Electron Transport System

Size: px
Start display at page:

Download "Electron Transport System"

Transcription

1 Electron Transport System Lecture 29 Key Concepts Peter Mitchell's Chemiosmotic Theory The Electron Transport System is a series of Redox reactions Complex I: NADH-ubiquinone oxidoreductase Complex II: Succinate dehydrogenase Complex III: Ubiquinone-cytochrome c oxidoreductase Cytochrome C Complex IV: Cytochrome c oxidase The ATP currency exchange ratios for NADH and FADH 2 What is the Chemiosmotic Theory and how does it explain proton motive force? What is the role of coenzyme Q (ubiquinone) in the electron transport system?

2 Biochemical Application of the Electron Transport System Hydrogen cyanide is a deadly gas that kills cells by blocking electron transfer from cytochrome oxidase in complex IV to oxygen, the final electron acceptor in the electron transport system. Other electron transport inhibitors are rotenone, a poison, and amytal, a barbiturate, both of which block electron transfer from iron-sulfur centers. The Electron Transport System, also called the Electron Transport Chain, converts redox energy available from oxidation of NADH and FADH 2, into proton-motive force which is used to synthesize ATP through conformational changes in the ATP synthase complex through a process called oxidative phosphorylation.

3 Peter Mitchell's Chemiosmotic Theory Oxidation of NADH and FADH 2 in the mitochondrial matrix by the electron transport system links redox energy to ATP synthesis by oxidative phosphorylation (mitochondrial ATP synthesis) through the establishment of a proton (H + ) gradient across the mitochondrial inner membrane. "chemiosmotic" process was first proposed by Peter Mitchell, a British biochemist, in 1961 involves the outward pumping of H + from the mitochondrial matrix three protein complexes in the electron transport system (complexes I, III, IV) H + flow back down the gradient through the membrane-bound ATP synthase complex response to a chemical (H + concentration) and electrical (separation of charge) differential Overview of Chemiosmotic Theory

4 Basic Ideas of the Chemiosmotic Theory Energy from redox reactions or light is translated into vectorial energy coupling of electron transfer to membrane bound proton pumps that transverse a proton impermeable membrane thereby establishing an electrochemical proton gradient A "proton circuit" is established protons respond to the chemical and electrical gradient across the membrane flow back across the membrane through the ATP synthase protein complex to catalyze ATP synthesis Proton Circuit

5 Basic Ideas of the Chemiosmotic Theory Vectorial H + pumping results in both: a chemical gradient across the membrane represented by ph an electrical gradient due to the separation of charge which can be measured as a membrane potential Ψ ( psi) Separation of charge is due to: build-up of positively-charged protons (H + ) on one side of the membrane accumulation of negative charges (OH - ) on the other side of the membrane Basic Ideas of the Chemiosmotic Theory In mitochondria, the contribution of Ψ ( V) to G is actually greater than that of ph (the ph across the mitochondrial membrane is only 1 ph unit) In chloroplasts, the ph contribution to G is much more significant with ph close to 3 ph units Change in free energy ( G) for a membrane transport process is the sum of the ion concentration (RT ln(c2/c1)) and the membrane potential (ZF V) In mitochondria, the ZF V term makes a larger contribution than does RT ln(c2/c1).

6 The Mitochondrion, the Powerhouse of the Cell A critical feature of the mitochondrion is the extensive surface area of the inner mitochondrial membrane which forms the proton-impermeable barrier required for chemiosmosis. Electron microscopy studies have shown that the inner mitochondrial membrane forms structures called cristae which have been estimated to cover as much as 3,000 m 2 per cell (~5 m 2 per mitochondrion). Peter Mitchell He established the Glynn Research Institute in the early 1960s with a research staff of less than twenty, and remained a private research institution for almost 30 years. Mitchell's uncle was Sir Godfrey Mitchell who owned George Wimpy and Company Limited, the largest construction company in England at the time.

7 How was Mitchell s idea proven? Using biochemical approaches: 1. "inside-out" submitochondrial membrane vesicles that could be shown to pump protons into the interior of the vesicle when oxidizable substrate was made available 2. artificial vesicles containing bacterial rhodopsin protein were exposed to light proton pumping by the bacteriorhodopsin protein resulted in both inward proton pumping ATP synthesis on the vesicle surface The Nobel Prize in Chemistry 1978 "for his contribution to the understanding of biological energy transfer through the formulation of the chemiosmotic theory Peter Mitchell's speech at the Nobel Banquet, December 10, 1978: Your Majesties, Your Royal Highnesses, Ladies and Gentlemen, Emile Zola described a work of art as a corner of nature seen through a temperament. The philosopher Karl Popper, the economist F. A. Hayek, and the art historian K. H. Gombrich have shown that the creative process in science and art consists of two main activities: an imaginative jumping forward to a new abstraction or simplified representation, followed by a critical looking back to see how nature appears in the light of the new vision. The imaginative leap forward is a hazardous, unreasonable activity. Reason can be used only when looking critically back. Moreover, in the experimental sciences, the scientific fraternity must test a new theory to destruction, if possible. Meanwhile, the originator of a theory may have a very lonely time, especially if his colleagues find his views of nature unfamiliar, and difficult to appreciate. The final outcome cannot be known, either to the originator of a new theory, or to his colleagues and critics, who are bent on falsifying it. Thus, the scientific innovator may feel all the more lonely and uncertain. On the other hand, faced with a new theory, the members of the scientific establishment are often more vulnerable than the lonely innovator. For, if the innovator should happen to be right, the ensuing upheaval of the established order may be very painful and uncongenial to those who have long committed themselves to develop and serve it. Such, I believe, has been the case in the field of knowledge with which my work has been involved. Naturally, I have been deeply moved, and not a little astonished, by the accidents of fortune that have brought me to this point; and I have counted myself lucky that I have been greatly encouraged by the love and example of the late David Keilin, and that my research associate, Dr. Moyle, has skilfully helped to mitigate my intellectual loneliness at the most difficult times. Now, I am indeed a witness of the benevolent spirit of Alfred Nobel. Last, but not least, I would like to pay a most heartfelt tribute to my helpers and colleagues generally, and especially to those who were formerly my strongest critics, without whose altruistic and generous impulses, I feel sure that I would not be at this banquet today.

8 Pathway Questions 1. What does the electron transport system/oxidative phosphorylation accomplish for the cell? Generates ATP derived from oxidation of metabolic fuels accounting for 28 out of 32 ATP (88%) obtained from glucose catabolism. Tissue-specific expression of uncoupling protein-1 (UCP1) in brown adipose tissue of mammals short-circuits the electron transport system and thereby produces heat for thermoregulation. Alternative oxidase in certain plants produces heat for pollinator attractant and growth 2. What is the overall net reaction of NADH oxidation by the coupled electron transport and oxidative phosphorylation pathway? 2 NADH + 2 H ADP + 5 Pi + O 2 2 NAD ATP +2 H 2 O Pathway Questions 3. What are the key enzymes in the electron transport and oxidative phosphorylation pathway? ATP synthase complex the enzyme responsible for converting protonmotive force (energy available from the electrochemical proton gradient) into net ATP synthesis through a series of proton-driven conformational changes. NADH dehydrogenase also called complex I or NADH-ubiquinone oxidoreductase. This enzyme catalyzes the first redox reaction in the electron transport system in which NADH oxidation is coupled to FMN reduction and pumps 4 H + into the inter-membrane space. Ubiquinone-cytochrome c oxidoreductase - also called complex III, translocates 4 H + across the membrane via the Q cycle and has the important role of facilitating electron transfer from a two electron carrier (QH 2 ), to cytochrome c, a mobile protein carrier that transfers one electron at a time to complex IV. Cytochrome c oxidase - also called complex IV pumps 2 H + into the intermembrane space and catalyzes the last redox reaction in the electron transport system in which cytochrome a3 oxidation is coupled to the reduction of molecular oxygen to form water ( O e H + H 2 O).

9 Pathway Questions 4. What are examples of the electron transport system and oxidative phosphorylation? Cyanide binds to the heme group in cytochrome a3 of complex IV and blocks the electron transport system by preventing the reduction of oxygen to form H 2 O. Hydrogen cyanide gas is the lethal compound produced in prison gas chambers when sodium cyanide crystals are dropped into sulfuric acid. The Electron Transport System Is A Series Of Coupled Redox Reactions The electron transport system consists of five large protein complexes: 1. Complex I; NADH-ubiquinone oxidoreductase (NADH dehydrogenase 2. Complex II; succinate dehydrogenase (citrate cycle enzyme 3. Complex III; Ubiquinone-cytochrome c oxidoreductase 4. Complex IV; cytochrome c oxidase 5. F 1 F 0 ATP synthase complex consisting of a "stalk" (F 0 ) and a spherical "head" (F 1 )

10 It was possible to order the four electron transport system complexes because of: Specific redox reaction inhibitors (such as rotenone, antimycin A and cyanide) Known reduction potentials (Eº') of conjugate redox pairs Metabolic Fuel for Electron Transport NADH and FADH 2 feed into the electron transport system from the citrate cycle and fatty acid oxidation pathways. Pairs of electrons (2 e-) are donated by NADH and FADH 2 to complex I and II, respectively Pairs of electrons flow through the electron transport system until they are used to reduce oxygen to form water (O e H + H 2 O). The two mobile electron carriers in this series of reactions are coenzyme Q (Q), also called ubiquinone, and cytochrome c which transfer electrons between various complexes.

11 The stoichiometry of "proton pumping" is: 4 H + in complex I 4 H + in complex III and 2 H + in complex IV (10 H + /NADH and 6 H + /FADH 2 ) The four functional components of the electron transport system: Three large multisubunit protein complexes, I, III and IV, that transverse the inner mitochondrial membrane and function as proton "pumps". Coenzyme Q (Q), also called ubiquinone, a small hydrophobic electron carrier that diffuses laterally within the membrane to donate electrons to complex III. Three membrane-associated FAD-containing enzymes (succinate dehydrogenase; complex II, electron-transferring flavoprotein; ETF, and glycerol-3-phosphate dehydrogenase) that pick up electrons from linked metabolic pathways and donate them to coenzyme Q. Cytochrome c, a small water-soluble protein that associates with the cytosolic side of the membrane and carries electrons one at a time from complex III to complex IV.

12 How is the energy released by redox reactions used to "pump" protons into the inter-membrane space? Answer: we don t completely know yet, but, it is thought to involve: a redox loop mechanism Q cycle in complex III redox-driven conformational changes : proton pump complexes I and IV

13 separation of the H + and e - on opposite sides of the membrane The Q cycle in complex III uses this mechanism to translocate protons across the membrane Redox-driven conformational changes in the protein complex "pump" protons across the membrane by altering pka values of functional groups located on the inner and outer faces of the membrane. Both complexes I and IV have properties that are consistent with such a proton pumping mechanism

14 Complex I: NADH-ubiquinone oxidoreductase Complex 1 passes 2 e - obtained from the oxidation of NADH to Q using a coupled reaction mechanism that results in the net movement of 4 H + across the membrane Contains a covalently bound flavin mononucleotide (FMN) that accepts the two electrons from NADH, as well as at least six different iron-sulfur centers (Fe-S) that carry one electron at a time from one end of the complex to the other. The poison rotenone blocks electron transfer within complex I by preventing a redox reaction between two Fe-S centers. Complex II: Succinate dehydrogenase The citrate cycle enzyme we first encountered in lecture 28. It catalyzes an oxidation reaction that converts succinate to fumarate in a coupled redox reaction involving FAD. The 2 e - extracted from succinate in the citrate cycle is passed through the other protein subunits in the complex to Q as shown below. No protons are translocated across the inner mitochondrial membrane by complex II.

15 Alternative Oxidase in Plants Fig Alternative Oxidase is involved in thermogenesis Titan Arum (Amorphophallus titanum) Voodoo Lily

16 Alternative Oxidase acts here The stoichiometry of "proton pumping" is normally: 4 H + in complex I 4 H + in complex III and 2 H + in complex IV (10 H + /NADH and 6 H + /FADH 2 ) But w/ Alternative Oxidase, The total H + pumped is only 4 Electrons from Succinate lead to NO ATP FORMATION. Complex III: Ubiquinone-cytochrome c oxidoreductase The docking site for QH 2 (ubiquinol) and consists of 11 protein subunits in each of two monomer subunits. Note the relative position of the electron carriers and the presence of two distinct binding sites for ubiquinone called QP and QN, which play a crucial role in diverting one electron at a time to cytochrome c via the Q cycle. The terms QP and QN refer to the proximity of the sites to the positive (inter-membrane space) and negative (matrix) sides of the membrane.

17 The Q Cycle (No, it isn t an invention for James Bond) Functions a both a mobile electron carrier and a "transformer" that converts the 2 e - transport system used by complexes I and II, into a 1 e - transport system required by cytochrome C. The Q cycle requires that 2 QH 2 molecules get oxidized by complex III, with one of QH 2 molecule being reformed by reduction to give a net oxidation of one QH 2 molecule. 4 Steps of the Q Cycle 1. Oxidation of QH 2 at the QP site results in transfer of one electron to the Rieske Fe-S center which is transferred to cytochrome c1 and then passed off to Cyt c. The second electron is transferred to cytochrome bl which "stores" it temporarily. The oxidation of QH 2 in this first step contributes 2 H + P to the inter-membrane space. 2. The oxidized Q molecule moves from the QP site to the QN site through a proposed substrate channel within the protein complex. This stimulates electron transfer from bl to bh which then reduces Q in the QN site to form the semiquinone Q - intermediate.

18 4 Steps of the Q Cycle 3. A new QH 2 molecule binds in the vacated QP site and is oxidized in the same way as step 1 such that one electron is transferred to cytochrome c1 and then to a new molecule of Cyt c. Oxidation of this second QH2 molecule translocates another 2 H + P into the intermembrane space (4 H + P total) and the resulting Q molecule is released into the membrane (the QN site is occupied with Q - ). 4. The second electron from the QH 2 oxidation in step 3 is passed directly from bl to bh and then used to reduce the semiquinone Q - intermediate already sitting in the QN site which uses 2 H + N to regenerate a QH 2 molecule. 4 Steps of the Q Cycle

19 To see how the Q cycle accomplishes the 2 e - 1 e e - conversion process, write out two separate QH2 oxidation reactions and then sum them to get the net reaction for complex III: QH 2 + Cyt c (oxidized) Q H + P + Cyt c (reduced) QH 2 + Q H + N + Cyt c (oxidized) Q + QH H + P + Cyt c (reduced) QH H + N + 2 Cyt c (oxidized) Q + 4 H + P + 2 Cyt c (reduced) Note that the Q cycle reactions require that 2H + N from the matrix be used to regenerate QH 2, even though 4H + P are translocated. However, this apparent imbalance of 2H + N is corrected by the redox reactions of complex IV where 2H + N are required to reduce oxygen to water and 2H + N are pumped across the membrane. Therefore, the net translocation of protons across the membrane in the combined redox reactions of complexes III and IV becomes 6 H + N 6 H + P. Cytochrome C Cytochrome c (Cyt c) is a small protein of ~13 kda that associates with the cytosolic side of the inner mitochondrial membrane and is responsible for transporting one electron at a time from complex III to complex IV using an ironcontaining heme prosthetic group. Oxidized Cyt c contains ferric iron (Fe 3+ ) in the heme group and reduced Cyt c contains ferrous iron (Fe 2+ ). A version of the Cyt c molecular structure is used in the Bioc460 website header.

20 Complex IV: Cytochrome c oxidase Complex IV accepts electrons one at a time from Cyt c and donates them to oxygen to form water. In the process, two net H + are pumped across the membrane using a conformational-type mechanism similar to complex I. Cyt c docks on the P side of the membrane to complex IV near CuA which accepts the electron leading to oxidation of the heme group in Cyt c (Fe 2+ --> Fe 3+ ). Cyanide blocks electron transfer in complex IV. ATP Currency Exchange Ratios of NADH and FADH 2 Experimental measurements demonstrate 3 H + are required to synthesize 1 ATP when they flow back down the electrochemical proton gradient through the ATP synthase complex, and 1 H + is needed to transport each negatively-charged Pi molecule into the matrix.

21 ATP Currency Exchange Ratios of NADH and FADH 2 Taking into account the requirement of 3 H + /ATP synthesized, and the use of 1 H + to translocate ADP, we can now see where the ATP currency exchange ratios of ~2.5 ATP/NADH and ~1.5 ATP/FADH 2 come from: oxidation of NADH by complex I leads to 10 H + /4 H + = 2.5 ATP oxidation of FADH 2 by complex II yields 6 H + /4 H + = 1.5 ATP for FADH 2

Chem 306 Chapter 21 Bioenergetics Lecture Outline III

Chem 306 Chapter 21 Bioenergetics Lecture Outline III Chem 306 Chapter 21 Bioenergetics Lecture Outline III I. HOW IS ATP GENERATED IN THE FINAL STAGE CATABOLISM? A. OVERVIEW 1. At the end of the citric acid cycle, all six carbons of glucose have been oxidized

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Oxidative Phosphorylation NADH from Glycolysis must be transported into the mitochondrion to be oxidized by the respiratory electron transport chain. Only the electrons from NADH are transported, these

More information

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary)

The amount of cellular adenine is constant. -It exists as either ATP, ADP, or AMP (the concentration of these vary) Electron transport chain Final stage of aerobic oxidation! Also known as: -oxidative phosphorylation(when coupled to ATP synthase) -respiration (when coupled to ATP synthase) Purpose: -Recycle reduced

More information

Electron Transport and Oxidative Phosphorylation

Electron Transport and Oxidative Phosphorylation CHM333 LECTURES 37 & 38: 4/27 29/13 SPRING 2013 Professor Christine Hrycyna Electron Transport and Oxidative Phosphorylation Final stages of aerobic oxidation of biomolecules in eukaryotes occur in the

More information

Chapter 9 Mitochondrial Structure and Function

Chapter 9 Mitochondrial Structure and Function Chapter 9 Mitochondrial Structure and Function 1 2 3 Structure and function Oxidative phosphorylation and ATP Synthesis Peroxisome Overview 2 Mitochondria have characteristic morphologies despite variable

More information

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica

Electron transport chain, oxidative phosphorylation & mitochondrial transport systems. Joško Ivica Electron transport chain, oxidative phosphorylation & mitochondrial transport systems Joško Ivica Electron transport chain & oxidative phosphorylation collects e - & -H Oxidation of foodstuffs oxidizes

More information

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu

Electron Transport System. May 16, 2014 Hagop Atamian hatamian@ucdavis.edu Electron Transport System May 16, 2014 Hagop Atamian hatamian@ucdavis.edu What did We learn so far? Glucose is converted to pyruvate in glycolysis. The process generates two ATPs. Pyruvate is taken into

More information

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions

Chapter 19a Oxidative Phosphorylation and Photophosphorylation. Multiple Choice Questions Chapter 19a Oxidative Phosphorylation and Photophosphorylation Multiple Choice Questions 1. Electron-transfer reactions in mitochondria Page: 707 Difficulty: 1 Ans: E Almost all of the oxygen (O 2 ) one

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs. 1. An autotroph is an organism that a. extracts energy from organic sources b. converts energy from sunlight into chemical energy c. relies on the energy produced by other organisms as an energy source

More information

Chapter 7 Cellular Respiration

Chapter 7 Cellular Respiration Phases of aerobic cellular respiration 1. Glycolysis 2. Transition or Acetyl-CoA reaction 3. Krebs cycle 4. Electron transport system Chapter 7 Cellular Respiration These phases are nothing more than metabolic

More information

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline AP BIOLOGY CHAPTER 7 Cellular Respiration Outline I. How cells get energy. A. Cellular Respiration 1. Cellular respiration includes the various metabolic pathways that break down carbohydrates and other

More information

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2 accounting so far The final stage of cellular respiration: ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to extract more energy than 4! There

More information

Electron Transport and Oxidative Phosphorylation. The Mitochondrion. Electron Transport. Oxidative Phosphorylation. Control of ATP Production

Electron Transport and Oxidative Phosphorylation. The Mitochondrion. Electron Transport. Oxidative Phosphorylation. Control of ATP Production Electron Transport and Oxidative Phosphorylation The Mitochondrion Electron Transport Oxidative Phosphorylation Control of ATP Production C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O G ' = -2823 kj. mol -1 C 6 H

More information

1. Explain the difference between fermentation and cellular respiration.

1. Explain the difference between fermentation and cellular respiration. : Harvesting Chemical Energy Name Period Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second to look at the big picture. Photosynthesis and cellular

More information

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme. CH s 8-9 Respiration & Metabolism Metabolism A catalyst is a chemical agent that speeds up a reaction without being consumed by the reaction. An enzyme is a catalytic protein. Hydrolysis of sucrose by

More information

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Name: AP Biology Mr. Croft Chapter 7 Active Reading Guide Cellular Respiration and Fermentation Overview: Before getting involved with the details of cellular respiration and photosynthesis, take a second

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Summary of Metabolism. Mechanism of Enzyme Action

Summary of Metabolism. Mechanism of Enzyme Action Summary of Metabolism Mechanism of Enzyme Action 1. The substrate contacts the active site 2. The enzyme-substrate complex is formed. 3. The substrate molecule is altered (atoms are rearranged, or the

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

ATP Synthesis. Lecture 13. Dr. Neil Docherty

ATP Synthesis. Lecture 13. Dr. Neil Docherty PG1005 The Electron Transport Chain and ATP Synthesis Lecture 13 Dr. Neil Docherty My Teaching Objectives Define and describe the electron transport chain Explain how electron transfer couples to proton

More information

Inhibitors & Uncouplers

Inhibitors & Uncouplers Inhibitors & Uncouplers February 24, 2003 Bryant Miles The electron transport chain was determined by studying the effects of particular inhibitors. 2 3 3 Rotenone 3 Rotenone is a common insecticide that

More information

008 Chapter 8. Student:

008 Chapter 8. Student: 008 Chapter 8 Student: 1. Some bacteria are strict aerobes and others are strict anaerobes. Some bacteria, however, are facultative anaerobes and can live with or without oxygen. If given the choice of

More information

Photosynthesis takes place in three stages:

Photosynthesis takes place in three stages: Photosynthesis takes place in three stages: Light-dependent reactions Light-independent reactions The Calvin cycle 1. Capturing energy from sunlight 2. Using energy to make ATP and NADPH 3. Using ATP and

More information

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman An Introduction to Metabolism Most biochemical processes occur as biochemical pathways, each individual reaction of which is catalyzed

More information

Chapter 3 The respiratory electron transport chain

Chapter 3 The respiratory electron transport chain 6 Chapter 3 The respiratory electron transport chain In this chapter, I will describe function and location of the native cytochrome b (Cb) in the mitochondrial electron transport chain. In the frame of

More information

The Electron Transport Chain

The Electron Transport Chain The Electron Transport hain February 19, 2003 Bryant Miles The citric acid cycle oxidizes acetate into two molecules of 2 while capturing the electrons in the form of 3 NAD molecules and one molecule of

More information

21.8 The Citric Acid Cycle

21.8 The Citric Acid Cycle 21.8 The Citric Acid Cycle The carbon atoms from the first two stages of catabolism are carried into the third stage as acetyl groups bonded to coenzyme A. Like the phosphoryl groups in ATP molecules,

More information

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8 Harvesting Energy: Glycolysis and Cellular Respiration Chapter 8 Overview of Glucose Breakdown The overall equation for the complete breakdown of glucose is: C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP The

More information

THE ELECTRON TRANSPORT CHAIN. Oxidative phosphorylation

THE ELECTRON TRANSPORT CHAIN. Oxidative phosphorylation THE ELECTRON TRANSPORT CHAIN Oxidative phosphorylation Overview of Metabolism Mitochondria Structure -Schematic Mitochondria Structure -Photomicrograph Overview of ETC Impermiable to ions Permiable via

More information

Figure 5. Energy of activation with and without an enzyme.

Figure 5. Energy of activation with and without an enzyme. Biology 20 Laboratory ENZYMES & CELLULAR RESPIRATION OBJECTIVE To be able to list the general characteristics of enzymes. To study the effects of enzymes on the rate of chemical reactions. To demonstrate

More information

Chapter 8: Energy and Metabolism

Chapter 8: Energy and Metabolism Chapter 8: Energy and Metabolism 1. Discuss energy conversions and the 1 st and 2 nd law of thermodynamics. Be sure to use the terms work, potential energy, kinetic energy, and entropy. 2. What are Joules

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Which of the following is not true of the reaction catalyzed by the pyruvate dehydrogenase complex? A) Biotin participates in the decarboxylation.

More information

BCOR 011 Exam 2, 2004

BCOR 011 Exam 2, 2004 BCOR 011 Exam 2, 2004 Name: Section: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1. According to the first law of thermodynamics, A. the universe

More information

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery Cellular Respiration & Metabolism Metabolic Pathways: a summary Metabolism Bioenergetics Flow of energy in living systems obeys: 1 st law of thermodynamics: Energy can be transformed, but it cannot be

More information

Biochemistry of cellular organelles

Biochemistry of cellular organelles Kontinkangas, L101A Biochemistry of cellular organelles Lectures: 1. Membrane channels; 2. Membrane transporters; 3. Soluble lipid/metabolite-transfer proteins; 4. Mitochondria as cellular organelles;

More information

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms Chapter 5: Microbial Metabolism Microbial Metabolism Metabolism refers to all chemical reactions that occur within a living a living organism. These chemical reactions are generally of two types: Catabolic:

More information

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to: and Work Metabolic Pathways Enzymes Features Factors Affecting Enzyme Activity Membrane Transport Diffusion Osmosis Passive Transport Active Transport Bulk Transport Todays Outline -Releasing Pathways

More information

Lactic Acid Dehydrogenase

Lactic Acid Dehydrogenase Lactic Acid Dehydrogenase Pyruvic Acid Dehydrogenase Complex Pyruvate to ACETYL coa CC CoA + CO 2 Mitochondria 3 carbon Pyruvate to 2 carbon ACETYL Coenzyme A Pyruvate Acetyl CoA + CO 2 + NADH + H + CO2

More information

Chapter 14- RESPIRATION IN PLANTS

Chapter 14- RESPIRATION IN PLANTS Chapter 14- RESPIRATION IN PLANTS Living cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates,

More information

III. Metabolism Oxidative Phosphorylation

III. Metabolism Oxidative Phosphorylation Department of Chemistry and Biochemistry University of Lethbridge Biochemistry 3020 III. Metabolism Oxidative Phosphorylation Biochemical Anatomy of Mitochondria Transmembrane channels allow small molecules

More information

Electron Transport Generates a Proton Gradient Across the Membrane

Electron Transport Generates a Proton Gradient Across the Membrane Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in

More information

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

* Is chemical energy potential or kinetic energy? The position of what is storing energy? Biology 1406 Exam 2 - Metabolism Chs. 5, 6 and 7 energy - capacity to do work 5.10 kinetic energy - energy of motion : light, electrical, thermal, mechanical potential energy - energy of position or stored

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Electrons carried in NADH Mitochondrion Glucose Glycolysis Pyruvic acid Krebs Cycle Electrons carried in NADH and FADH 2 Electron Transport Chain Cytoplasm Mitochondrion

More information

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes Chapter 5: Microbial Metabolism 1. Enzymes 2. ATP Production 3. Autotrophic Processes 1. Enzymes Biochemical Reactions All living cells depend on biochemical reactions to maintain homeostasis. All of the

More information

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons Cellular Respiration- Equation C6H12O6 + 6O2 6CO2 +6H20 and energy -The energy is released from the chemical bonds in the complex organic molecules -The catabolic process of releasing energy from food

More information

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes? Keystone Review Practice Test Module A Cells and Cell Processes 1. Which characteristic is shared by all prokaryotes and eukaryotes? a. Ability to store hereditary information b. Use of organelles to control

More information

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS

CHAPTER 15: ANSWERS TO SELECTED PROBLEMS CHAPTER 15: ANSWERS T SELECTED PRBLEMS SAMPLE PRBLEMS ( Try it yourself ) 15.1 ur bodies can carry out the second reaction, because it requires less energy than we get from breaking down a molecule of

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Most components of energy conversion systems evolved very early; thus, the most fundamental aspects of energy metabolism tend to be: A. quite different among a diverse group

More information

Chapter 16 The Citric Acid Cycle

Chapter 16 The Citric Acid Cycle Chapter 16 The Citric Acid Cycle Multiple Choice Questions 1. Production of acetyl-coa (activated acetate) Page: 603 Difficulty: 2 Ans: A Which of the following is not true of the reaction catalyzed by

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Carbohydrate Breakdown Pathways Photoautotrophs make ATP during photosynthesis and use it to synthesize glucose and other carbohydrates

More information

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells. Cellular respiration - how cells make energy - Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - ATP - this is provided by the lungs - lungs provide oxygen to blood, blood

More information

Copyright 2000-2003 Mark Brandt, Ph.D. 54

Copyright 2000-2003 Mark Brandt, Ph.D. 54 Pyruvate Oxidation Overview of pyruvate metabolism Pyruvate can be produced in a variety of ways. It is an end product of glycolysis, and can be derived from lactate taken up from the environment (or,

More information

The Aerobic Fate of Pyruvate

The Aerobic Fate of Pyruvate The Aerobic Fate of yruvate February 12, 2003 Bryant Miles I could tell that some of you were not impressed by the mere 2 ATs produced per glucose by glycolysis. The 2 AT s produced are only a small fraction

More information

AP BIOLOGY 2015 SCORING GUIDELINES

AP BIOLOGY 2015 SCORING GUIDELINES AP BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of

More information

Cellular Respiration An Overview

Cellular Respiration An Overview Why? Cellular Respiration An Overview What are the phases of cellular respiration? All cells need energy all the time, and their primary source of energy is ATP. The methods cells use to make ATP vary

More information

Regulation of the Citric Acid Cycle

Regulation of the Citric Acid Cycle Regulation of the itric Acid ycle I. hanges in Free Energy February 17, 2003 Bryant Miles kj/mol 40 20 0 20 40 60 80 Reaction DGo' DG TA Free Energy hanges 1 2 3 4 5 6 7 8 9 1.) itrate Synthase 2.) Aconitase

More information

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips

APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips APh/BE161: Physical Biology of the Cell Winter 2009 Recap on Photosynthesis Rob Phillips Big picture: why are we doing this? A) photosynthesis will explain shortly, b) more generally, interaction of light

More information

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy.

Energy & Enzymes. Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. Energy & Enzymes Life requires energy for maintenance of order, growth, and reproduction. The energy living things use is chemical energy. 1 Energy exists in two forms - potential and kinetic. Potential

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? O2, NADP+ 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? Na+, H+ 2. (4 pts) What is the terminal electron

More information

BCHEM 254: METABOLISM IN HEALTH AND DISEASES II

BCHEM 254: METABOLISM IN HEALTH AND DISEASES II BCHEM 254: METABOLISM IN HEALTH AND DISEASES II Lecture 1: The Energetics of the Electron Transport Chain Lecturer: Dr. Christopher Larbie Introduction The citric acid cycle oxidizes acetate into two molecules

More information

Bioenergetics. Free Energy Change

Bioenergetics. Free Energy Change Bioenergetics Energy is the capacity or ability to do work All organisms need a constant supply of energy for functions such as motion, transport across membrane barriers, synthesis of biomolecules, information

More information

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action

Microbial Metabolism. Chapter 5. Enzymes. Enzyme Components. Mechanism of Enzymatic Action Chapter 5 Microbial Metabolism Metabolism is the sum of all chemical reactions within a living organism, including anabolic (biosynthetic) reactions and catabolic (degradative) reactions. Anabolism is

More information

The Citric Acid Cycle

The Citric Acid Cycle The itric Acid ycle February 14, 2003 Bryant Miles I. itrate Synthase + 3 SoA The first reaction of the citric acid cycle is the condensation of acetyloa and oxaloacetate to form citrate and oas. The enzyme

More information

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT Completion: complete each statement. (1 point each) 1. All cells arise from. 2. The basic unit of structure

More information

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide

Transmembrane proteins span the bilayer. α-helix transmembrane domain. Multiple transmembrane helices in one polypeptide Transmembrane proteins span the bilayer α-helix transmembrane domain Hydrophobic R groups of a.a. interact with fatty acid chains Multiple transmembrane helices in one polypeptide Polar a.a. Hydrophilic

More information

Visualizing Cell Processes

Visualizing Cell Processes Visualizing Cell Processes A Series of Five Programs produced by BioMEDIA ASSOCIATES Content Guide for Program 3 Photosynthesis and Cellular Respiration Copyright 2001, BioMEDIA ASSOCIATES www.ebiomedia.com

More information

Photosystems I and II

Photosystems I and II Photosystems I and II March 17, 2003 Bryant Miles Within the thylakoid membranes of the chloroplast, are two photosystems. Photosystem I optimally absorbs photons of a wavelength of 700 nm. Photosystem

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 171 Week 6 Procedure Label test tubes well, including group name 1) Add solutions listed to small test tubes 2) For

More information

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63 www.ck12.org Chapter 4 Photosynthesis and Cellular Respiration Worksheets (Opening image copyright by Derek Ramsey, http://en.wikipedia.org/wiki/file:monarch_butterfly_ Danaus_plexippus_Feeding_Down_3008px.jpg, and

More information

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle

Citric Acid Cycle. Cycle Overview. Metabolic Sources of Acetyl-Coenzyme A. Enzymes of the Citric Acid Cycle. Regulation of the Citric Acid Cycle Citric Acid Cycle Cycle Overview Metabolic Sources of Acetyl-Coenzyme A Enzymes of the Citric Acid Cycle Regulation of the Citric Acid Cycle The Amphibolic Nature of the Citric Acid Cycle Cycle Overview

More information

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8 How ells Harvest Energy hapter 7 & 8 Evolution of Metabolism A hypothetical timeline for the evolution of metabolism - all in prokaryotic cells!: 1. ability to store chemical energy in ATP 2. evolution

More information

Microbial Metabolism. Biochemical diversity

Microbial Metabolism. Biochemical diversity Microbial Metabolism Biochemical diversity Metabolism Define Requirements Energy Enzymes Rate Limiting step Reaction time Types Anabolic Endergonic Dehydration Catabolic Exergonic Hydrolytic Metabolism

More information

b. What is/are the overall function(s) of photosystem II?

b. What is/are the overall function(s) of photosystem II? Use your model and the information in Chapter 10 of Biology, 7th edition, to answer the questions. 1. The various reactions in photosynthesis are spatially segregated from each other within the chloroplast.

More information

CITRIC ACID (KREB S, TCA) CYCLE

CITRIC ACID (KREB S, TCA) CYCLE ITRI AID (KREB S, TA) YLE Date: September 2, 2005 * Time: 10:40 am 11:30 am * Room: G202 Biomolecular Building Lecturer: Steve haney 515A Mary Ellen Jones Building stephen_chaney@med.unc.edu 9663286 *Please

More information

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT

BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT BIOLOGICAL MEMBRANES: FUNCTIONS, STRUCTURES & TRANSPORT UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY BMLS II / B Pharm II / BDS II VJ Temple

More information

Q: How are proteins (amino acid chains) made from the information in mrna? A: Translation Ribosomes translate mrna into protein

Q: How are proteins (amino acid chains) made from the information in mrna? A: Translation Ribosomes translate mrna into protein ranslation (written lesson) Q: How are proteins (amino acid chains) made from the information in mrn? : ranslation Ribosomes translate mrn into protein ranslation has 3 steps also! 1. ranslation Initiation:

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism Chapter 8: An Introduction to Metabolism Name Period Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. The totality of an organism

More information

8-3 The Reactions of Photosynthesis Slide 1 of 51

8-3 The Reactions of Photosynthesis Slide 1 of 51 8-3 The of Photosynthesis 1 of 51 Inside a Chloroplast Inside a Chloroplast In plants, photosynthesis takes place inside chloroplasts. Plant Chloroplast Plant cells 2 of 51 Inside a Chloroplast Chloroplasts

More information

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 )

Photosynthesis (CO 2 + H 2 O C 6 H 12 O 6 + O 2 ) The vital role of A This is the energy-rich compound that is the source of energy for all living things. It is a nucleotide, comprising a 5C sugar (ribose); an organic base (adenosine); and 3 phosphate

More information

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1

Copyright 2010 Pearson Education, Inc. Chapter Twenty Three 1 23.2 Glucose Metabolism: An Overview When glucose enters a cell from the bloodstream, it is immediately converted to glucose 6- phosphate. Once this phosphate is formed, glucose is trapped within the cell

More information

How To Understand The Chemistry Of An Enzyme

How To Understand The Chemistry Of An Enzyme Chapt. 8 Enzymes as catalysts Ch. 8 Enzymes as catalysts Student Learning Outcomes: Explain general features of enzymes as catalysts: Substrate -> Product Describe nature of catalytic sites general mechanisms

More information

Anatomy and Physiology Placement Exam 2 Practice with Answers at End!

Anatomy and Physiology Placement Exam 2 Practice with Answers at End! Anatomy and Physiology Placement Exam 2 Practice with Answers at End! General Chemical Principles 1. bonds are characterized by the sharing of electrons between the participating atoms. a. hydrogen b.

More information

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O 6 + 6 O 2

2. PHOTOSYNTHESIS. The general equation describing photosynthesis is light + 6 H 2 O + 6 CO 2 C 6 H 12 O 6 + 6 O 2 2. PHOTOSYNTHESIS Photosynthesis is the process by which light energy is converted to chemical energy whereby carbon dioxide and water are converted into organic molecules. The process occurs in most algae,

More information

Enzymes and Metabolic Pathways

Enzymes and Metabolic Pathways Enzymes and Metabolic Pathways Enzyme characteristics Made of protein Catalysts: reactions occur 1,000,000 times faster with enzymes Not part of reaction Not changed or affected by reaction Used over and

More information

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because:

1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: Section 10 Multiple Choice 1- Fatty acids are activated to acyl-coas and the acyl group is further transferred to carnitine because: A) acyl-carnitines readily cross the mitochondrial inner membrane, but

More information

Redox Chemistry Handout

Redox Chemistry Handout Redox Chemistry Handout This handout is intended as a brief introduction to redox chemistry. For further reading, consult an introductory chemistry or microbiology textbook. Redox reactions involve the

More information

Chemical Basis of Life Module A Anchor 2

Chemical Basis of Life Module A Anchor 2 Chemical Basis of Life Module A Anchor 2 Key Concepts: - Water is a polar molecule. Therefore, it is able to form multiple hydrogen bonds, which account for many of its special properties. - Water s polarity

More information

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale

CELLULAR RESPIRATION. Chapter 19 & 20. Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale CELLULAR RESPIRATION Chapter 19 & 20 Biochemistry by Campbell and Farell (7 th Edition) By Prof M A Mogale 1. Cellular respiration (energy capture) The enzymatic breakdown of food stuffs in the presence

More information

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes

CHAPTER 6 AN INTRODUCTION TO METABOLISM. Section B: Enzymes CHAPTER 6 AN INTRODUCTION TO METABOLISM Section B: Enzymes 1. Enzymes speed up metabolic reactions by lowering energy barriers 2. Enzymes are substrate specific 3. The active site in an enzyme s catalytic

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Two Forms of Energy Module 2D - Energy and Metabolism Objective # 19 All living organisms require energy for survival. In this module we will examine some general principles about chemical reactions and energy usage within

More information

Chemistry 20 Chapters 15 Enzymes

Chemistry 20 Chapters 15 Enzymes Chemistry 20 Chapters 15 Enzymes Enzymes: as a catalyst, an enzyme increases the rate of a reaction by changing the way a reaction takes place, but is itself not changed at the end of the reaction. An

More information

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

BCHEM 254 METABOLISM IN HEALTH AND DISEASES II Lecture 1 The Energetics of the Electron Transport Chain Christopher Larbie, PhD

BCHEM 254 METABOLISM IN HEALTH AND DISEASES II Lecture 1 The Energetics of the Electron Transport Chain Christopher Larbie, PhD BCHEM 254 METABOLISM IN HEALTH AND DISEASES II Lecture 1 The Energetics of the Electron Transport Chain Christopher Larbie, PhD Introduction The Citric Acid cycle oxidizes acetate into two molecules of

More information

Metabolism Poster Questions

Metabolism Poster Questions Metabolism Poster Questions Answer the following questions concerning respiration. 1. Consider the mitochondrial electron transport chain. a. How many hydrogen ions can be pumped for every NADH? b. How

More information

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done

pencil. Vocabulary: 1. Reactant 2. Product 3. Activation energy 4. Catalyst 5. substrate 6. Chemical reaction Keep your textbooks when you are done Objectives Students will explore the importance of chemical reactions in biology Students will discuss the role of enzymes as catalysts in biological reactions. Students will analyze graphs showing how

More information

C A. How many high-energy phosphate bonds would be consumed during the replication of a 10-nucleotide DNA sequence (synthesis of a single-strand)?

C A. How many high-energy phosphate bonds would be consumed during the replication of a 10-nucleotide DNA sequence (synthesis of a single-strand)? 1. (20 points) Provide a brief answer to the following questions. You may use diagrams or equations, as appropriate, but your answer should be largely a written response of two or three sentences. 4. The

More information

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism.

The diagram below summarizes the effects of the compounds that cells use to regulate their own metabolism. Regulation of carbohydrate metabolism Intracellular metabolic regulators Each of the control point steps in the carbohydrate metabolic pathways in effect regulates itself by responding to molecules that

More information