The Citric Acid Cycle

Size: px
Start display at page:

Download "The Citric Acid Cycle"

Transcription

1 The Citric Acid Cycle The aerobic processing of glucose start with the complete oxidation of glucose derivatives to CO 2. This oxidation takes place in the citric acid cycle, a series of reactions also known as the tricarboxylic acid (TCA) cycle or the Krebs cycle.

2 The citric acid cycle is the final common pathway for the oxidation of fuel molecules. It also serves as a source of building blocks for biosyntheses. Most fuel molecules enter the cycle as acetyl CoA.. The link between glycolysis and the citric acid cycle is the oxidative decarboxylation of pyruvate to form acetyl CoA. In eukaryotes, this reaction and those of the cycle take place inside mitochondria, in contrast with glycolysis, which takes place in the cytosol.

3 Biosynthetic Roles of the Citric Acid Cycle. Intermediates drawn off for biosyntheses (shown by red arrows) are replenished by the formation of oxaloacetate from pyruvate.

4 Mitochondrion. The double membrane of the mitochondrion is evident in this electron micrograph. The numerous invaginations of the inner mitochondrial membrane are called cristae. The oxidative decarboxylation of pyruvate and the sequence of reactions in the citric acid cycle take place within the matrix.

5 Pyruvate Transport (Antiporter) Pyruvate Pyruvate Carrier OH -

6 Overview of the Citric Acid Cycle. The citric acid cycle oxidizes two- carbon units, producing two molecules of CO 2, one molecule of GTP, and high- energy electrons in the form of NADH and FADH 2.

7 The function of the citric acid cycle is the harvesting of high energy electrons from carbon fuels. Note that the citric acid cycle itself neither generate large amount of ATP nor includes oxygen as a reactant. Instead, it removes electrons from acetyl CoA and uses these electrons to form NADH and FADH 2.

8 The formation of Acetyl Coenzyme A from Pyruvate. Pyruvate is oxidatively decarboxylated by the pyruvate dehydrogenase complex to form acetyl CoA. This irreversible reaction is the link between glycolysis and citric acid cycle.

9 Pyruvate dehydrogenase complex of E. coli Enzyme Abbreviation Number of chains Prosthetic group Reaction catalyzed Pyruvate dehydrogenase component Dihydrolipoyl transacetylase Dihydrolipoyl dehydrogenase E 1 24 TPP Oxidative decarboxylation of pyruvate E 2 24 Lipoamide Transfer of the acetyl group to CoA E 3 12 FAD Regeneration of the oxidized form of lipoamide

10 The Formation of Acetyl Coenzyme A from Pyruvate The reaction requires the participation of the three enzymes of the pyruvate dehydrogenase complex, each composed of several polypeptide chains, and five coenzymes: thiamine pyrophosphate (TPP), lipoic acid, FAD, CoA NAD+. B 1

11 Acetyl Coenzyme A (Acetyl CoA). B 5

12 The conversion of pyruvate into acetyl CoA consists of three steps: 1- Decarboxylation, 2- Oxidation, 3- Transfer of the acetyl group to CoA.

13 Thiazole ring Carbanion Mechanism of the Decarboxylation Reaction of E1, The Pyruvate Dehydrogenase Component of the Pyruvate Dehydrogenese Complex.

14 The hydroxyethyl group attached to TPP is oxidized to form an acetyl group and concomitantly transferred to lipoamide,, a derivative of lipoic acid that is linked to the side chain of a lysine residue by an amide linkage. The oxidant in this reaction is the disulfide group of lipoamide,, which is reduced to its disulfhydryl form. This reaction, also catalyzed by the pyruvate dehydrogenase component E1,, yields acetyllipoamide.

15

16 Third, the acetyl group is transferred from acetyllipoamide to CoA to form acetyl CoA. Dihydrolipoyl transacetylase (E2) catalyzes this reaction.

17

18 The pyruvate dehydrogenase complex cannot complete another catalytic cycle until the dihydrolipoamide is oxidized to lipoamide. In a fourth step, the oxidized form of lipoamide is regenerated by dihydrolipoyl dehydrogenase (E3). Two electrons are transferred to an FAD prosthetic group of the enzyme and then to NAD +.

19

20 Citrate Synthase Forms Citrate from Oxaloacetate and Acetyl Coenzyme A

21 The citric acid cycle begins with the condensation of a four- carbon unit, oxaloacetate,, and a two-carbon unit, the acetyl group of acetyl CoA. Oxaloacetate reacts with acetyl CoA and H 2 O to yield citrate and CoA. This reaction, which is an aldol condensation followed by a hydrolysis, is catalyzed by citrate synthase.

22 Citrate is isomerized into isocitrate to enable the six- carbon unit to undergo oxidative decarboxylation. The isomerization of citrate is accomplished by a dehydration step followed by a hydration step. The result is an interchange of a hydrogen atom and a hydroxyl group. The enzyme catalyzing both steps is called aconitase because cis-aconitate is an intermediate.

23 Isocitrate Is Oxidized and Decarboxylated to α-ketoglutarate The oxidative decarboxylation of isocitrate is catalyzed by isocitrate dehydrogenase. The intermediate in this reaction is oxalosuccinate, an unstable β-ketoacid. While bound to the enzyme, it loses CO 2 to form α-ketoglutarate.

24 Succinyl Coenzyme A Is Formed by the Oxidative Decarboxylation of α-ketoglutarate α-ketoglutarate dehydrogenase

25 A High Phosphoryl-Transfer Potential Compound Is Generated from Succinyl Coenzyme A The cleavage of the thioester bond of succinyl CoA is coupled to the phosphorylation of a purine nucleoside diphosphate, usually GDP. This reaction is catalyzed by succinyl CoA synthetase (succinate thiokinase).

26 Oxaloacetate Is Regenerated by the Oxidation of Succinate The final stage of the citric acid cycle. A methylene group is converted into a carbonyl group in three steps; Oxidation (Succinate dehydrogenase) Hydration (Fumarase) Second oxidation (Malate dehydrogenase) Not only is oxaloacetate thereby regenerated for another round of the cycle, but also more energy is extracted in the form of FADH 2 and NADH.

27

28 Stoichiometry of Citric Acid Cycle. Acetyl CoA + 3NAD + FAD + GDP + Pi + 2H 2 O 2 CO 2 + 3NADH + FADH 2 + GTP + 2H + +CoA

29 Reactions of the Pyruvate Dehydrogenase Complex. At the top (center), the enzyme (represented by a yellow, a blue, and two red spheres) is unmodified and ready for a catalytic cycle. (1) Pyruvate is decarboxylated to form the hydroxyethyl TPP. (2) The dihydrolipoyl arm of E2 moves into the active site of E1. (3) E1 catalyzes the transfer of the two-carbon group to the dihydrolipoyl group to form the acetyl-lipoyl lipoyl complex. (4) E2 catalyzes the transfer of the acetyl moiety to CoA to form the product acetyl CoA.. The disulfhydryl lipoyl arm then swings to the active site of E3. E3 catalyzes (5) the reduction of the lipoic acid and (6) the transfer of the protons and electrons to NAD+ to complete the reaction cycle.

30 1. Pyruvate is decarboxylated at the active site of E1, forming the substituted TPP intermediate, and CO2 leaves as the first product. This active site s lies within the E1 complex, connected to the enzyme surface by a 20-Å-long hydrophobic channel. 2. E2 inserts the lipoyl-lysine lysine arm of the lipoamide domain into the channel in E1. 3. E1 catalyzes the transfer of the acetyl group to the lipoamide.. The acetylated lipoyl-lysine lysine arm then leaves E1 and enters the E2 cube through 30 Å windows on the sides of the cube to visit the active site of E2, located deep in the cube at the subunit interface. 4. The acetyl moiety is then transferred to CoA,, and the second product, acetyl CoA,, leaves the cube. The reduced lipoyl-lysine lysine arm then swings to the active site of the E3 flavoprotein. 5. At the E3 active site, the lipoamide acid is oxidized by coenzyme FAD. 6. The final product, NADH, is produced with the reoxidation of FADH2, and the reactivated lipoamide is ready to begin another reaction cycle. The structural integration of three kinds of enzymes makes the coordinated c catalysis of a complex reaction possible. The proximity of one enzyme to another increases the overall reaction rate and minimizes side reactions. All the intermediates in the oxidative decarboxylation of pyruvate are tightly bound to the complex and are readily transferred because of the ability of the lipoyl- lysine arm of E2 to call on each active site in turn.

31

32 Step Reaction Enzyme Prosthetic group Type* 2a Citrate cis-aconitate + H 2 O Aconitase Fe-S b 2b cis-aconitate+ H 2 O isocitrate Aconitase Fe-S c 3 Isocitrate + NAD + α-ketoglutarate + CO 2 + NADH Isocitrate dehydrogenase d + e 4 α-ketoglutarate + NAD + + CoA succinyl CoA + CO 2 + NADH α-ketoglutarate dehydrogenase complex Lipoic acid, FAD, TPP d + e 5 Succinyl CoA + P i + GDP succinate + GTP + CoA Succinyl CoA synthetase f 6 Succinate + FAD (enzyme-bound) fumarate + FADH 2 (enzyme-bound) Succinate dehydrogenase FAD, Fe-S e 7 Fumarate + H 2 O l-malate Furmarase c 8 l-malate + NAD + oxaloacetate + NADH + H + Malate dehydrogenase e * Reaction type: (a) condensation; (b) dehydration; (c) hydration; (d) decarboxylation; (e) oxidation; (f) substrate-level phosphorylation.

33 1. Two carbon atoms enter the cycle in the condensation of an acetyl unit (from acetyl CoA) ) with oxaloacetate.. Two carbon atoms leave the cycle in the form of CO 2 in the successive decarboxylations catalyzed by isocitrate dehydrogenase and α- ketoglutarate dehydrogenase.. Interestingly, the results of isotope-labeling studies revealed that the two carbon atoms that enter each cycle are not the ones that leave. 2. Four pairs of hydrogen atoms leave the cycle in four oxidation reactions. Two molecules of NAD + are reduced in the oxidative decarboxylations of isocitrate and α-ketoglutarate,, one molecule of FAD is reduced in the oxidation of succinate,, and one molecule of NAD + is reduced in the oxidation of malate. 3. One compound with high phosphoryl transfer potential, usually GTP, is generated from the cleavage of the thioester linkage in succinyl CoA. 4. Two molecules of water are consumed: one in the synthesis of citrate by the hydrolysis of citryl CoA and the other in the hydration of fumarate.

34 Glycolysis has both an aerobic and an anaerobic mode, whereas the citric acid cycle is strictly aerobic. Glycolysis can proceed under anaerobic conditions because NAD + is regenerated in the conversion of pyruvate into lactate.

35 Control of the Citric Acid Cycle The citric acid cycle is regulated primarily by the concentration of ATP and NADH. The key control points are the enzymes: isocitrate dehydrogenase and α-ketoglutarate dehydrogenase.

36

37

38

39 Oxidative Phosphorylation The NADH and FADH2 formed in glycolysis, fatty acid oxidation, and the citric acid cycle are energy-rich rich molecules because each contains a pair of electrons having a high transfer potential. When these electrons are used to reduce molecular oxygen to water, a large amount of free energy is liberated, which can be used to generate ATP. Oxidative phosphorylation is the process in which ATP is formed as a result of the transfer of electrons from NADH or FADH2to O 2 by a series of electron carriers. This process, which takes place in mitochondria, is the major source of ATP in aerobic organisms For example, oxidative phosphorylation generates 26 of the 30 molecules of ATP that are formed when glucose is completely oxidized to CO 2 and H 2 O.

40

41 The flow of electrons from NADH or FADH 2 to O 2 through protein complexes located in the mitochondrial inner membrane leads to the pumping of protons out of the mitochondrial matrix. The resulting uneven distribution of protons generates a ph gradient and a transmembrane electrical potential that creates a proton-motive force. ATP is synthesized when protons flow back to the mitochondrial matrix through an enzyme complex. Thus, the oxidation of fuels and the phosphorylation of ADP are coupled by a proton gradient across the inner mitochondrial membrane.

42

43 Sequence of Electron Carriers in the Respiratory Chain. Oxidative phosphorylation is the culmination of a series of energy transformations that are called cellular respiration or simply respiration in their entirety. First, carbon fuels are oxidized in the citric acid cycle to yield electrons with high transfer potential. Then, this electron-motive force is converted into a proton-motive force and, finally, the proton-motive force is converted into phosphoryl transfer potential. The conversion of electron-motive force into proton-motive force is carried out by three electron-driven proton pumps: NADH-Q oxidoreductase, Q-cytochrome c oxidoreductase, and cytochrome c oxidase. These large transmembrane complexes contain multiple oxidation-reduction centers, including quinones, flavins,, iron-sulfur clusters, hemes,, and copper ions.

44 Complex I Complex II Does not pump protons FADH 2 Complex III Complex IV

45 Cyt C (reduced) 4H + Cyt C (oxidized) Fe O 2 Cu 2 H 2 O Four chemical protons are Taken up from the matrix side to reduce one molecule of O 2 to two molecules of H 2 O. Four additional pumped protons are transported out of the matrix and released on the cytosolic side in the course of the reaction. The pumped protons double the efficiency of free-energy storage in the form of a proton gradient. 4H + (Pumped protons) 4H + (chemical protons)

46 A Proton Gradient Powers the Synthesis of ATP The final phase of oxidative phosphorylation is carried out by ATP synthase, an ATP-synthesizing assembly that is driven by the flow of protons back into the mitochondrial matrix. Components of this remarkable enzyme rotate as part of its catalytic mechanism. Oxidative phosphorylation vividly shows that proton gradients are an interconvertible currency of free energy in biological systems.

47 In oxidative phosphorylation,, the synthesis of ATP is coupled to the flow of electrons from NADH or FADH 2 to O 2 by a proton gradient across the inner mitochondrial membrane. Electron flow through three asymmetrically oriented transmembrane complexes results in the pumping of protons out of the mitochondrial matrix and the generation of a membrane potential. ATP is synthesized when protons flow back to the matrix through a channel in an ATP- synthesizing complex, called ATP synthase (also known as F0F1-ATPase). Oxidative phosphorylation exemplifies a fundamental theme of bioenergetics: the transmission of free energy by proton gradients.

48 The flow of electrons through Complexes I, III, and IV leads to the transfer of protons from the matrix side to the cytosolic side of the inner mitochondrial membrane. A proton-motive force consisting of a ph gradient (matrix side basic) and a membrane potential (matrix side negative) is generated. The flow of protons back to the matrix side through ATP synthase drives ATP synthesis. The enzyme complex is a molecular motor made of two operational units: a rotating component and a stationary component. The rotation of the g subunit induces structural changes in the b subunit that result in the synthesis and release of ATP from the enzyme. Proton influx provides the force for the rotation. The flow of two electrons through NADH-Q oxidoreductase, Q-cytochrome c oxidoreductase,, and cytochrome c oxidase generates a gradient sufficient to synthesize 1, 0.5, and 1 molecule of ATP, respectively. Hence, 2.5 molecules of ATP are formed per molecule of NADH oxidized in the mitochondrial matrix, whereas only 1.5 molecules of ATP are made per molecule of FADH 2 oxidized because its electrons enter the chain at QH2, after the first proton-pumping pumping site.

49 about 30 molecules of ATP are formed when glucose is completely oxidized to CO2; this value supersedes the traditional estimate of 36 molecules of ATP. Most of the ATP, 26 of 30 molecules formed, is generated by oxidative phosphorylation.. Recall that the anaerobic metabolism of glucose yields only 2 molecules of ATP.

50 Sites of Action of Some Inhibitors of Electron Transport.

51 Uncoupling of Oxidative Phosphorylation. 2,4 Dinitrophenol,, a lipid-soluble substance, can carry protons across the inner mitochondrial membrane.

52 Figure Action of an Uncoupling Protein. Uncoupling protein-1 (UCP-1) generates heat by permitting the influx of protons into the mitochondria without the synthesis of ATP.

53 Regulated Uncoupling Leads to the Generation of Heat The uncoupling of oxidative phosphorylation is a means of generating heat to maintain body temperature in hibernating animals, in some newborn animals (including human beings), and in mammals adapted to cold. Brown adipose tissue, which is very rich in mitochondria (often referred to as brown fat mitochondria), is specialized for this process of nonshivering thermogenesis. The inner mitochondrial membrane of these mitochondria contains a large amount of uncoupling protein (UCP),, here UCP-1, or thermogenin,, a dimer of 33-kd subunits that resembles ATP-ADP ADP translocase.. UCP-1 1 forms a pathway for the flow of protons from the cytosol to the matrix. In essence, UCP-1 1 generates heat by short-circuiting the mitochondrial proton battery. This dissipative proton pathway is activated by free fatty acids liberated from triacylglycerols in response to hormonal signals, such as b-adrenergic b agonists.

54 Many Shuttles Allow Movement Across Mitochondrial Membranes.

55 Electrons from Cytosolic NADH Enter Mitochondria by Shuttles. Recall that the glycolytic pathway generates NADH in the cytosol in the oxidation of glyceraldehyde 3-phosphate, and NAD+ must be regenerated for glycolysis to continue. How is cytosolic NADH reoxidized under aerobic conditions? NADH cannot simply pass into mitochondria for oxidation by the respiratory chain, because the inner mitochondrial membrane is impermeable to t NADH and NAD+. The solution is that electrons from NADH, rather than NADH itself, are carried across the mitochondrial membrane. One of several means of introducing electrons from NADH into the electron transport chain is the glycerol 3-phosphate 3 shuttle. The first step in this shuttle is the transfer of a pair of electrons from NADH to dihydroxyacetone phosphate, a glycolytic intermediate, to form glycerol 3-phosphate.This 3 reaction is catalyzed by a glycerol 3-3 phosphate dehydrogenase in the cytosol. Glycerol 3-phosphate 3 is reoxidized to dihydroxyacetone phosphate on the outer surface of the inner mitochondrial membrane by a membrane-bound bound isozyme of glycerol 3-phosphate 3 dehydrogenase.. An electron pair from glycerol 3-phosphate is transferred to a FAD prosthetic group in this enzyme to form FADH2. This reaction also regenerates dihydroxyacetone phosphate.

56 Figure Glycerol 3-Phosphate 3 Shuttle. Electrons from NADH can enter the mitochondrial electron transport chain by being used to reduce dihydroxyacetone phosphate to glycerol 3-phosphate. 3 Glycerol 3-phosphate 3 is reoxidized by electron transfer to an FAD prosthetic group in a membrane-bound bound glycerol 3-phosphate 3 dehydrogenase.. Subsequent electron transfer to Q to form QH2 allows these electrons to enter the electron-transport transport chain.

57 Malate- Aspartate Shuttle. In the heart and liver, electrons from cytosolic NADH are brought into mitochondria by the malate-aspartate aspartate shuttle,, which is mediated by two membrane carriers and four enzymes. Electrons are transferred from NADH in the cytosol to oxaloacetate,, forming malate,, which traverses the inner mitochondrial membrane and is then reoxidized by NAD+ in the matrix to form NADH in a reaction catalyzed by the citric acid cycle enzyme malate dehydrogenase.. The resulting oxaloacetate does not readily cross the inner mitochondrial membrane, and so a transamination reaction is needed to form aspartate,, which can be transported to the cytosolic side. Mitochondrial glutamate donates an amino group, forming aspartate and α-ketoglutarate. In the cytoplasm, aspartate is then deaminated to form oxaloacetate and the cycle is restarted. This shuttle, in contrast with the glycerol 3-phosphate 3 shuttle, is readily reversible. Consequently, NADH can be brought into mitochondria by the malate- aspartate shuttle only if the NADH/NAD+ ratio is higher in the cytosol than in the mitochondrial matrix. This versatile shuttle also facilitates the exchange of key intermediates between en mitochondria and the cytosol.

58 The Entry of ADP into Mitochondria Is Coupled to the Exit of ATP by ATP-ADP ADP Translocase The major function of oxidative phosphorylation is to generate ATP from ADP. However, ATP and ADP do not diffuse freely across the inner mitochondrial membrane. How are these highly charged molecules moved across the inner membrane into the cytosol? A specific transport protein, ATP-ADP ADP translocase (also called adenine nucleotide translocase or ANT), enables these molecules to traverse this permeability barrier. Most important, the flows of ATP and ADP are coupled. ADP enters the mitochondrial matrix only if ATP exits, and vice versa. The reaction catalyzed by the translocase, which acts as an antiporter.

59 Mechanism of Mitochondrial ATP-ADP ADP Translocase. The translocase catalyzes the coupled entry of ADP and exit of ATP into and from the matrix. The reaction cycle is driven by membrane potential. The actual conformational change corresponding to eversion of the binding site could be quite small.

60 The membrane potential and hence the proton- motive force are decreased by the exchange of ATP for ADP, which results in a net transfer of one negative charge out of the matrix. ATP/ADP exchange is energetically expensive; about a quarter of the energy yield from electron transfer by the respiratory chain is consumed to regenerate the membrane potential that is trapped by this exchange. The inhibition of this process lead to the subsequent inhibition of cellular respiration as well.

61 Mitochondrial Transporters. Transporters (also called carriers) are transmembrane proteins that move ions and charged metabolites across the inner mitochondrial membrane.

62 Reaction sequence Glycolysis: Conversion of glucose into pyruvate (in the cytosol) ATP yield per glucose molecule Phosphorylation of glucose -1 Phosphorylation of fructose 6-phosphate -1 Dephosphorylation of 2 molecules of 1,3-BPG + 2 Dephosphorylation of 2 molecules of phosphoenolpyruvate molecules of NADH are formed in the oxidation of 2 molecules of glyceraldehyde 3-phosphate Conversion of pyruvate into acetyl CoA (inside mitochondria) 2 molecules of NADH are formed Citric acid cycle (inside mitochondria) 2 molecules of guanosine triphosphate are formed from 2 molecules of succinyl CoA molecules of NADH are formed in the oxidation of 2 molecules each of isocitrate, α-ketoglutarate, and malate 2 molecules of FADH 2 are formed in the oxidation of 2 molecules of succinate Oxidative phosphorylation (inside mitochondria) 2 molecules of NADH formed in glycolysis; each yields 1.5 molecules of ATP (assuming transport of NADH by the glycerol 3-phosphate shuttle) molecules of NADH formed in the oxidative decarboxylation of pyruvate; each yields 2.5 molecules of ATP molecules of FADH 2 formed in the citric acid cycle; each yields 1.5 molecules of ATP molecules of NADH formed in the citric acid cycle; each yields 2.5 molecules of ATP + 15 net yield per molecule of glucose + 30

63 The Pentose Phosphate Pathway. Many endergonic reactions, notably the reductive biosynthesis of fatty acids, and cholesterol, as well as photosynthesis, require NADPH in addition to ATP. Despite their close chemical resemblance, NADPH and NADH are not metabolically interchangeable.

64

65 Whereas NADH participates in utilizing the free energy of metabolite oxidation to synthesize ATP (oxidative phosphorylation), NADPH is involved in utilizing the free energy of metabolite oxidation for otherwise endergonic reductive biosynthesis.

66 Pathways Requiring NADPH Synthesis: Fatty acid biosynthesis. Cholesterol biosynthesis. Neurotransmitter biosynthesis. Nucleotide biosynthesis. Detoxification: Reduction of oxidized glutathione. Cytochrome P50 monooxygenases.

67 NADPH is generated by the oxidation of G6P via an alternative pathway to glycolysis, the pentose phosphate pathway (also called the hexose monophosphate (HMP) shunt or the phosphogluconate pathway.

68

69

70

71

72

73

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle Citric Acid Cycle Cycle Overview Metabolic Sources of Acetyl-Coenzyme A Enzymes of the Citric Acid Cycle Regulation of the Citric Acid Cycle The Amphibolic Nature of the Citric Acid Cycle Cycle Overview

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Production of acetyl-coa (activated acetate) Page: 603 Difficulty: 2 Ans: A Which of the following is not true of the reaction catalyzed by

More information

The Aerobic Fate of Pyruvate

The Aerobic Fate of Pyruvate The Aerobic Fate of yruvate February 12, 2003 Bryant Miles I could tell that some of you were not impressed by the mere 2 ATs produced per glucose by glycolysis. The 2 AT s produced are only a small fraction

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

The Citric Acid Cycle

The Citric Acid Cycle The itric Acid ycle February 14, 2003 Bryant Miles I. itrate Synthase + 3 SoA The first reaction of the citric acid cycle is the condensation of acetyloa and oxaloacetate to form citrate and oas. The enzyme

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Oxidative Phosphorylation NADH from Glycolysis must be transported into the mitochondrion to be oxidized by the respiratory electron transport chain. Only the electrons from NADH are transported, these

More information

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes

More information

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu Electron Transport System May 16, 2014 Hagop Atamian hatamian@ucdavis.edu What did We learn so far? Glucose is converted to pyruvate in glycolysis. The process generates two ATPs. Pyruvate is taken into

More information

Regulation of the Citric Acid Cycle

Regulation of the Citric Acid Cycle Regulation of the itric Acid ycle I. hanges in Free Energy February 17, 2003 Bryant Miles kj/mol 40 20 0 20 40 60 80 Reaction DGo' DG TA Free Energy hanges 1 2 3 4 5 6 7 8 9 1.) itrate Synthase 2.) Aconitase

More information

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale CELLULAR RESPIRATION Chapter 19 & 20 Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale 1. Cellular respiration (energy capture) The enzymatic breakdown of food stuffs in the presence

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Chem 306 Chapter 21 Bioenergetics Lecture Outline III Chem 306 Chapter 21 Bioenergetics Lecture Outline III I. HOW IS ATP GENERATED IN THE FINAL STAGE CATABOLISM? A. OVERVIEW 1. At the end of the citric acid cycle, all six carbons of glucose have been oxidized

More information

Electron Transport and Oxidative Phosphorylation

Electron Transport and Oxidative Phosphorylation CHM333 LECTURES 37 & 38: 4/27 29/13 SPRING 2013 Professor Christine Hrycyna Electron Transport and Oxidative Phosphorylation Final stages of aerobic oxidation of biomolecules in eukaryotes occur in the

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Inhibitors & Uncouplers

Inhibitors & Uncouplers Inhibitors & Uncouplers February 24, 2003 Bryant Miles The electron transport chain was determined by studying the effects of particular inhibitors. 2 3 3 Rotenone 3 Rotenone is a common insecticide that

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary)

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary) Electron transport chain Final stage of aerobic oxidation! Also known as: -oxidative phosphorylation(when coupled to ATP synthase) -respiration (when coupled to ATP synthase) Purpose: -Recycle reduced

More information

Electron Transport and Oxidative Phosphorylation. The Mitochondrion. Electron Transport. Oxidative Phosphorylation. Control of ATP Production

Electron Transport and Oxidative Phosphorylation. The Mitochondrion. Electron Transport. Oxidative Phosphorylation. Control of ATP Production Electron Transport and Oxidative Phosphorylation The Mitochondrion Electron Transport Oxidative Phosphorylation Control of ATP Production C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O G ' = -2823 kj. mol -1 C 6 H

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

Lactic Acid Dehydrogenase

Lactic Acid Dehydrogenase Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2

More information

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions Chapter 19a Oxidative Phosphorylation and Photophosphorylation Multiple Choice Questions 1. Electron-transfer reactions in mitochondria Page: 707 Difficulty: 1 Ans: E Almost all of the oxygen (O 2 ) one

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 59

Copyright 2000-2003 Mark Brandt, Ph.D. 59 The Tricarboxylic Acid Cycle Background (why are eight enzymes necessary?) In principle, acetyl-coa could be converted to carbon dioxide very simply. However, doing so has three potential problems: 1)

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle

Chapter 14 Glycolysis. Glucose. 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) TCA Cycle Chapter 14 Glycolysis Requires mitochondria and O 2 Glucose glycolysis anaerobic respiration 2 Pyruvate 2 Lactate (sent to liver to be converted back to glucose) pyruvate dehydrogenase acetyl-coa TCA Cycle

More information

CITRIC ACID (KREB S, TCA) CYCLE

CITRIC ACID (KREB S, TCA) CYCLE ITRI AID (KREB S, TA) YLE Date: September 2, 2005 * Time: 10:40 am 11:30 am * Room: G202 Biomolecular Building Lecturer: Steve haney 515A Mary Ellen Jones Building stephen_chaney@med.unc.edu 9663286 *Please

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

Bioenergetics. Free Energy Change

Bioenergetics. Free Energy Change Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

21.8 The Citric Acid Cycle

21.8 The Citric Acid Cycle 21.8 The Citric Acid Cycle The carbon atoms from the first two stages of catabolism are carried into the third stage as acetyl groups bonded to coenzyme A. Like the phosphoryl groups in ATP molecules,

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch23_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following statements concerning digestion are correct except A) The major physical

More information

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action Chapter 5 Microbial Metabolism Metabolism is the sum of all chemical reactions within a living organism, including anabolic (biosynthetic) reactions and catabolic (degradative) reactions. Anabolism is

More information

carbon-carbon bond formation dehydration hydration decarboxylation oxidation reduction substrate level phosphorylation isomerization

carbon-carbon bond formation dehydration hydration decarboxylation oxidation reduction substrate level phosphorylation isomerization 1. A. Name each enzyme present in the citric acid cycle and specify which of the following describes the reaction that is catalyzed when the cycle functions in the physiological direction: carbon-carbon

More information

by a hydration reaction to form isocitrate. The standard free energy change for this reaction is +6.3 kj/mol; At equilibrium, the ratio of

by a hydration reaction to form isocitrate. The standard free energy change for this reaction is +6.3 kj/mol; At equilibrium, the ratio of CHAPTER 14 - TRICARBOXYLIC ACID CYCLE AND PENTOSE PHOSPHATE PATHWAY We have now gotten to the point in glucose metabolism where one glucose molecule has been cleaved into two molecules of pyruvate, with

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

THE ELECTRON TRANSPORT CHAIN. Oxidative phosphorylation

THE ELECTRON TRANSPORT CHAIN. Oxidative phosphorylation THE ELECTRON TRANSPORT CHAIN Oxidative phosphorylation Overview of Metabolism Mitochondria Structure -Schematic Mitochondria Structure -Photomicrograph Overview of ETC Impermiable to ions Permiable via

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

Problem Set 2 (multiple choice) Biochemistry 3300

Problem Set 2 (multiple choice) Biochemistry 3300 1. What classes of reactions do Lyases catalyse? a) Bond formation coupled with ATP hydrolysis b) Isomerizations c) Group elimination to form double bonds d) Transfer of functional groups e) Hydrolysis

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

ATP Synthesis. Lecture 13. Dr. Neil Docherty

ATP Synthesis. Lecture 13. Dr. Neil Docherty PG1005 The Electron Transport Chain and ATP Synthesis Lecture 13 Dr. Neil Docherty My Teaching Objectives Define and describe the electron transport chain Explain how electron transfer couples to proton

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

Metabolism Lecture 7 METABOLIC_REGULATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY

Metabolism Lecture 7 METABOLIC_REGULATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 7 Reading: Ch. 15 of Principles of Biochemistry, Principles of Metabolic Regulation, Illustrated with Glucose and

More information

Electron Transport Generates a Proton Gradient Across the Membrane

Electron Transport Generates a Proton Gradient Across the Membrane Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in

More information

Chapter 3 The respiratory electron transport chain

Chapter 3 The respiratory electron transport chain 6 Chapter 3 The respiratory electron transport chain In this chapter, I will describe function and location of the native cytochrome b (Cb) in the mitochondrial electron transport chain. In the frame of

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ENZYMES = substances that... biological reactions 1. Provide an alternative reaction route which has a lower... energy 2. Reactions catalysed by enzymes occur under mild conditions + good yield + fast 3. Enzymes

More information

The Electron Transport Chain

The Electron Transport Chain The Electron Transport hain February 19, 2003 Bryant Miles The citric acid cycle oxidizes acetate into two molecules of 2 while capturing the electrons in the form of 3 NAD molecules and one molecule of

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

Chapter 9 Review Worksheet Cellular Respiration

Chapter 9 Review Worksheet Cellular Respiration 1 of 5 11/9/2011 8:11 PM Name: Hour: Chapter 9 Review Worksheet Cellular Respiration Energy in General 1. Differentiate an autotroph from a hetertroph as it relates to obtaining energy and the processes

More information

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: Section 10 Multiple Choice 1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: A) acyl-carnitines readily cross the mitochondrial inner membrane, but

More information

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps): 1) How many ATP molecules are produced for each glucose molecule used in fermentation?

More information

Under aerobic conditions, the cells obtain energy

Under aerobic conditions, the cells obtain energy CONTENTS Cell Respiration Three Stages of cell Respiration Citric Acid Cycle or Krebs Cycle or Acetyl-CoA Catabolism Enzymes Involved in the Citric Acid Cycle Cycle Acid Cycle Acid Cycle Stereospecificity

More information

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism.

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism. Regulation of carbohydrate metabolism Intracellular metabolic regulators Each of the control point steps in the carbohydrate metabolic pathways in effect regulates itself by responding to molecules that

More information

Introduction to Metabolism

Introduction to Metabolism Introduction to Metabolism If the ΔG' of the reaction A B is 40 kj/mol, under standard conditions the reaction: A) is at equilibrium. B) will never reach equilibrium. C) will not occur spontaneously. D)

More information

The 3 stages of Glycolysis

The 3 stages of Glycolysis The Glycolytic pathway describes the oxidation of glucose to pyruvate with the generation of ATP and NADH It is also called as the Embden-Meyerhof Pathway is a universal pathway; present in all organisms:

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION

PHOTOSYNTHESIS AND CELLULAR RESPIRATION reflect Wind turbines shown in the photo on the right are large structures with blades that move in response to air movement. When the wind blows, the blades rotate. This motion generates energy that is

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. AP bio fall 2014 final exam prep Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the first law of thermodynamics, a. the energy of a system

More information

How To Understand The Chemistry Of An Enzyme

How To Understand The Chemistry Of An Enzyme Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration Worksheet 1. 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. Cellular Respiration Worksheet 1 1. What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain. 2. Where in the cell does the glycolysis part of cellular

More information

Integration of Metabolism

Integration of Metabolism I. Central Themes of Metabolism 1. ATP is the universal energy carrier. Integration of Metabolism Bryant Miles 2. ATP is generated by the oxidation of metabolic fuels Glucose Fatty Acids Amino Acids 3.

More information

Biochemistry of cellular organelles

Biochemistry of cellular organelles Kontinkangas, L101A Biochemistry of cellular organelles Lectures: 1. Membrane channels; 2. Membrane transporters; 3. Soluble lipid/metabolite-transfer proteins; 4. Mitochondria as cellular organelles;

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips Big picture: why are we doing this? A) photosynthesis will explain shortly, b) more generally, interaction of light

More information

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction:

Overview of Glycolysis Under anaerobic conditions, the glycolytic pathway present in most species results in a balanced reaction: Glycolysis Glucose is a valuable molecule. It can be used to generate energy (in red blood cells and in brain under normal conditions, glucose is the sole energy source), and it can be used to generate

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

THE CITRIC ACID CYCLE

THE CITRIC ACID CYCLE 8885d_c16_601-630 1/27/04 8:54 AM Page 601 mac76 mac76:385_reb: 16 chapter TE ITRI AID YLE 16.1 Production of Acetyl-oA (Activated Acetate) 602 16.2 Reactions of the itric Acid ycle 606 16.3 Regulation

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 3 Photosynthesis and Cellular Respiration Copyright 2001, BioMEDIA ASSOCIATES www.ebiomedia.com

More information

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose Energy in a Cell Reinforcement and Study Guide Section.1 The Need for Energy In your textbook, read about cell energy. Use each of the terms below just once to complete the passage. energy phosphate adenine

More information

Electron Transport System

Electron Transport System Electron Transport System Lecture 29 Key Concepts Peter Mitchell's Chemiosmotic Theory The Electron Transport System is a series of Redox reactions Complex I: NADH-ubiquinone oxidoreductase Complex II:

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8 How ells Harvest Energy hapter 7 & 8 Evolution of Metabolism A hypothetical timeline for the evolution of metabolism - all in prokaryotic cells!: 1. ability to store chemical energy in ATP 2. evolution

More information

BCHEM 254: METABOLISM IN HEALTH AND DISEASES II

BCHEM 254: METABOLISM IN HEALTH AND DISEASES II BCHEM 254: METABOLISM IN HEALTH AND DISEASES II Lecture 1: The Energetics of the Electron Transport Chain Lecturer: Dr. Christopher Larbie Introduction The citric acid cycle oxidizes acetate into two molecules

More information

Regulation of enzyme activity

Regulation of enzyme activity 1 Regulation of enzyme activity Regulation of enzyme activity is important to coordinate the different metabolic processes. It is also important for homeostasis i.e. to maintain the internal environment

More information