and Reverse Leakage Current APPLICATION NOTE APPLICATION NOTE Varactor Diodes Introduction A varactor diode is a P-N junction diode that changes its capacitance and the series resistance as the bias applied to the diode is varied. The property of

More information

5SNA 3600E170300 HiPak IGBT Module

5SNA 3600E170300 HiPak IGBT Module Data Sheet, Doc. No. 5SYA 44-6 2-24 5SNA 36E73 HiPak IGBT Module VCE = 7 V IC = 36 A Ultra low-loss, rugged SPT+ chip-set Smooth switching SPT+ chip-set for good EMC AlSiC base-plate for high power cycling

More information

Chip Diode Application Note

Chip Diode Application Note Chip Diode Application Note Introduction The markets of portable communications, computing and video equipment are challenging the semiconductor industry to develop increasingly smaller electronic components.

More information

Junction FETs. FETs. Enhancement Not Possible. n p n p n p

Junction FETs. FETs. Enhancement Not Possible. n p n p n p A11 An Introduction to FETs Introduction The basic principle of the field-effect transistor (FET) has been known since J. E. Lilienfeld s patent of 1925. The theoretical description of a FET made by hockley

More information

Improving Efficiency in AC drives: Comparison of Topologies and Device Technologies

Improving Efficiency in AC drives: Comparison of Topologies and Device Technologies Improving Efficiency in AC drives: Comparison of Topologies and Device Technologies Klaus Vogel, Infineon Technologies AG, Max-Planck-Straße 5, 59581 Warstein Adalberto Jose Rossa, WEG Automation R&D Center,

More information

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60J323

TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60J323 GT6J2 TOSHIBA Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT6J2 Current Resonance Inverter Switching Application Unit: mm Enhancement mode type High speed : t f =.6 μs (typ.) (I C = 6A) Low

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) dvanced Process Technology Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching Fully valanche Rated Lead-Free Description Fifth Generation HEXFETs from International Rectifier utilize advanced

More information

IRF5305PbF. HEXFET Power MOSFET V DSS = -55V. R DS(on) = 0.06Ω I D = -31A

IRF5305PbF. HEXFET Power MOSFET V DSS = -55V. R DS(on) = 0.06Ω I D = -31A dvanced Process Technology Dynamic dv/dt Rating 75 C Operating Temperature Fast Switching PChannel Fully valanche Rated LeadFree Description Fifth Generation HEXFETs from International Rectifier utilize

More information

DirectFET TM - A Proprietary New Source Mounted Power Package for Board Mounted Power

DirectFET TM - A Proprietary New Source Mounted Power Package for Board Mounted Power TM - A Proprietary New Source Mounted Power Package for Board Mounted Power by Andrew Sawle, Martin Standing, Tim Sammon & Arthur Woodworth nternational Rectifier, Oxted, Surrey. England Abstract This

More information

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights

FEATURE ARTICLE. Figure 1: Current vs. Forward Voltage Curves for Silicon Schottky Diodes with High, Medium, Low and ZBD Barrier Heights PAGE 1 FEBRUARY 2009 Schottky Diodes by Rick Cory, Skyworks Solutions, Inc. Introduction Schottky diodes have been used for several decades as the key elements in frequency mixer and RF power detector

More information

IRF840. 8A, 500V, 0.850 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002

IRF840. 8A, 500V, 0.850 Ohm, N-Channel Power MOSFET. Features. Ordering Information. Symbol. Packaging. Data Sheet January 2002 IRF84 Data Sheet January 22 8A, 5V,.85 Ohm, N-Channel Power MOSFET This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed

More information

SiC Jfet technology for a jump in Inverter efficiency. SemiSouth Laboratories, Inc. www.semisouth.com

SiC Jfet technology for a jump in Inverter efficiency. SemiSouth Laboratories, Inc. www.semisouth.com SiC Jfet technology for a jump in Inverter efficiency SemiSouth Laboratories, Inc. Nigel Springett Applications consultant nigel.springett@semisouth.com www.semisouth.com Italian Distributor Enrico Falloni

More information

UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET

UNISONIC TECHNOLOGIES CO., LTD 50N06 Power MOSFET UNISONIC TECHNOLOGIES CO., LTD 50N06 50 Amps, 60 Volts N-CHANNEL POWER MOSFET DESCRIPTION TO-263 TO-25 The UTC 50N06 is three-terminal silicon device with current conduction capability of about 50A, fast

More information

H a r d C o m m u t a t i o n o f P o w e r M O S F E T

H a r d C o m m u t a t i o n o f P o w e r M O S F E T H a r d C o m m u t a t i o n o f P o w e r M O S F E T O p t i M O S TM F D 2 0 0 V / 2 5 0 V IFAT PMM APS SE DC Alan Huang Edition 2014-03-12 Published by Infineon Technologies Austria AG 9500 Villach,

More information

Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL.

Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL. Ultra Low Profile Silicon Capacitors (down to 80 µm) applied to Decoupling Applications. Results on ESR/ESL. Laurent Lengignon, Laëtitia Omnès, Frédéric Voiron IPDiA, 2 rue de la girafe, 14000 Caen, France

More information

A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt.

A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs. high RF power. densities and cor- capacitances per watt. From June 2006 High Frequency Electronics Copyright 2006 Summit Technical Media A 1 to 2 GHz, 50 Watt Push-Pull Power Amplifier Using SiC MESFETs By Raymond S. Pengelly and Carl W. Janke Cree, Inc. Because

More information

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach)

CONTENTS. Preface. 1.1.2. Energy bands of a crystal (intuitive approach) CONTENTS Preface. Energy Band Theory.. Electron in a crystal... Two examples of electron behavior... Free electron...2. The particle-in-a-box approach..2. Energy bands of a crystal (intuitive approach)..3.

More information

HFA15TB60 HFA15TB60-1

HFA15TB60 HFA15TB60-1 HEXFRED TM Features Ultrafast Recovery Ultrasoft Recovery Very Low I RRM Very Low Q rr Specified at Operating Conditions Benefits Reduced RFI and EMI Reduced Power Loss in Diode and Switching Transistor

More information

Principles of Adjustable Frequency Drives

Principles of Adjustable Frequency Drives What is an Adjustable Frequency Drive? An adjustable frequency drive is a system for controlling the speed of an AC motor by controlling the frequency of the power supplied to the motor. A basic adjustable

More information

Chapter 2. Technical Terms and Characteristics

Chapter 2. Technical Terms and Characteristics Chapter 2 Technical Terms and Characteristics CONTENTS Page 1 IGBT terms 2-2 2 IGBT characteristics 2-5 This section explains relevant technical terms and characteristics of IGBT modules. 2-1 1 IGBT terms

More information

Features Benefits Description TO-247AC (Modified) Absolute Maximum Ratings Parameter Max Units

Features Benefits Description TO-247AC (Modified) Absolute Maximum Ratings Parameter Max Units Bulletin PD -.338 rev. B /4 HEXFRED TM HFA5PB6 Ultrafast, Soft Recovery Diode Features Ultrafast Recovery Ultrasoft Recovery Very Low I RRM Very Low Q rr Specified at Operating Conditions Benefits Reduced

More information

STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET

STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET STP80NF55-08 STB80NF55-08 STB80NF55-08-1 N-CHANNEL 55V - 0.0065 Ω - 80A D2PAK/I2PAK/TO-220 STripFET II POWER MOSFET TYPE V DSS R DS(on) I D STB80NF55-08/-1 STP80NF55-08 55 V 55 V

More information

Application Note 9020. IGBT Basic II CONTENTS. April, 2002. By K.J Um. Section I. Gate drive considerations

Application Note 9020. IGBT Basic II CONTENTS. April, 2002. By K.J Um. Section I. Gate drive considerations B. R G a. Effect on turn-on Application Note 9020 April, 2002 IGBT Basic II By K.J Um CONTENTS Section I. Gate drive considerations 1. Introductions 2. Gate Drive Considerations 3. IGBT switching waveforms

More information

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

AUTOMOTIVE MOSFET. C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) PD 9399A AUTOMOTIVE MOSFET Typical Applications Electric Power Steering (EPS) Antilock Braking System (ABS) Wiper Control Climate Control Power Door Benefits Advanced Process Technology Ultra Low OnResistance

More information

Thermal runaway during blocking

Thermal runaway during blocking Application Note 5SYA 2045-01 Thermal runaway during blocking Since the beginning of semiconductor technology, thermal runaway has been a well-known effect. Thermal runaway occurs when the power dissipation

More information

Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF520PbF SiHF520-E3 IRF520 SiHF520. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 0.7 Q g (Max.) (nc) 16 Q gs (nc) 4.4 Q gd (nc) 7.7 Configuration Single TO0AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel MOSFET

More information

Chapter 2 Application Requirements

Chapter 2 Application Requirements Chapter 2 Application Requirements The material presented in this script covers low voltage applications extending from battery operated portable electronics, through POL-converters (Point of Load), internet

More information

Figure 1. Diode circuit model

Figure 1. Diode circuit model Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The

More information

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance

Drive circuit basics + V. τ e. Industrial Circuits Application Note. Winding resistance and inductance ndustrial Circuits Application Note Drive circuit basics For a given size of a stepper motor, a limited space is available for the windings. n the process of optimizing a stepper motor drive system, an

More information

Power MOSFET FEATURES. IRF540PbF SiHF540-E3 IRF540 SiHF540. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20

Power MOSFET FEATURES. IRF540PbF SiHF540-E3 IRF540 SiHF540. PARAMETER SYMBOL LIMIT UNIT Drain-Source Voltage V DS 100 V Gate-Source Voltage V GS ± 20 Power MOSFET PRODUCT SUMMARY (V) 100 R DS(on) ( ) = 0.077 Q g (Max.) (nc) 72 Q gs (nc) 11 Q gd (nc) 32 Configuration Single TO220AB G DS ORDERING INFORMATION Package Lead (Pb)free SnPb G D S NChannel MOSFET

More information

Fundamental Characteristics of Thyristors

Fundamental Characteristics of Thyristors A1001 Introduction The Thyristor family of semiconductors consists of several very useful devices. The most widely used of this family are silicon controlled rectifiers (SCRs), Triacs, SIDACs, and DIACs.

More information

MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER

MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER Naresh Thapar, R.Sodhi, K.Dierberger, G.Stojcic, C.Blake, and D.Kinzer International Rectifier Corporation El Segundo, CA 90245.

More information